/*! * \file src/loader/LoaderTR2.cpp * \brief TR2 level file loader * * \author xythobuz */ #include #include "global.h" #include "Game.h" #include "Log.h" #include "Mesh.h" #include "Room.h" #include "SoundManager.h" #include "TextureManager.h" #include "World.h" #include "system/Sound.h" #include "utils/pixel.h" #include "loader/LoaderTR2.h" #include int LoaderTR2::load(std::string f) { if (file.open(f) != 0) { return 1; // Could not open file } if (file.readU32() != 0x2D) { return 2; // Not a TR2 level?! } loadPalette(); loadTextures(); file.seek(file.tell() + 4); // Unused value? loadRooms(); loadFloorData(); loadMeshes(); loadMoveables(); loadStaticMeshes(); loadTextiles(); loadSprites(); loadCameras(); loadSoundSources(); loadBoxesOverlapsZones(); loadAnimatedTextures(); loadItems(); file.seek(file.tell() + 8192); // Skip Light map, only for 8bit coloring loadCinematicFrames(); loadDemoData(); loadSoundMap(); loadSoundDetails(); loadSampleIndices(); loadExternalSoundFile(f); return 0; } // ---- Textures ---- void LoaderTR2::loadPalette() { file.seek(file.tell() + 768); // Skip 8bit palette, 256 * 3 bytes // Read the 16bit palette, 256 * 4 bytes, RGBA, A unused for (int i = 0; i < 256; i++) { uint8_t r = file.readU8(); uint8_t g = file.readU8(); uint8_t b = file.readU8(); uint8_t a = file.readU8(); glm::vec4 c(r / 255.0f, g / 255.0f, b / 255.0f, 1.0f); TextureManager::setPalette(i, c); } } void LoaderTR2::loadTextures() { uint32_t numTextures = file.readU32(); file.seek(file.tell() + (numTextures * 256 * 256)); // Skip 8bit textures // Read the 16bit textures, numTextures * 256 * 256 * 2 bytes for (unsigned int i = 0; i < numTextures; i++) { std::array arr; for (auto& x : arr) { x = file.readU8(); } // Convert 16bit textures to 32bit textures unsigned char* img = argb16to32(&arr[0], 256, 256); int r = TextureManager::loadBufferSlot(img, 256, 256, ColorMode::ARGB, 32, TextureStorage::GAME, i); orAssertGreaterThanEqual(r, 0); //! \fixme properly handle error when texture could not be loaded! delete [] img; } if (numTextures > 0) Log::get(LOG_INFO) << "LoaderTR2: Found " << numTextures << " Textures!" << Log::endl; else Log::get(LOG_INFO) << "LoaderTR2: No Textures in this level?!" << Log::endl; } void LoaderTR2::loadTextiles() { uint32_t numObjectTextures = file.readU32(); for (unsigned int o = 0; o < numObjectTextures; o++) { // 0 means that a texture is all-opaque, and that transparency // information is ignored. // // 1 means that transparency information is used. In 8-bit color, // index 0 is the transparent color, while in 16-bit color, the // top bit (0x8000) is the alpha channel (1 = opaque, 0 = transparent) // // 2 (TR3 only) means that the opacity (alpha) is equal to the intensity; // the brighter the color, the more opaque it is. The intensity is probably // calculated as the maximum of the individual color values. uint16_t attribute = file.readU16(); // Index into the texture list uint16_t tile = file.readU16(); TextureTile* t = new TextureTile(attribute, tile); // The four corner vertices of the texture // The Pixel values are the actual coordinates of the vertexs pixel // The Coordinate values depend on where the other vertices are in // the object texture. And if the object texture is used to specify // a triangle, then the fourth vertexs values will all be zero // Coordinate is 1 if Pixel is the low val, 255 if high val in object texture for (int i = 0; i < 4; i++) { uint8_t xCoordinate = file.readU8(); uint8_t xPixel = file.readU8(); uint8_t yCoordinate = file.readU8(); uint8_t yPixel = file.readU8(); orAssert((xCoordinate == 1) || (xCoordinate == 255) || (xCoordinate == 0)); orAssert((yCoordinate == 1) || (yCoordinate == 255) || (yCoordinate == 0)); t->add(TextureTileVertex(xCoordinate, xPixel, yCoordinate, yPixel)); } TextureManager::addTile(t); } if (numObjectTextures > 0) Log::get(LOG_INFO) << "LoaderTR2: Found " << numObjectTextures << " Textiles!" << Log::endl; else Log::get(LOG_INFO) << "LoaderTR2: No Textiles in this level?!" << Log::endl; } void LoaderTR2::loadAnimatedTextures() { uint32_t numWords = file.readU32() - 1; uint16_t numAnimatedTextures = file.readU16(); std::vector animatedTextures; for (unsigned int a = 0; a < numWords; a++) { animatedTextures.push_back(file.readU16()); } int pos = 0; for (unsigned int a = 0; a < numAnimatedTextures; a++) { int count = animatedTextures.at(pos) + 1; if ((pos + count) >= numWords) { Log::get(LOG_DEBUG) << "LoaderTR2: Invalid AnimatedTextures (" << pos + count << " >= " << numWords << ")!" << Log::endl; return; } for (int i = 0; i < count; i++) { TextureManager::addAnimatedTile(a, animatedTextures.at(pos + i + 1)); } pos += count + 1; } if ((numAnimatedTextures > 