My self-made 3D-printable designs, mainly in OpenSCAD
Você não pode selecionar mais de 25 tópicos Os tópicos devem começar com uma letra ou um número, podem incluir traços ('-') e podem ter até 35 caracteres.

Fan Holder.scad 6.6KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231
  1. /*
  2. * Based on "Y-Axis Bracket" by "daveth26":
  3. * http://www.thingiverse.com/thing:1104535
  4. *
  5. * Recreated and modified by:
  6. * Thomas Buck <xythobuz@xythobuz.de> in March 2016
  7. *
  8. * Licensed under the Creative Commons - Attribution license.
  9. *
  10. * This part has been modified to use a 25mm fan instead of
  11. * a 30mm fan. This can be set in the parameters, but beware
  12. * of any problems, I have not tested any other sizes.
  13. *
  14. * The Fabrikator Mini V1.5 include a new bracket that prevents
  15. * the old design from sliding fully onto the stepper motor.
  16. */
  17. // -----------------------------------------------------------
  18. height = 25; // [14:26]
  19. // default for 25mm fan: 23
  20. fan_hole_diameter = 23; // [26]
  21. // default for 25mm fan: 20
  22. fan_screw_distance = 20; // [22]
  23. // default for 25mm fan: 3
  24. fan_screw_diameter = 3; // [1:5]
  25. fan_hole_angled = "true"; // [true, false]
  26. arm_inward_angle_left = 2; // [0:5]
  27. // -----------------------------------------------------------
  28. /* [Hidden] */
  29. bottom_arm_height = 2;
  30. bottom_arm_gap = 8;
  31. back_support_depth = 2;
  32. mid_left_cutout = 9;
  33. wall_size = 3;
  34. fan_angle = 10;
  35. nub_size = 1;
  36. nub_depth = 1;
  37. motor_width = 28.5;
  38. motor_depth = 27;
  39. $fn = 25;
  40. fan_screw_pos = fan_screw_distance / 2;
  41. fan_screw_neg = -fan_screw_pos;
  42. fabrikator_mini_v15_height = 20;
  43. mid_left_cutout_height = 6;
  44. base_height = 5;
  45. arm_inward_angle_right = 0;
  46. // -----------------------------------------------------------
  47. module ellipse(w, l, d) {
  48. cube([d, l - w, w]);
  49. translate([0, 0, w / 2])
  50. rotate([0, 90, 0])
  51. cylinder(d = w, h = d);
  52. translate([0, l - w, w / 2])
  53. rotate([0, 90, 0])
  54. cylinder(d = w, h = d);
  55. }
  56. module left_arm() {
  57. // bottom left arm
  58. translate([0, 0, bottom_arm_gap])
  59. cube([motor_depth + nub_depth, wall_size, bottom_arm_height]);
  60. // bottom left nub
  61. translate([0, 0, bottom_arm_gap])
  62. cube([nub_depth, wall_size + nub_size, bottom_arm_height]);
  63. if (height > fabrikator_mini_v15_height) {
  64. // top left arm
  65. translate([0, 0, fabrikator_mini_v15_height + 1])
  66. cube([motor_depth + nub_depth, wall_size, height - fabrikator_mini_v15_height - 1]);
  67. // top left nub
  68. translate([0, 0, fabrikator_mini_v15_height + 1])
  69. cube([nub_depth, wall_size + nub_size, height - fabrikator_mini_v15_height - 1]);
  70. }
  71. // left back support
  72. translate([motor_depth + nub_depth - back_support_depth, 0, 0])
  73. cube([back_support_depth, wall_size, height]);
  74. // mid left support
  75. translate([nub_depth + mid_left_cutout, 0, 10])
  76. cube([motor_depth - back_support_depth - mid_left_cutout, wall_size, height - fabrikator_mini_v15_height + mid_left_cutout_height]);
  77. if (arm_inward_angle_left != 0) {
  78. // connecting piece for angled arm
  79. translate([motor_depth + nub_depth - back_support_depth, 0, 0])
  80. cube([1.5 * back_support_depth, wall_size, height]);
  81. }
  82. }
  83. module right_arm() {
  84. // right arm
  85. difference() {
  86. translate([0, motor_width + wall_size, 0])
  87. cube([motor_depth + nub_depth, wall_size, height]);
