/*
* Trackball
* Copyright 2022 Thomas Buck - thomas@xythobuz.de
*
* Required parts:
* - 1x Raspberry Pi Pico
* - 5x Cherry MX compatible switches and keycaps
* - 1x Billard ball, diameter 38mm
* - 3x Si3N4 static bearing balls, diameter 3mm
* - 3x spring, diameter 2mm, length 10mm
* - 1x PMW3360 sensor with breakout board
* - 8x M2 screw, length 5mm
* - 8x M2 heat melt insert, length 4mm
*
* For the PMW3360 breakout board get this:
* https://github.com/jfedor2/pmw3360-breakout
*
* The "Threads" library used by this project is:
* Copyright 2022 Dan Kirshner - dan_kirshner@yahoo.com
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* See .
*/
// https://www.thingiverse.com/thing:421524
use
// https://dkprojects.net/openscad-threads/
use
//use
// ######################
// ## Rendering Select ##
// ######################
//ball_and_roller();
//pico();
//sensor();
//mx_switch_cutout(wall);
//mx_switch_test();
//roller_mount_test();
roller_mount_tri();
//roller_holder();
//trackball();
// #######################
// #### Configuration ####
// #######################
ball_dia = 38.0;
roller_dia = 3.0;
roller_ball_h = 8;
roller_count = 3;
wall = 3.0;
cut_roller_holder = false;
draw_threads = true;
$c = 0.1;
$e = 0.01;
// #######################
// ## Raspberry Pi Pico ##
// #######################
pico_w = 21;
pico_l = 51;
pico_d = 1.6; // todo
pico_hole_d = 2.1;
pico_hole_x = 4.8;
pico_hole_y = 2.0;
pico_hole_d_x = 11.4;
pico_hole_d_y = pico_l - 2 * pico_hole_y;
pico_usb_w = 8.0;
pico_usb_h = 3.0; // todo
pico_usb_d = 10.0; // todo
pico_usb_off = 1.3;
pico_h = pico_d + 1; // todo
// ######################
// ### PMW3360 Sensor ###
// ######################
// https://github.com/jfedor2/pmw3360-breakout
sensor_w = 22;
sensor_l = 34;
sensor_pcb_h = 1.6;
sensor_hole_dia = 2.2;
sensor_hole_off_x = 3.0;
sensor_hole_off_y = 3.0;
sensor_hole_dist_x = 16.0;
sensor_hole_dist_y = 24.5;
sensor_cut_w = 8.0 + 0.5;
sensor_cut_h = 17.26;
sensor_cut_off_x = 7.0 - 0.25;
sensor_cut_off_y = 5.27;
sensor_cut_edge_to_pin1 = 2.75;
sensor_edge_to_pin1 = 1.52;
sensor_ball_to_lens_top = 2.4;
sensor_ball_to_chip_bottom = 9.81;
sensor_chip_w = 9.1;
sensor_chip_l = 16.2;
sensor_chip_h = 2.21;
sensor_pin_w = 0.5;
sensor_pin_h = 4.51;
sensor_pin_d = 0.2;
sensor_pin_dist = 10.7;
sensor_pin_off_top = 0.5;
sensor_pin_pitch = 0.89;
sensor_pin1_to_optical_center = 5.66;
// ######################
// ## MX Switch Cutout ##
// ######################
// https://geekhack.org/index.php?topic=70654.0
mx_co_w = 14.0;
mx_co_w_add = 0.8;
mx_co_h = 14.0;
mx_co_h_off_1 = 1.0;
mx_co_h_off_2 = 3.5;
mx_co_h_off_3 = mx_co_h - 2 * (mx_co_h_off_1 + mx_co_h_off_2);
mx_co_r = 0.4;
// https://geekhack.org/index.php?topic=71550.0
mx_co_th = 1.5 - 0.1;
mx_co_b_add = 1.0;
mx_co_b_w = mx_co_w + mx_co_b_add;
mx_co_b_h = mx_co_h + mx_co_b_add;
mx_travel = 3.9;
// ######################
// ### Implementation ###
// ######################
m3_thread=2.7;
m2_thread=1.8;
roller_thread_dia = roller_dia + 5.0;
roller_thread_pitch = 2.0;
roller_h = roller_dia + 7.0;
roller_ball_h_off = 0.4;
roller_ball_hold_off = 0.5;
roller_thread_hole = roller_dia - 1;
roller_small_hole = sphere_r_at_h(roller_ball_hold_off, roller_dia / 2) * 2;
roller_ridge_h = 1.5;
roller_mount_angle_off = 90;
roller_mount_dia = roller_thread_dia + 2.0;
ball_h = 15; // todo
switch_test_w = 25;
$fn = 42;
function sphere_r_at_h(h, r) = r * sin(acos(h / r));