0) || (numWords > 0)) Log::get(LOG_INFO) << "LoaderTR2: Found " << numAnimatedTextures << " Animated Textures!" << Log::endl; else Log::get(LOG_INFO) << "LoaderTR2: No Animated Textures in this level?!" << Log::endl; if (pos != numWords) Log::get(LOG_DEBUG) << "LoaderTR2: Extra bytes at end of AnimatedTextures?!" << Log::endl; } // ---- Rooms ---- void LoaderTR2::loadRoomLights() { int16_t intensity1 = file.read16(); int16_t intensity2 = file.read16(); int16_t lightMode = file.read16(); uint16_t numLights = file.readU16(); for (unsigned int l = 0; l < numLights; l++) { // Position of light, in world coordinates int32_t x = file.read32(); int32_t y = file.read32(); int32_t z = file.read32(); uint16_t intensity1 = file.readU16(); uint16_t intensity2 = file.readU16(); // Almost always equal to intensity1 uint32_t fade1 = file.readU32(); // Falloff value? uint32_t fade2 = file.readU32(); // Falloff value? // TODO store light somewhere } } void LoaderTR2::loadRoomStaticMeshes(std::vector& staticModels) { uint16_t numStaticMeshes = file.readU16(); for (unsigned int s = 0; s < numStaticMeshes; s++) { // Absolute position in world coordinates int32_t x = file.read32(); int32_t y = file.read32(); int32_t z = file.read32(); // High two bits (0xC000) indicate steps of // 90 degrees (eg. (rotation >> 14) * 90) uint16_t rotation = file.readU16(); // Constant lighting, 0xFFFF means use mesh lighting //! \fixme Use static mesh lighting information uint16_t intensity1 = file.readU16(); uint16_t intensity2 = file.readU16(); // Which StaticMesh item to draw uint16_t objectID = file.readU16(); staticModels.push_back(new StaticModel(glm::vec3(x, y, z), glm::radians((rotation >> 14) * 90.0f), objectID)); } } void LoaderTR2::loadRoomDataEnd(int16_t& alternateRoom, unsigned int& roomFlags) { alternateRoom = file.read16(); uint16_t flags = file.readU16(); roomFlags = 0; if (flags & 0x0001) { roomFlags |= RoomFlagUnderWater; } } void LoaderTR2::loadRoomVertex(RoomVertexTR2& vert) { vert.x = file.read16(); vert.y = file.read16(); vert.z = file.read16(); vert.light1 = file.read16(); vert.attributes = file.readU16(); vert.light2 = file.read16(); } void LoaderTR2::loadRoomMesh(std::vector& rectangles, std::vector& triangles, uint16_t& numRectangles, uint16_t& numTriangles) { numRectangles = file.readU16(); for (unsigned int r = 0; r < numRectangles; r++) { // Indices into the vertex list read just before uint16_t vertex1 = file.readU16(); uint16_t vertex2 = file.readU16(); uint16_t vertex3 = file.readU16(); uint16_t vertex4 = file.readU16(); // Index into the object-texture list uint16_t texture = file.readU16(); rectangles.emplace_back(texture, vertex1, vertex2, vertex3, vertex4); } numTriangles = file.readU16(); for (unsigned int t = 0; t < numTriangles; t++) { // Indices into the room vertex list uint16_t vertex1 = file.readU16(); uint16_t vertex2 = file.readU16(); uint16_t vertex3 = file.readU16(); // Index into the object-texture list uint16_t texture = file.readU16(); triangles.emplace_back(texture, vertex1, vertex2, vertex3); } } void LoaderTR2::loadRooms() { uint16_t numRooms = file.readU16(); for (unsigned int i = 0; i < numRooms; i++) { // Room Header int32_t xOffset = file.read32(); int32_t zOffset = file.read32(); int32_t yBottom = file.read32(); // lowest point == largest y value int32_t yTop = file.read32(); // highest point == smallest y value glm::vec3 pos(xOffset, 0.0f, zOffset); // Number of data words (2 bytes) to follow uint32_t dataToFollow = file.readU32(); glm::vec3 bbox[2] = { glm::vec3(0.0f, 0.0f, 0.0f), glm::vec3(0.0f, 0.0f, 0.0f) }; uint16_t numVertices = file.readU16(); std::vector vertices; for (unsigned int v = 0; v < numVertices; v++) { RoomVertexTR2 vert; loadRoomVertex(vert); vertices.push_back(vert); // Fill bounding box if (v == 0) { for (int i = 0; i < 2; i++) { bbox[i].x = vert.x; bbox[i].y = vert.y; bbox[i].z = vert.z; } } else { if (vert.x < bbox[0].x) bbox[0].x = vert.x; if (vert.x > bbox[1].x) bbox[1].x = vert.x; if (vert.y < bbox[0].y) bbox[0].y = vert.y; if (vert.y > bbox[1].y) bbox[1].y = vert.y; if (vert.z < bbox[0].z) bbox[0].z = vert.z; if (vert.z > bbox[1].z) bbox[1].z = vert.z; } } bbox[0] += pos; bbox[1] += pos; std::vector rectangles; std::vector triangles; uint16_t numRectangles, numTriangles; loadRoomMesh(rectangles, triangles, numRectangles, numTriangles); uint16_t numSprites = file.readU16(); std::vector roomSprites; for (unsigned int s = 0; s < numSprites; s++) { uint16_t vertex = file.readU16(); // Index into vertex list uint16_t sprite = file.readU16(); // Index into sprite list auto& v = vertices.at(vertex); roomSprites.push_back(new RoomSprite(glm::vec3(v.x, v.y, v.z) + pos, sprite)); } uint16_t numPortals = file.readU16(); std::vector portals; for (unsigned int p = 0; p < numPortals; p++) { // Which room this portal leads to uint16_t adjoiningRoom = file.readU16(); // Which way the portal faces // The normal points away from the adjacent room // To be seen through, it must point toward the viewpoint int16_t xNormal = file.read16(); int16_t yNormal = file.read16(); int16_t zNormal = file.read16(); // The corners of this portal // The right-hand rule applies with respect to the normal int16_t xCorner1 = file.read16(); int16_t yCorner1 = file.read16(); int16_t zCorner1 = file.read16(); int16_t xCorner2 = file.read16(); int16_t yCorner2 = file.read16(); int16_t zCorner2 = file.read16(); int16_t xCorner3 = file.read16(); int16_t yCorner3 = file.read16(); int16_t zCorner3 = file.read16(); int16_t xCorner4 = file.read16(); int16_t yCorner4 = file.read16(); int16_t zCorner4 = file.read16(); // TODO translate vertices by room offset! portals.push_back(new Portal(adjoiningRoom, glm::vec3(xNormal, yNormal, zNormal), glm::vec3(xCorner1, yCorner1, zCorner1), glm::vec3(xCorner2, yCorner2, zCorner2), glm::vec3(xCorner3, yCorner3, zCorner3), glm::vec3(xCorner4, yCorner4, zCorner4))); } uint16_t numZSectors = file.readU16(); uint16_t numXSectors = file.readU16(); for (unsigned int s = 0; s < (numZSectors * numXSectors); s++) { // Sectors are 1024*1024 world coordinates. Floor and Ceiling are // signed numbers of 256 units of height. // Floor/Ceiling value of 0x81 is used to indicate impenetrable // walls around the sector. // Floor values are used by the original engine to determine // what objects can be traversed and how. Relative steps of 1 (256) // can be walked up, 2..7 must be jumped up, larger than 7 is too high // If RoomAbove/Below is not none, the Ceiling/Floor is a collisional // portal to that room uint16_t indexFloorData = file.readU16(); uint16_t indexBox = file.readU16(); // 0xFFFF if none uint8_t roomBelow = file.readU8(); // 0xFF if none int8_t floor = file.read8(); // Absolute height of floor (divided by 256) uint8_t roomAbove = file.readU8(); // 0xFF if none int8_t ceiling = file.read8(); // Absolute height of ceiling (/ 256) // In TR3 indexBox is more complicated. Only bits 4-14 are the 'real' index. // Bits 0-3 are most likely some kind of flag (footstep sound?). // There is a special value of the 'real' index, 2047 or 0x7FF. bool wall = false; if ((((uint8_t)floor) == 0x81) || (((uint8_t)ceiling) == 0x81)) { wall = true; } //room->addSector(new Sector(floor * 256.0f, ceiling * 256.0f, wall)); // TODO store sectors } loadRoomLights(); std::vector staticModels; loadRoomStaticMeshes(staticModels); int16_t alternateRoom = -1; unsigned int roomFlags = 0; loadRoomDataEnd(alternateRoom, roomFlags); BoundingBox* boundingbox = new BoundingBox(bbox[0], bbox[1]); RoomMesh* mesh = new RoomMesh(vertices, rectangles, triangles); Room* room = new Room(pos, boundingbox, mesh, roomFlags, alternateRoom, numXSectors, numZSectors, i); for (auto p : portals) room->addPortal(p); for (auto m : staticModels) room->addModel(m); for (auto s : roomSprites) room->addSprite(s); getWorld().addRoom(room); // Sanity check if ((numPortals == 0) && (numVertices == 0) && (numRectangles == 0) && (numTriangles == 0)) Log::get(LOG_DEBUG) << "LoaderTR2: Room " << i << " seems invalid: " << numPortals << "p " << numRectangles << "r " << numTriangles << "t " << numVertices << "v" << Log::endl; } if (numRooms > 0) Log::get(LOG_INFO) << "LoaderTR2: Found " << numRooms << " Rooms!" << Log::endl; else Log::get(LOG_INFO) << "LoaderTR2: No Rooms in this Level?!" << Log::endl; } void LoaderTR2::loadFloorData() { uint32_t numFloorData = file.readU32(); for (unsigned int f = 0; f < numFloorData; f++) { uint16_t unused = file.readU16(); // TODO store floor data somewhere } if (numFloorData > 0) Log::get(LOG_INFO) << "LoaderTR2: Found " << numFloorData << " words FloorData, unimplemented!" << Log::endl; else Log::get(LOG_INFO) << "LoaderTR2: No FloorData in this level?!" << Log::endl; } void LoaderTR2::loadSprites() { uint32_t numSpriteTextures = file.readU32(); for (unsigned int s = 0; s < numSpriteTextures; s++) { uint16_t tile = file.readU16(); uint8_t x = file.readU8(); uint8_t y = file.readU8(); uint16_t width = file.readU16(); // Actually (width * 256) + 255 uint16_t height = file.readU16(); // Actually (height * 256) + 255 // Required for what? int16_t leftSide = file.read16(); int16_t topSide = file.read16(); int16_t rightSide = file.read16(); int16_t bottomSide = file.read16(); Sprite* sp = new Sprite(tile, x, y, width, height); getWorld().addSprite(sp); } uint32_t numSpriteSequences = file.readU32(); for (unsigned int s = 0; s < numSpriteSequences; s++) { int32_t objectID = file.read32(); // Item