Open Source Tomb Raider Engine
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

MatMath.cpp 5.7KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267
  1. /*!
  2. *
  3. * \file src/MatMath.cpp
  4. * \brief Vector and Matrix math
  5. *
  6. * \author Mongoose
  7. */
  8. #include <stdlib.h>
  9. #include <math.h>
  10. #include <MatMath.h>
  11. #include <Vector3d.h>
  12. #include <Matrix.h>
  13. vec_t helIntersectionOfAbstractSpheres(vec3_t centerA, vec_t radiusA,
  14. vec3_t centerB, vec_t radiusB)
  15. {
  16. Vector3d a = Vector3d(centerA);
  17. Vector3d b = Vector3d(centerB);
  18. Vector3d d = a - b;
  19. vec_t dist, minDist;
  20. dist = Vector3d::dot(d, d);
  21. minDist = radiusA + radiusB;
  22. return (dist <= minDist * minDist);
  23. }
  24. inline vec_t square(vec_t a)
  25. {
  26. return a * a;
  27. }
  28. // Returns number of intersections and intersection position(s)
  29. // Got algorithm from http://astronomy.swin.edu.au/~pbourke/geometry/
  30. int helIntersectionOfAbstractSphereAndLine(vec3_t center, vec_t radius,
  31. vec3_t posA, vec3_t posB,
  32. vec3_t intersectionA,
  33. vec3_t intersectionB)
  34. {
  35. // float x , y , z;
  36. vec_t a, b, c, mu, i ;
  37. a = (square(posB[0] - posA[0]) +
  38. square(posB[1] - posA[1]) +
  39. square(posB[2] - posA[2]));
  40. b = (2 * ((posB[0] - posA[0]) * (posA[0] - center[0]) +
  41. (posB[1] - posA[1]) * (posA[1] - center[1]) +
  42. (posB[2] - posA[2]) * (posA[2] - center[2])));
  43. c = (square(center[0]) + square(center[1]) +
  44. square(center[2]) + square(posA[0]) +
  45. square(posA[1]) + square(posA[2]) -
  46. 2 * (center[0]*posA[0] + center[1]*posA[1] + center[2]*posA[2]) -
  47. square(radius));
  48. i = b * b - 4 * a * c;
  49. if (i < 0.0)
  50. {
  51. // No intersection
  52. return 0;
  53. }
  54. else if (i == 0.0)
  55. {
  56. // One intersection
  57. mu = -b/(2*a) ;
  58. intersectionA[1] = posA[0] + mu*(posB[0]-posA[0]);
  59. intersectionA[2] = posA[1] + mu*(posB[1]-posA[1]);
  60. intersectionA[3] = posA[2] + mu*(posB[2]-posA[2]);
  61. return 1;
  62. }
  63. else
  64. {
  65. // Two intersections
  66. // First intersection
  67. mu = (-b + sqrt( square(b) - 4*a*c)) / (2*a);
  68. intersectionA[1] = posA[0] + mu*(posB[0]-posA[0]);
  69. intersectionA[2] = posA[1] + mu*(posB[1]-posA[1]);
  70. intersectionA[3] = posA[2] + mu*(posB[2]-posA[2]);
  71. // Second intersection
  72. mu = (-b - sqrt(square(b) - 4*a*c)) / (2*a);
  73. intersectionB[0] = posA[0] + mu*(posB[0]-posA[0]);
  74. intersectionB[1] = posA[1] + mu*(posB[1]-posA[1]);
  75. intersectionB[2] = posA[2] + mu*(posB[2]-posA[2]);
  76. return 2;
  77. }
  78. }
  79. int helIntersectionLineAndPolygon(vec3_t intersect,
  80. vec3_t p1, vec3_t p2,
  81. vec3_t *polygon)
  82. {
  83. // vec3_t normal, a, b;
  84. Vector3d a, b, normal, pA, pB;
  85. vec_t d, denominator, mu;
  86. double theta;
  87. pA = Vector3d(p1);
  88. pB = Vector3d(p2);
  89. // Find normal
  90. //mtkVectorSubtract(polygon[1], polygon[0], a);
  91. a = Vector3d(polygon[1]) - Vector3d(polygon[0]);
  92. //mtkVectorSubtract(polygon[2], polygon[0], b);
  93. b = Vector3d(polygon[2]) - Vector3d(polygon[0]);
  94. normal = Vector3d::cross(a, b);
  95. //mtkVectorCrossProduct(a, b, normal);
  96. normal.normalize();
  97. //mtkVectorNormalize(normal, normal);
  98. // find D
  99. //d = (normal[0] * polygon[0][0] -
  100. // normal[1] * polygon[0][1] -
  101. // normal[2] * polygon[0][2]);
  102. d = (normal.mVec[0] * polygon[0][0] -
  103. normal.mVec[1] * polygon[0][1] -
  104. normal.mVec[2] * polygon[0][2]);
  105. // line segment parallel to plane?