function sphere_angle_at_rh(h, r) = acos(h / r);
module mx_switch_cutout(h) {
translate([-mx_co_w / 2 - mx_co_w_add, -mx_co_h / 2, 0]) {
linear_extrude(h + 1) {
translate([mx_co_w_add, 0]) {
square([mx_co_w, mx_co_h]);
for (x = [mx_co_r / 2, mx_co_w - mx_co_r / 2])
for (y = [mx_co_r / 2, mx_co_h - mx_co_r / 2])
translate([x, y])
circle(r = mx_co_r);
}
for (x = [0, mx_co_w + mx_co_w_add])
for (y = [0, mx_co_h_off_2 + mx_co_h_off_3])
translate([x, mx_co_h_off_1 + y, 0])
square([mx_co_w_add, mx_co_h_off_2]);
}
translate([mx_co_w_add - mx_co_b_add / 2, -mx_co_b_add / 2, -1])
cube([mx_co_b_w, mx_co_b_h, h - mx_co_th + 1]);
}
}
module mx_switch_test() {
difference() {
translate([-switch_test_w / 2, -switch_test_w / 2, 0])
cube([switch_test_w, switch_test_w, wall]);
mx_switch_cutout(wall);
translate([0, -switch_test_w / 2 + 1, wall - 1.0])
linear_extrude(1.1)
text("switch test", size = 3, halign = "center");
}
%translate([0, 0, wall])
rotate([0, 0, 180])
mx_switch($t);
}
module pico() {
translate([-pico_w / 2, -pico_l / 2, 0])
difference() {
union() {
color("green")
cube([pico_w, pico_l, pico_d]);
translate([(pico_w - pico_usb_w) / 2, pico_l - pico_usb_d + pico_usb_off, pico_d])
cube([pico_usb_w, pico_usb_d, pico_usb_h]);
}
for (x = [0, pico_hole_d_x])
for (y = [0, pico_hole_d_y])
translate([pico_hole_x + x, pico_hole_y + y, -1])
cylinder(d = pico_hole_d, h = pico_d + 2);
}
}
module sensor() {
translate([-sensor_w / 2, -sensor_l / 2, 0])
difference() {
color("green")
cube([sensor_w, sensor_l, sensor_pcb_h]);
translate([sensor_cut_off_x, sensor_cut_off_y, -1])
cube([sensor_cut_w, sensor_cut_h, sensor_pcb_h + 2]);
for (x = [0, sensor_hole_dist_x])
for (y = [0, sensor_hole_dist_y])
translate([sensor_hole_off_x + x, sensor_hole_off_y + y, -1])
cylinder(d = sensor_hole_dia, h = sensor_pcb_h + 2);
}
color("#303030")
translate([-sensor_chip_w / 2, -sensor_l / 2 - sensor_chip_l + sensor_edge_to_pin1 + sensor_cut_off_y + sensor_cut_h - sensor_cut_edge_to_pin1, -sensor_chip_h])
cube([sensor_chip_w, sensor_chip_l, sensor_chip_h]);
translate([0, -sensor_l / 2 - 15 * sensor_pin_pitch + sensor_cut_off_y + sensor_cut_h - sensor_cut_edge_to_pin1, 0])
for (p = [0 : 15])
translate([0, p * sensor_pin_pitch, 0])
for (x = [-sensor_pin_dist / 2, sensor_pin_dist / 2])
if (((p % 2 == 0) && (x < 0))
|| ((p % 2 == 1) && (x > 0)))
translate([-sensor_pin_d / 2 + x, -sensor_pin_w / 2, -sensor_chip_h + sensor_pin_off_top])
cube([sensor_pin_d, sensor_pin_w, sensor_pin_h]);
color("cyan")
translate([0, -sensor_l / 2 + sensor_cut_off_y + sensor_cut_h - sensor_cut_edge_to_pin1 - sensor_pin1_to_optical_center, -sensor_chip_h + 1])
cylinder(d = 0.2, h = sensor_ball_to_chip_bottom - 1);
}
module ball_and_roller() {
color("red")
sphere(d = ball_dia, $fn = 200);
for (r = [0 : roller_count - 1])
rotate([0, 0, roller_mount_angle_off + 360 / roller_count * r])
translate([sphere_r_at_h(roller_ball_h - ball_dia / 2, ball_dia / 2), 0, -ball_dia / 2 + roller_ball_h])
rotate([0, 180 + sphere_angle_at_rh(roller_ball_h - ball_dia / 2, ball_dia / 2), 0])
translate([0, 0, -roller_dia / 2])
roller_holder();
}
module roller_holder() {
echo(roller_h);
translate([0, 0, -roller_h + roller_dia / 2])
difference() {
color("magenta")
union() {
// top screw part
translate([0, 0, roller_h-roller_dia/2 + roller_ball_h_off-3])
cylinder(d1 = roller_mount_dia, d2=roller_dia+1, h = 3);