identifier, matched in Items[] int16_t negativeLength = file.read16(); // Negative sprite count int16_t offset = file.read16(); // Where sequence starts in sprite texture list orAssertLessThan(negativeLength, 0); orAssertGreaterThanEqual(offset, 0); orAssertLessThanEqual(offset + (negativeLength * -1), numSpriteTextures); SpriteSequence* ss = new SpriteSequence(objectID, offset, (negativeLength * -1)); getWorld().addSpriteSequence(ss); } if ((numSpriteTextures > 0) || (numSpriteSequences > 0)) Log::get(LOG_INFO) << "LoaderTR2: Found " << numSpriteTextures << " Sprites in " << numSpriteSequences << " Sequences!" << Log::endl; else Log::get(LOG_INFO) << "LoaderTR2: No Sprites in this level?!" << Log::endl; } // ---- Meshes ---- int LoaderTR2::getPaletteIndex(uint16_t index) { return (index & 0xFF00) >> 8; // Use index into 16bit palette } void LoaderTR2::loadMeshes() { // Number of bitu16s of mesh data to follow // Read all the mesh data into a buffer, because // only afterward we can read the number of meshes // in this data block uint32_t numMeshData = file.readU32(); std::vector buffer; for (unsigned int i = 0; i < numMeshData; i++) { buffer.push_back(file.readU16()); } uint32_t numMeshPointers = file.readU32(); for (unsigned int i = 0; i < numMeshPointers; i++) { uint32_t meshPointer = file.readU32(); if (numMeshData < (meshPointer / 2)) { Log::get(LOG_DEBUG) << "LoaderTR2: Invalid Mesh: " << (meshPointer / 2) << " > " << numMeshData << Log::endl; continue; } char* tmpPtr = reinterpret_cast(&buffer[meshPointer / 2]); BinaryMemory mem(tmpPtr, (numMeshData * 2) - meshPointer); int16_t mx = mem.read16(); int16_t my = mem.read16(); int16_t mz = mem.read16(); int32_t collisionSize = mem.read32(); // TODO store mesh collision info somewhere uint16_t numVertices = mem.readU16(); std::vector vertices; for (int v = 0; v < numVertices; v++) { int16_t x = mem.read16(); int16_t y = mem.read16(); int16_t z = mem.read16(); vertices.emplace_back(x, y, z); } int16_t numNormals = mem.read16(); if (numNormals > 0) { // External vertex lighting is used, with the lighting calculated // from the rooms ambient and point-source lighting values. The // latter appears to use a simple Lambert law for directionality: // intensity is proportional to // max((normal direction).(direction to source), 0) for (int n = 0; n < numNormals; n++) { int16_t x = mem.read16(); int16_t y = mem.read16(); int16_t z = mem.read16(); //mesh->addNormal(glm::vec3(x, y, z)); } } else if (numNormals < 0) { // Internal vertex lighting is used, // using the data included with the mesh for (int l = 0; l < (numNormals * -1); l++) { int16_t light = mem.read16(); // TODO store lights somewhere } } int16_t numTexturedRectangles = mem.read16(); std::vector texturedRectangles; for (int r = 0; r < numTexturedRectangles; r++) { uint16_t vertex1 = mem.readU16(); uint16_t vertex2 = mem.readU16(); uint16_t vertex3 = mem.readU16(); uint16_t vertex4 = mem.readU16(); uint16_t texture = mem.readU16(); texturedRectangles.emplace_back(texture, vertex1, vertex2, vertex3, vertex4); } int16_t numTexturedTriangles = mem.read16(); std::vector texturedTriangles; for (int t = 0; t < numTexturedTriangles; t++) { uint16_t vertex1 = mem.readU16(); uint16_t vertex2 = mem.readU16(); uint16_t vertex3 = mem.readU16(); uint16_t texture = mem.readU16(); texturedTriangles.emplace_back(texture, vertex1, vertex2, vertex3); } int16_t numColoredRectangles = mem.read16(); std::vector coloredRectangles; for (int r = 0; r < numColoredRectangles; r++) { uint16_t vertex1 = mem.readU16(); uint16_t vertex2 = mem.readU16(); uint16_t vertex3 = mem.readU16(); uint16_t vertex4 = mem.readU16(); uint16_t texture = mem.readU16(); int index = getPaletteIndex(texture); coloredRectangles.emplace_back(index, vertex1, vertex2, vertex3, vertex4); } int16_t numColoredTriangles = mem.read16(); std::vector coloredTriangles; for (int t = 0; t < numColoredTriangles; t++) { uint16_t vertex1 = mem.readU16(); uint16_t vertex2 = mem.readU16(); uint16_t vertex3 = mem.readU16(); uint16_t texture = mem.readU16(); int index = getPaletteIndex(texture); coloredTriangles.emplace_back(index, vertex1, vertex2, vertex3); } Mesh* mesh = new Mesh(vertices, texturedRectangles, texturedTriangles, coloredRectangles, coloredTriangles); getWorld().addMesh(mesh); } if (numMeshPointers > 0) Log::get(LOG_INFO) << "LoaderTR2: Found " << numMeshPointers << " Meshes!" << Log::endl; else Log::get(LOG_INFO) << "LoaderTR2: No Meshes in this level?!" << Log::endl; } void LoaderTR2::loadStaticMeshes() { uint32_t numStaticMeshes = file.readU32(); for (unsigned int s = 0; s < numStaticMeshes; s++) { uint32_t objectID = file.readU32(); // Matched in Items[] uint16_t mesh = file.readU16(); // Offset