  88. translate([24 - wall_size, 28, 4])
  89. rotate([0, 0, 90])
  90. ellipse(7, 20, 8);
  91. if (height > 23) {
  92. translate([24 - wall_size, 28, 15])
  93. rotate([0, 0, 90])
  94. ellipse(7, 20, 8);
  95. }
  96. }
  97. // right nub
  98. translate([0, motor_width + wall_size - nub_size, 0])
  99. cube([nub_depth, wall_size + nub_size, height]);
  100. if (arm_inward_angle_right != 0) {
  101. // connecting piece for angled arm
  102. translate([motor_depth + nub_depth - back_support_depth, motor_width + wall_size, 0])
  103. cube([1.5 * back_support_depth, wall_size, height]);
  104. }
  105. }
  106. // -----------------------------------------------------------
  107. // stepper motor
  108. %translate([nub_depth, wall_size, 0])
  109. cube([motor_depth, motor_width, height + 1]);
  110. difference() {
  111. // left arm
  112. translate([0, 27 * sin(arm_inward_angle_left / 1.5), 0])
  113. rotate([0, 0, -(arm_inward_angle_left / 1.5)])
  114. left_arm();
  115. // cut off small ledge
  116. translate([0, -1, -base_height])
  117. cube([motor_depth + nub_depth + wall_size, 1, motor_width + base_height + wall_size]);
  118. }
  119. difference() {
  120. // right arm
  121. translate([35 * sin(arm_inward_angle_right / 1.5), -27 * sin(arm_inward_angle_right / 1.5), 0])
  122. rotate([0, 0, arm_inward_angle_right / 1.5])
  123. right_arm();
  124. if (arm_inward_angle_right != 0) {
  125. // cut off small ledge
  126. translate([0, motor_width + (2 * wall_size), -base_height])
  127. cube([motor_depth + nub_depth + wall_size, 1, motor_width + base_height + wall_size]);
  128. }
  129. }
  130. // back wall
  131. difference() {
  132. translate([motor_depth + nub_depth, 0, 0])
  133. cube([wall_size, motor_width + (2 * wall_size), height]);
  134. translate([25, 8 + wall_size, 4])
  135. ellipse(7, 20, 8);
  136. if (height > 23) {
  137. translate([25, 8 + wall_size, 15])
  138. ellipse(7, 20, 8);
  139. }
  140. }
  141. // bottom part
  142. difference() {
  143. // base
  144. translate([0, 0, -base_height])
  145. cube([motor_depth + nub_depth + wall_size, motor_width + (2 * wall_size), base_height]);
  146. // cut off angled bottom part
  147. rotate([0, -fan_angle, 0])
  148. translate([-base_height, -(base_height / 2), -(3 * base_height)])
  149. cube([motor_depth * 1.5, motor_width + (2 * wall_size) + base_height, (2 * base_height)]);
  150. // main fan hole
  151. if (fan_hole_angled == "true") {
  152. rotate([0, -fan_angle, 0])
  153. translate([nub_depth + (motor_depth / 2), wall_size + (motor_width / 2), -(base_height * 1.5)])
  154. cylinder(d = fan_hole_diameter, h = (2 * base_height));
  155. } else {
  156. translate([nub_depth + (motor_depth / 2), wall_size + (motor_width / 2), -(base_height * 1.5)])
  157. cylinder(d = fan_hole_diameter, h = (2 * base_height));
  158. }
  159. // fan screw holes
  160. for (i = [1 : 2]) {
  161. for (j = [1 : 2]) {
  162. rotate([0, -fan_angle, 0])
  163. translate([nub_depth + (motor_depth / 2), wall_size + (motor_width / 2), -(base_height * 1.5)])
  164. translate([(((i % 2) == 0) ? fan_screw_pos : fan_screw_neg),
  165. (((j % 2) == 0) ? fan_screw_pos : fan_screw_neg), 0])
  166. cylinder(d = fan_screw_diameter, h = (2 * base_height));
  167. }
  168. }
  169. // big air hole
  170. translate([8, 36, -1.8])
  171. rotate([90, 0, 0])
  172. cylinder(d = 2, h = 40);
  173. // small air hole
  174. translate([12, 36, -1.5])
  175. rotate([90, 0, 0])
  176. cylinder(d = 1.5, h = 40);
  177. // elliptical air hole
  178. translate([-1, 9 + wall_size, -3.5])
  179. ellipse(2, 12, 8);
  180. }