cylinder(d = roller_mount_dia, h = roller_h-roller_dia/2 + roller_ball_h_off-3);
}
translate([0, 0, -$e]) {
cylinder(d = roller_thread_hole, h = $e+ roller_h - roller_dia / 2 + roller_ball_h_off + roller_ball_hold_off);
}
translate([0, 0, roller_h - roller_dia / 2])
sphere(d = roller_dia , $fn=$fn*4 );
if (cut_roller_holder) {
translate([-roller_thread_dia / 2 - 1, -roller_thread_dia, -1])
cube([roller_thread_dia + 2, roller_thread_dia, roller_h + 2]);
}
}
%color("blue")
sphere(d = roller_dia);
}
module roller_mount() {
echo(roller_h);
translate([0, 0, -1-roller_h + roller_dia / 2]) {
difference() {
cylinder(d=roller_mount_dia+wall,h=roller_h/2);
translate([0,0,1])
cylinder(d=roller_mount_dia+$c*2,h=roller_h/2+$e);
}
}
}
module roller_mount_test() {
roller_holder();
roller_mount();
}
module roller_mount_tri() {
difference() {
union(){
difference() {
hull() {
translate([0, 0, 0])
for (r = [0 : roller_count - 1])
rotate([0, 0, roller_mount_angle_off + 360 / roller_count * r])
translate([sphere_r_at_h(roller_ball_h - ball_dia / 2, ball_dia / 2), 0, -ball_dia / 2 + roller_ball_h])
rotate([0, 180 + sphere_angle_at_rh(roller_ball_h - ball_dia / 2, ball_dia / 2), 0])
translate([0, 0, -roller_h])
cylinder(d=roller_mount_dia+wall+1,h=roller_h+1);
translate([0,0,-ball_dia/2-5])
cylinder(d=base_dia,h=$e);
}
for (r = [0 : roller_count - 1])
rotate([0, 0, roller_mount_angle_off + 360 / roller_count * r])
translate([sphere_r_at_h(roller_ball_h - ball_dia / 2, ball_dia / 2), 0, -ball_dia / 2 + roller_ball_h])
rotate([0, 180 + sphere_angle_at_rh(roller_ball_h - ball_dia / 2, ball_dia / 2), 0])
translate([0, 0, -roller_h])
cylinder(d=roller_mount_dia+0.2,h=ball_dia/2+roller_h);
sphere($fn=$fn*4, d=ball_dia+$c*2+1);
}
for (r = [0 : roller_count - 1])
rotate([0, 0, roller_mount_angle_off + 360 / roller_count * r])
translate([sphere_r_at_h(roller_ball_h - ball_dia / 2, ball_dia / 2), 0, -ball_dia / 2 + roller_ball_h])
rotate([0, 180 + sphere_angle_at_rh(roller_ball_h - ball_dia / 2, ball_dia / 2), 0])
translate([0, 0, 0])
roller_mount();
}
translate([0, 0, 0])
for (r = [0 : roller_count - 1])
rotate([0, 0, roller_mount_angle_off + 360 / roller_count * r])
translate([sphere_r_at_h(roller_ball_h - ball_dia / 2, ball_dia / 2), 0, -ball_dia / 2 + roller_ball_h])
rotate([0, 180 + sphere_angle_at_rh(roller_ball_h - ball_dia / 2, ball_dia / 2), 0])
translate([0, 0, -roller_h/2])
rotate([0,-90,0])
translate([0,0,2])
{
cylinder(d=m2_thread,h=ball_dia);
translate([0,0,roller_mount_dia/4+wall])
cylinder(d=m2_thread+1,h=ball_dia);
}
}
}
base_dia = pico_l + 9;
module trackball() {
%translate([0, 0, ball_dia / 2 + ball_h])
ball_and_roller();
%rotate([0, 180, 0])
pico();
%translate([0, sensor_l / 2 - sensor_cut_off_y - sensor_cut_h + sensor_cut_edge_to_pin1 + sensor_pin1_to_optical_center, ball_h + sensor_chip_h - sensor_ball_to_chip_bottom])
sensor();
translate([0, 0, ball_dia / 2 + ball_h])
for (r = [0 : roller_count - 1])
rotate([0, 0, roller_mount_angle_off + 360 / roller_count * r])
translate([sphere_r_at_h(roller_ball_h - ball_dia / 2, ball_dia / 2), 0, -ball_dia / 2 + roller_ball_h])
rotate([0, 180 + sphere_angle_at_rh(roller_ball_h - ball_dia / 2, ball_dia / 2), 0])
translate([0, 0, -roller_dia / 2])
translate([0, 0, -roller_h + roller_dia / 2 - roller_ball_h_off])
roller_mount();
color("grey")
translate([0, 0, -8])
cylinder(d = base_dia, h = wall);
}