into MeshPointers[] // tr2_vertex BoundingBox[2][2]; // First index is which one, second index is opposite corners int16_t x11 = file.read16(); int16_t y11 = file.read16(); int16_t z11 = file.read16(); int16_t x12 = file.read16(); int16_t y12 = file.read16(); int16_t z12 = file.read16(); int16_t x21 = file.read16(); int16_t y21 = file.read16(); int16_t z21 = file.read16(); int16_t x22 = file.read16(); int16_t y22 = file.read16(); int16_t z22 = file.read16(); // Meaning uncertain. Usually 2, and 3 for objects Lara can // travel through, like TR2s skeletons and underwater plants uint16_t flags = file.readU16(); BoundingBox* bbox1 = new BoundingBox(glm::vec3(x11, y11, z11), glm::vec3(x12, y12, z12)); BoundingBox* bbox2 = new BoundingBox(glm::vec3(x21, y21, z21), glm::vec3(x22, y22, z22)); getWorld().addStaticMesh(new StaticMesh(objectID, mesh, bbox1, bbox2)); } if (numStaticMeshes > 0) Log::get(LOG_INFO) << "LoaderTR2: Found " << numStaticMeshes << " StaticMeshes!" << Log::endl; else Log::get(LOG_INFO) << "LoaderTR2: No StaticMeshes in this level?!" << Log::endl; } // ---- Moveables ---- struct Animation_t { uint32_t frameOffset; uint8_t frameRate, frameSize; uint16_t stateID, frameStart, frameEnd, nextAnimation; uint16_t nextFrame, numStateChanges, stateChangeOffset; uint16_t numAnimCommands, animCommandOffset; Animation_t(uint32_t fo, uint8_t fr, uint8_t fs, uint16_t si, uint16_t fst, uint16_t fe, uint16_t na, uint16_t nf, uint16_t ns, uint16_t so, uint16_t nac, uint16_t ao) : frameOffset(fo), frameRate(fr), frameSize(fs), stateID(si), frameStart(fst), frameEnd(fe), nextAnimation(na), nextFrame(nf), numStateChanges(ns), stateChangeOffset(so), numAnimCommands(nac), animCommandOffset(ao) { } }; struct StateChange_t { uint16_t stateID, numAnimDispatches, animDispatchOffset; StateChange_t(uint16_t s, uint16_t n, uint16_t a) : stateID(s), numAnimDispatches(n), animDispatchOffset(a) { } }; struct AnimDispatch_t { int16_t low, high, nextAnimation, nextFrame; AnimDispatch_t(int16_t l, int16_t h, int16_t na, int16_t nf) : low(l), high(h), nextAnimation(na), nextFrame(nf) { } }; void LoaderTR2::loadAngleSet(BoneFrame* bf, BinaryReader& frame, uint16_t numMeshes, uint16_t startingMesh, uint32_t meshTree, uint32_t numMeshTrees, std::vector meshTrees) { for (int i = 0; i < numMeshes; i++) { int mesh = startingMesh + i; glm::vec3 offset(0.0f, 0.0f, 0.0f); float rotation[3] = { 0.0f, 0.0f, 0.0f }; char flag = (i == 0) ? 2 : 0; // Nonprimary tag - positioned relative to first tag if (i != 0) { char* tmp = reinterpret_cast(&meshTrees[0]) + meshTree; // TODO (meshTree * 4)? tmp += (i - 1) * 16; // TODO ? BinaryMemory tree(tmp, (numMeshTrees * 4) - meshTree - ((i - 1) * 16)); flag = (char)tree.readU32(); offset.x = tree.read32(); offset.y = tree.read32(); offset.z = tree.read32(); uint16_t a = frame.readU16(); if (a & 0xC000) { // Single angle int index = 0; if ((a & 0x8000) && (a & 0x4000)) index = 2; else if (a & 0x4000) index = 1; rotation[index] = ((float)(a & 0x03FF)) * 360.0f / 1024.0f; } else { // Three angles uint16_t b = frame.readU16(); rotation[0] = (a & 0x3FF0) >> 4; rotation[1] = ((a & 0x000F) << 6) | ((b & 0xFC00) >> 10); rotation[2] = b & 0x03FF; for (int i = 0; i < 3; i++) rotation[i] = rotation[i] * 360.0f / 1024.0f; } } glm::vec3 rot(rotation[0], rotation[1], rotation[2]); BoneTag* bt = new BoneTag(mesh, offset, rot, flag); bf->add(bt); } } BoneFrame* LoaderTR2::loadFrame(BinaryReader& frame, uint16_t numMeshes, uint16_t startingMesh, uint32_t meshTree, uint32_t numMeshTrees, std::vector meshTrees) { int16_t bb1x = frame.read16(); int16_t bb1y = frame.read16(); int16_t bb1z = frame.read16(); int16_t bb2x = frame.read16(); int16_t bb2y = frame.read16(); int16_t bb2z = frame.read16(); glm::vec3 pos; pos.x = frame.read16(); pos.y = frame.read16(); pos.z = frame.read16(); BoneFrame* bf = new BoneFrame(pos); loadAngleSet(bf, frame, numMeshes, startingMesh, meshTree, numMeshTrees, meshTrees); return bf; } void LoaderTR2::loadMoveables() { uint32_t numAnimations = file.readU32(); std::vector animations; for (unsigned int a = 0; a < numAnimations; a++) { // *Byte* Offset into Frames[] (so divide by 2!) uint32_t frameOffset = file.readU32(); uint8_t frameRate = file.readU8(); // Engine ticks per frame // Number of bit16s in Frames[] used by this animation // Be careful when parsing frames using the FrameSize value // as the size of each frame, since an animations frame range // may extend into the next animations frame range, and that // may have a different FrameSize value. uint8_t frameSize = file.readU8(); uint16_t stateID = file.readU16(); file.seek(file.tell() + 8); // Skip 8 unknown bytes uint16_t frameStart = file.readU16(); // First