  106. //mtkVectorSubtract(p2, p1, a); // cache p2 - p1 => a
  107. a = pB - pA;
  108. //denominator = (normal[0] * a[0] +
  109. // normal[1] * a[1] +
  110. // normal[2] * a[2]);
  111. denominator = Vector3d::dot(normal, a);
  112. if (denominator > 0.0)
  113. return 0;
  114. // Line segment contains intercept point?
  115. //mu = - ((d + normal[0] * p1[0] + normal[1] * p1[1] + normal[2] * p1[2]) /
  116. // denominator);
  117. mu = -((d + Vector3d::dot(normal, pA)) / denominator);
  118. if (mu < 0.0 || mu > 1.0)
  119. return 0;
  120. //intersect[0] = p1[0] + mu * a[0];
  121. //intersect[1] = p1[1] + mu * a[1];
  122. //intersect[2] = p1[2] + mu * a[2];
  123. b = pA + (a * mu);
  124. intersect[0] = b.mVec[0];
  125. intersect[1] = b.mVec[1];
  126. intersect[2] = b.mVec[2];
  127. // See if the intercept is bound by polygon by winding number
  128. #ifdef WINDING_NUMBERS_TRIANGLE
  129. mtkVectorSubtract(polygon[0], intersect, a);
  130. mtkVectorNormalize(a, a);
  131. mtkVectorSubtract(polygon[1], intersect, b);
  132. mtkVectorNormalize(b, b);
  133. mtkVectorSubtract(polygon[2], intersect, c);
  134. mtkVectorNormalize(c, c);
  135. t0 = mtkVectorDotProduct(a, b);
  136. t1 = mtkVectorDotProduct(b, c);
  137. t2 = mtkVectorDotProduct(c, a);
  138. total = HEL_RAD_TO_DEG(acos(t0) + acos(t1) + acos(t2));
  139. if (total - 360 < 0.0)
  140. return 0;
  141. #else // assume convex polygons here for sure
  142. //mtkVectorSubtract(intersect, polygon[0], a);
  143. //theta = mtkVectorDotProduct(a, normal);
  144. theta = Vector3d::dot(b - Vector3d(polygon[0]), normal); // b = intersect
  145. if (theta >= 90.0) // Yeah I know
  146. return 0;
  147. #endif
  148. return 1;
  149. }
  150. vec_t helDistToSphereFromPlane3v(vec3_t center, vec_t radius, vec4_t plane)
  151. {
  152. vec_t d;
  153. d = (plane[0] * center[0] +
  154. plane[1] * center[1] +
  155. plane[2] * center[2] +
  156. plane[3]);
  157. if (d <= -radius)
  158. return 0;
  159. return d + radius;
  160. }
  161. vec_t helDistToBboxFromPlane3v(vec3_t min, vec3_t max, vec4_t plane)
  162. {
  163. vec3_t center;
  164. vec_t d, radius;
  165. helMidpoint3v(min, max, center);
  166. d = (plane[0] * center[0] +
  167. plane[1] * center[1] +
  168. plane[2] * center[2] +
  169. plane[3]);
  170. radius = helDist3v(max, center);
  171. if (d <= -radius)
  172. return 0;
  173. return d + radius;
  174. }
  175. vec_t helDist3v(vec3_t a, vec3_t b)
  176. {
  177. return (sqrt( ((b[0] - a[0]) * (b[0] - a[0])) +
  178. ((b[1] - a[1]) * (b[1] - a[1])) +
  179. ((b[2] - a[2]) * (b[2] - a[2]))));
  180. }
  181. void helMidpoint3v(vec3_t a, vec3_t b, vec3_t mid)
  182. {
  183. mid[0] = (a[0] + b[0]) / 2;
  184. mid[1] = (a[1] + b[1]) / 2;
  185. mid[2] = (a[2] + b[2]) / 2;
  186. }
  187. vec_t helNorm4v(vec4_t v)
  188. {
  189. return (sqrt(v[0]*v[0] + v[1]*v[1] + v[2]*v[2] + v[3]*v[3]));
  190. }
  191. vec_t helNorm3v(vec3_t v)
  192. {
  193. return (sqrt(v[0]*v[0] + v[1]*v[1] + v[2]*v[2]));
  194. }
  195. vec_t helNorm2v(vec2_t v)
  196. {
  197. return (sqrt(v[0]*v[0] + v[1]*v[1]));
  198. }
  199. vec_t helRandomNum(vec_t from, vec_t to)
  200. {
  201. return from + ((to - from) * rand() / (RAND_MAX + 1.0));
  202. }