frame in this animation uint16_t frameEnd = file.readU16(); // Last frame in this animation uint16_t nextAnimation = file.readU16(); uint16_t nextFrame = file.readU16(); uint16_t numStateChanges = file.readU16(); uint16_t stateChangeOffset = file.readU16(); // Index into StateChanges[] uint16_t numAnimCommands = file.readU16(); // How many animation commands to use uint16_t animCommandOffset = file.readU16(); // Index into AnimCommand[] animations.emplace_back(frameOffset, frameRate, frameSize, stateID, frameStart, frameEnd, nextAnimation, nextFrame, numStateChanges, stateChangeOffset, numAnimCommands, animCommandOffset); } if (numAnimations > 0) Log::get(LOG_INFO) << "LoaderTR2: Found " << numAnimations << " Animations!" << Log::endl; else Log::get(LOG_INFO) << "LoaderTR2: No Animations in this level?!" << Log::endl; uint32_t numStateChanges = file.readU32(); std::vector stateChanges; for (unsigned int s = 0; s < numStateChanges; s++) { uint16_t stateID = file.readU16(); uint16_t numAnimDispatches = file.readU16(); // Number of ranges (always 1..5?) uint16_t animDispatchOffset = file.readU16(); // Index into AnimDispatches[] stateChanges.emplace_back(stateID, numAnimDispatches, animDispatchOffset); } if (numStateChanges > 0) Log::get(LOG_INFO) << "LoaderTR2: Found " << numStateChanges << " StateChanges!" << Log::endl; else Log::get(LOG_INFO) << "LoaderTR2: No StateChanges in this level?!" << Log::endl; uint32_t numAnimDispatches = file.readU32(); std::vector animDispatches; for (unsigned int a = 0; a < numAnimDispatches; a++) { int16_t low = file.read16(); // Lowest frame that uses this range int16_t high = file.read16(); // Highest frame (+1?) that uses this range int16_t nextAnimation = file.read16(); // Animation to go to int16_t nextFrame = file.read16(); // Frame offset to go to animDispatches.emplace_back(low, high, nextAnimation, nextFrame); } if (numAnimDispatches > 0) Log::get(LOG_INFO) << "LoaderTR2: Found " << numAnimDispatches << " AnimationDispatches!" << Log::endl; else Log::get(LOG_INFO) << "LoaderTR2: No AnimationDispatches in this level?!" << Log::endl; uint32_t numAnimCommands = file.readU32(); std::vector animCommands; for (unsigned int a = 0; a < numAnimCommands; a++) { // A list of Opcodes with zero or more operands each, // some referring to the whole animation (jump/grab points), // some to specific frames (sound, bubbles, ...). animCommands.push_back(file.read16()); } if (numAnimCommands > 0) Log::get(LOG_INFO) << "LoaderTR2: Found " << numAnimCommands << " AnimationCommands!" << Log::endl; else Log::get(LOG_INFO) << "LoaderTR2: No AnimationCommands in this level?!" << Log::endl; // This is really one uint32_t flags, followed by // three int32_t x, y, z. However, we're given the number // of 32bits, as well as byte indices later, so we store // it as a single list of int32_t. uint32_t numMeshTrees = file.readU32(); std::vector meshTrees; for (unsigned int m = 0; m < numMeshTrees; m++) { // 0x0002 - Put parent mesh on the mesh stack // 0x0001 - Pop mesh from stack, use as parent mesh // When both are not set, use previous mesh as parent mesh // When both are set, do 0x0001 first, then 0x0002, thereby // reading the stack but not changing it //uint32_t flags = file.readU32(); // Offset of mesh origin from the parent mesh origin //int32_t x = file.read32(); //int32_t y = file.read32(); //int32_t z = file.read32(); meshTrees.push_back(file.read32()); } if (numMeshTrees > 0) Log::get(LOG_INFO) << "LoaderTR2: Found " << numMeshTrees << " MeshTrees!" << Log::endl; else Log::get(LOG_INFO) << "LoaderTR2: No MeshTrees in this level?!" << Log::endl; uint32_t numFrames = file.readU32(); std::vector frames; for (unsigned int f = 0; f < numFrames; f++) { // int16 bb1x, bb1y, bb1z // int16 bb2x, bb2y, bb2z // int16 offsetX, offsetY, offsetZ // What follows next is a list of angles with numMeshes (from Moveable) entries. // If the top bit (0x8000) of the first uint16 is set, a single X angle follows, // if the second bit (0x4000) is set, a Y angle follows, both are a Z angle. // If none is set, it's a three-axis rotation. The next 10 bits (0x3FF0) are // the X rotation, the next 10 (0x000F 0xFC00) are Y, the next (0x03FF) are // the Z rotation. The scaling is always 0x100->90deg. // Rotation order: Y, X, Z! frames.push_back(file.readU16()); } if (numFrames > 0) Log::get(LOG_INFO) << "LoaderTR2: Found " << numFrames << " Frames!" << Log::endl; else Log::get(LOG_INFO) << "LoaderTR2: No Frames in this level?!" << Log::endl; uint32_t numMoveables = file.readU32(); for (unsigned int m = 0; m < numMoveables; m++) { // Item identifier, matched in Items[] uint32_t objectID = file.readU32(); uint16_t numMeshes = file.readU16(); uint16_t startingMesh = file.readU16(); // Offset into MeshPointers[] uint32_t meshTree = file.readU32(); // Offset into MeshTree[] // *Byte* offset into Frames[] (divide by 2 for Frames[i]) uint32_t frameOffset = file.readU32(); // Only needed if no animation // If animation index is 0xFFFF, the object is stationary or // animated by the engine (ponytail) uint16_t animation = file.readU16(); /* if (animation == 0xFFFF) { */ // Just add the frame indicated in frameOffset, nothing else char* tmp = reinterpret_cast(&frames[0]) + frameOffset; BinaryMemory frame(tmp, (numFrames * 2) - frameOffset); if (((numFrames * 2) - frameOffset) <= 0) continue; // TR1/LEVEL3A crashes without this?! BoneFrame* bf = loadFrame(frame, numMeshes, startingMesh, meshTree, numMeshTrees, meshTrees); AnimationFrame* af = new AnimationFrame(0); af->add(bf); SkeletalModel* sm = new SkeletalModel(objectID); sm->add(af); getWorld().addSkeletalModel(sm); /* } else { // TODO Add the whole animation hierarchy auto& anim = animations.at(animation); char* tmp = reinterpret_cast(&frames[0]) + anim.frameOffset; BinaryMemory frame(tmp, (numFrames * 2) - anim.frameOffset); AnimationFrame* af = new AnimationFrame(0); for (int i = 0; i < ((anim.frameEnd - anim.frameStart) + 1); i++) { BoneFrame* bf = loadFrame(frame, numMeshes, startingMesh, meshTree, numMeshTrees, meshTrees); af->add(bf); } SkeletalModel* sm = new SkeletalModel(objectID); sm->add(af); getWorld().addSkeletalModel(sm); } */ } if (numMoveables > 0) Log::get(LOG_INFO) << "LoaderTR2: Found " << numMoveables << " Moveables!" << Log::endl; else Log::get(LOG_INFO) << "LoaderTR2: No Moveables in this level?!" << Log::endl; } void LoaderTR2::loadItems() { uint32_t numItems = file.readU32(); for (unsigned int i = 0; i < numItems; i++) { int16_t objectID = file.read16(); int16_t room = file.read16(); // Item position in world coordinates int32_t x = file.read32(); int32_t y = file.read32(); int32_t z = file.read32(); uint16_t angle = file.readU16(); // (0xC000 >> 14) * 90deg int16_t intensity1 = file.read16(); // Constant lighting; -1 means mesh lighting int16_t intensity2 = file.read16(); // Almost always like intensity1 // 0x0100 - Initially visible // 0x3E00 - Activation mask, open, can be XORed with related FloorData list fields. uint16_t flags = file.readU16(); glm::vec3 pos( static_cast(x), static_cast(y), static_cast(z) ); glm::vec3 rot( 0.0f, glm::radians(((angle >> 14) & 0x03) * 90.0f), 0.0f ); Entity* e = new Entity(objectID, room, pos, rot); getWorld().addEntity(e); if (objectID == 0) { Game::setLara(getWorld().sizeEntity() - 1); } } if (numItems > 0) Log::get(LOG_INFO) << "LoaderTR2: Found " << numItems << " Items!" << Log::endl; else Log::get(LOG_INFO) << "LoaderTR2: No Items in this level?!" << Log::endl; } void LoaderTR2::loadBoxesOverlapsZones() { uint32_t numBoxes = file.readU32(); for (unsigned int b = 0; b < numBoxes; b++) { // Sectors (* 1024 units) uint8_t zMin = file.readU8(); uint8_t zMax = file.readU8(); uint8_t xMin = file.readU8(); uint8_t xMax = file.readU8(); int16_t trueFloor = file.read16(); // Y value (no scaling) // Index into overlaps[]. The high bit is sometimes set // this occurs in front of swinging doors and the like uint16_t overlapIndex = file.readU16(); // TODO store boxes somewhere } uint32_t numOverlaps = file.readU32(); std::vector> overlaps; overlaps.emplace_back(); unsigned int list = 0; for (unsigned int o = 0; o < numOverlaps; o++) { // Apparently used by NPCs to decide where to go next. // List of neighboring boxes for each box. // Each entry is a uint16, 0x8000 set marks end of list. uint16_t e = file.readU16(); overlaps.at(list).push_back(e); if (e & 0x8000) { overlaps.emplace_back(); list++; } } // TODO store overlaps somewhere for (unsigned int z = 0; z < numBoxes; z++) { // Normal room state int16_t ground1 = file.read16(); int16_t ground2 = file.read16(); int16_t ground3 = file.read16(); int16_t ground4 = file.read16(); int16_t fly = file.read16(); // Alternate room state int16_t ground1alt = file.read16(); int16_t ground2alt = file.read16(); int16_t ground3alt = file.read16(); int16_t ground4alt = file.read16(); int16_t flyAlt = file.read16(); // TODO store zones somewhere } if ((numBoxes > 0) || (numOverlaps > 0)) Log::get(LOG_INFO) << "LoaderTR2: Found NPC NavigationHints (" << numBoxes << ", " << numOverlaps << ", " << list << "), unimplemented!" << Log::endl; else Log::get(LOG_INFO) << "LoaderTR2: No NPC NavigationHints in this level?!" << Log::endl; } // ---- Sound ---- void LoaderTR2::loadSoundSources() { uint32_t numSoundSources = file.readU32(); for (unsigned int s = 0; s < numSoundSources; s++) { // Absolute world coordinate positions of sound source int32_t x = file.read32(); int32_t y = file.read32(); int32_t z = file.read32(); // Internal sound index uint16_t soundID = file.readU16(); // Unknown, 0x40, 0x80 or 0xC0 uint16_t flags = file.readU16(); SoundManager::addSoundSource(glm::vec3(x, y, z), soundID, flags); } if (numSoundSources > 0) Log::get(LOG_INFO) << "LoaderTR2: Found " << numSoundSources << " SoundSources" << Log::endl; else Log::get(LOG_INFO) << "LoaderTR2: No SoundSources in this level?!" << Log::endl; } void LoaderTR2::loadSoundMap() { for (int i = 0; i < 370; i++) { SoundManager::addSoundMapEntry(file.read16()); } } void LoaderTR2::loadSoundDetails() { uint32_t numSoundDetails = file.readU32(); for (unsigned int s = 0; s < numSoundDetails; s++) { uint16_t sample = file.readU16(); // Index into SampleIndices[] uint16_t volume = file.readU16(); // sound range? distance at which this sound can be heard? uint16_t unknown1 = file.readU16(); // Bits 8-15: priority? // Bits 2-7: number of samples in this group // Bits 0-1: channel number? uint16_t unknown2 = file.readU16(); SoundManager::addSoundDetail(sample, ((float)volume) / 32767.0f); } if (numSoundDetails > 0) Log::get(LOG_INFO) << "LoaderTR2: Found " << numSoundDetails << " SoundDetails" << Log::endl; else Log::get(LOG_INFO) << "LoaderTR2: No SoundDetails in this level?!" << Log::endl; } void LoaderTR2::loadSampleIndices() { uint32_t numSampleIndices = file.readU32(); for (unsigned int i = 0; i < numSampleIndices; i++) { SoundManager::addSampleIndex(file.readU32()); } if (numSampleIndices > 0) Log::get(LOG_INFO) << "LoaderTR2: Found " << numSampleIndices << " SampleIndices" << Log::endl; else Log::get(LOG_INFO) << "LoaderTR2: No SampleIndices in this level?!" << Log::endl; } void LoaderTR2::loadExternalSoundFile(std::string f) { size_t dir = f.find_last_of("/\\"); if (dir != std::string::npos) { f.replace(dir + 1, std::string::npos, "MAIN.SFX"); } else { f = "MAIN.SFX"; } BinaryFile sfx; if (sfx.open(f) != 0) { Log::get(LOG_INFO) << "LoaderTR2: Can't open \"" << f << "\"!" << Log::endl; return; } Log::get(LOG_INFO) << "LoaderTR2: Loading \"" << f << "\"" << Log::endl; int riffCount = loadSoundFiles(sfx); if (riffCount > 0) Log::get(LOG_INFO) << "LoaderTR2: Loaded " << riffCount << " SoundSamples" << Log::endl; else if (riffCount == 0) Log::get(LOG_INFO) << "LoaderTR2: No SoundSamples found!" << Log::endl; else Log::get(LOG_ERROR) << "LoaderTR2: Error loading SoundSamples!" << Log::endl; } int LoaderTR2::loadSoundFiles(BinaryReader& sfx, unsigned int count) { int riffCount = 0; while (!sfx.eof()) { if ((count > 0) && (riffCount >= count)) break; char test[5]; test[4] = '\0'; for (int i = 0; i < 4; i++) test[i] = sfx.read8(); if (std::string("RIFF") != std::string(test)) { Log::get(LOG_DEBUG) << "LoaderTR2: SoundSamples invalid! (" << riffCount << ", \"" << test << "\" != \"RIFF\")" << Log::endl; return -1; } // riffSize is (fileLength - 8) uint32_t riffSize = sfx.readU32(); unsigned char* buff = new unsigned char[riffSize + 8]; sfx.seek(sfx.tell() - 8); for (int i = 0; i < (riffSize + 8); i++) buff[i] = sfx.readU8(); int ret = Sound::loadBuffer(buff, riffSize + 8); delete [] buff; orAssertGreaterThanEqual(ret, 0); riffCount++; } return riffCount; } // ---- Stuff ---- void LoaderTR2::loadCameras() { uint32_t numCameras = file.readU32(); for (unsigned int c = 0; c < numCameras; c++) { int32_t x = file.read32(); int32_t y = file.read32(); int32_t z = file.read32(); int16_t room = file.read16(); file.seek(file.tell() + 2); // Unknown, correlates to Boxes? Zones? // TODO store cameras somewhere } if (numCameras > 0) Log::get(LOG_INFO) << "LoaderTR2: Found " << numCameras << " Cameras, unimplemented!" << Log::endl; } void LoaderTR2::loadCinematicFrames() { uint16_t numCinematicFrames = file.readU16(); for (unsigned int c = 0; c < numCinematicFrames; c++) { int16_t rotY = file.read16(); // Y rotation, +-32767 = +-180deg int16_t rotZ = file.read16(); // Z rotation, like rotY int16_t rotZ2 = file.read16(); // Like rotZ? int16_t posZ = file.read16(); // Camera pos relative to what? int16_t posY = file.read16(); int16_t posX = file.read16(); int16_t unknown = file.read16(); // Changing this can cause runtime error int16_t rotX = file.read16(); // X rotation, like rotY // TODO store cinematic frames somewhere } if (numCinematicFrames > 0) Log::get(LOG_INFO) << "LoaderTR2: Found " << numCinematicFrames << " CinematicFrames, unimplemented!" << Log::endl; } void LoaderTR2::loadDemoData() { uint16_t numDemoData = file.readU16(); for (unsigned int d = 0; d < numDemoData; d++) file.readU8(); // TODO store demo data somewhere, find out meaning if (numDemoData > 0) Log::get(LOG_INFO) << "LoaderTR2: Found " << numDemoData << " bytes DemoData, unimplemented!" << Log::endl; }