/* * Trackball * Copyright 2022 Thomas Buck - thomas@xythobuz.de * * Required parts: * - 1x Raspberry Pi Pico * - 5x Cherry MX compatible switches and keycaps * - 1x Billard ball, diameter 38mm * - 3x Si3N4 static bearing balls, diameter 3mm * - 3x spring, diameter 2mm, length 10mm * - 1x PMW3360 sensor with breakout board * - 8x M2 screw, length 5mm * - 8x M2 heat melt insert, length 4mm * * For the PMW3360 breakout board get this: * https://github.com/jfedor2/pmw3360-breakout * * The "Threads" library used by this project is: * Copyright 2022 Dan Kirshner - dan_kirshner@yahoo.com * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * See . */ // https://www.thingiverse.com/thing:421524 use // https://dkprojects.net/openscad-threads/ use //use // ###################### // ## Rendering Select ## // ###################### //ball_and_roller(); //pico(); //sensor(); //mx_switch_cutout(wall); //mx_switch_test(); //roller_mount_test(); roller_mount_tri(); //roller_holder(); //trackball(); // ####################### // #### Configuration #### // ####################### ball_dia = 38.0; roller_dia = 3.0; roller_ball_h = 8; roller_count = 3; wall = 3.0; cut_roller_holder = false; draw_threads = true; $c = 0.1; $e = 0.01; // ####################### // ## Raspberry Pi Pico ## // ####################### pico_w = 21; pico_l = 51; pico_d = 1.6; // todo pico_hole_d = 2.1; pico_hole_x = 4.8; pico_hole_y = 2.0; pico_hole_d_x = 11.4; pico_hole_d_y = pico_l - 2 * pico_hole_y; pico_usb_w = 8.0; pico_usb_h = 3.0; // todo pico_usb_d = 10.0; // todo pico_usb_off = 1.3; pico_h = pico_d + 1; // todo // ###################### // ### PMW3360 Sensor ### // ###################### // https://github.com/jfedor2/pmw3360-breakout sensor_w = 22; sensor_l = 34; sensor_pcb_h = 1.6; sensor_hole_dia = 2.2; sensor_hole_off_x = 3.0; sensor_hole_off_y = 3.0; sensor_hole_dist_x = 16.0; sensor_hole_dist_y = 24.5; sensor_cut_w = 8.0 + 0.5; sensor_cut_h = 17.26; sensor_cut_off_x = 7.0 - 0.25; sensor_cut_off_y = 5.27; sensor_cut_edge_to_pin1 = 2.75; sensor_edge_to_pin1 = 1.52; sensor_ball_to_lens_top = 2.4; sensor_ball_to_chip_bottom = 9.81; sensor_chip_w = 9.1; sensor_chip_l = 16.2; sensor_chip_h = 2.21; sensor_pin_w = 0.5; sensor_pin_h = 4.51; sensor_pin_d = 0.2; sensor_pin_dist = 10.7; sensor_pin_off_top = 0.5; sensor_pin_pitch = 0.89; sensor_pin1_to_optical_center = 5.66; // ###################### // ## MX Switch Cutout ## // ###################### // https://geekhack.org/index.php?topic=70654.0 mx_co_w = 14.0; mx_co_w_add = 0.8; mx_co_h = 14.0; mx_co_h_off_1 = 1.0; mx_co_h_off_2 = 3.5; mx_co_h_off_3 = mx_co_h - 2 * (mx_co_h_off_1 + mx_co_h_off_2); mx_co_r = 0.4; // https://geekhack.org/index.php?topic=71550.0 mx_co_th = 1.5 - 0.1; mx_co_b_add = 1.0; mx_co_b_w = mx_co_w + mx_co_b_add; mx_co_b_h = mx_co_h + mx_co_b_add; mx_travel = 3.9; // ###################### // ### Implementation ### // ###################### m3_thread=2.7; m2_thread=1.8; roller_thread_dia = roller_dia + 5.0; roller_thread_pitch = 2.0; roller_h = roller_dia + 7.0; roller_ball_h_off = 0.4; roller_ball_hold_off = 0.5; roller_thread_hole = roller_dia - 1; roller_small_hole = sphere_r_at_h(roller_ball_hold_off, roller_dia / 2) * 2; roller_ridge_h = 1.5; roller_mount_angle_off = 90; roller_mount_dia = roller_thread_dia + 2.0; ball_h = 15; // todo switch_test_w = 25; $fn = 42; function sphere_r_at_h(h, r) = r * sin(acos(h / r)); function sphere_angle_at_rh(h, r) = acos(h / r); module mx_switch_cutout(h) { translate([-mx_co_w / 2 - mx_co_w_add, -mx_co_h / 2, 0]) { linear_extrude(h + 1) { translate([mx_co_w_add, 0]) { square([mx_co_w, mx_co_h]); for (x = [mx_co_r / 2, mx_co_w - mx_co_r / 2]) for (y = [mx_co_r / 2, mx_co_h - mx_co_r / 2]) translate([x, y]) circle(r = mx_co_r); } for (x = [0, mx_co_w + mx_co_w_add]) for (y = [0, mx_co_h_off_2 + mx_co_h_off_3]) translate([x, mx_co_h_off_1 + y, 0]) square([mx_co_w_add, mx_co_h_off_2]); } translate([mx_co_w_add - mx_co_b_add / 2, -mx_co_b_add / 2, -1]) cube([mx_co_b_w, mx_co_b_h, h - mx_co_th + 1]); } } module mx_switch_test() { difference() { translate([-switch_test_w / 2, -switch_test_w / 2, 0]) cube([switch_test_w, switch_test_w, wall]); mx_switch_cutout(wall); translate([0, -switch_test_w / 2 + 1, wall - 1.0]) linear_extrude(1.1) text("switch test", size = 3, halign = "center"); } %translate([0, 0, wall]) rotate([0, 0, 180]) mx_switch($t); } module pico() { translate([-pico_w / 2, -pico_l / 2, 0]) difference() { union() { color("green") cube([pico_w, pico_l, pico_d]); translate([(pico_w - pico_usb_w) / 2, pico_l - pico_usb_d + pico_usb_off, pico_d]) cube([pico_usb_w, pico_usb_d, pico_usb_h]); } for (x = [0, pico_hole_d_x]) for (y = [0, pico_hole_d_y]) translate([pico_hole_x + x, pico_hole_y + y, -1]) cylinder(d = pico_hole_d, h = pico_d + 2); } } module sensor() { translate([-sensor_w / 2, -sensor_l / 2, 0]) difference() { color("green") cube([sensor_w, sensor_l, sensor_pcb_h]); translate([sensor_cut_off_x, sensor_cut_off_y, -1]) cube([sensor_cut_w, sensor_cut_h, sensor_pcb_h + 2]); for (x = [0, sensor_hole_dist_x]) for (y = [0, sensor_hole_dist_y]) translate([sensor_hole_off_x + x, sensor_hole_off_y + y, -1]) cylinder(d = sensor_hole_dia, h = sensor_pcb_h + 2); } color("#303030") translate([-sensor_chip_w / 2, -sensor_l / 2 - sensor_chip_l + sensor_edge_to_pin1 + sensor_cut_off_y + sensor_cut_h - sensor_cut_edge_to_pin1, -sensor_chip_h]) cube([sensor_chip_w, sensor_chip_l, sensor_chip_h]); translate([0, -sensor_l / 2 - 15 * sensor_pin_pitch + sensor_cut_off_y + sensor_cut_h - sensor_cut_edge_to_pin1, 0]) for (p = [0 : 15]) translate([0, p * sensor_pin_pitch, 0]) for (x = [-sensor_pin_dist / 2, sensor_pin_dist / 2]) if (((p % 2 == 0) && (x < 0)) || ((p % 2 == 1) && (x > 0))) translate([-sensor_pin_d / 2 + x, -sensor_pin_w / 2, -sensor_chip_h + sensor_pin_off_top]) cube([sensor_pin_d, sensor_pin_w, sensor_pin_h]); color("cyan") translate([0, -sensor_l / 2 + sensor_cut_off_y + sensor_cut_h - sensor_cut_edge_to_pin1 - sensor_pin1_to_optical_center, -sensor_chip_h + 1]) cylinder(d = 0.2, h = sensor_ball_to_chip_bottom - 1); } module ball_and_roller() { color("red") sphere(d = ball_dia, $fn = 200); for (r = [0 : roller_count - 1]) rotate([0, 0, roller_mount_angle_off + 360 / roller_count * r]) translate([sphere_r_at_h(roller_ball_h - ball_dia / 2, ball_dia / 2), 0, -ball_dia / 2 + roller_ball_h]) rotate([0, 180 + sphere_angle_at_rh(roller_ball_h - ball_dia / 2, ball_dia / 2), 0]) translate([0, 0, -roller_dia / 2]) roller_holder(); } module roller_holder() { echo(roller_h); translate([0, 0, -roller_h + roller_dia / 2]) difference() { color("magenta") union() { // top screw part translate([0, 0, roller_h-roller_dia/2 + roller_ball_h_off-3]) cylinder(d1 = roller_mount_dia, d2=roller_dia+1, h = 3); cylinder(d = roller_mount_dia, h = roller_h-roller_dia/2 + roller_ball_h_off-3); } translate([0, 0, -$e]) { cylinder(d = roller_thread_hole, h = $e+ roller_h - roller_dia / 2 + roller_ball_h_off + roller_ball_hold_off); } translate([0, 0, roller_h - roller_dia / 2]) sphere(d = roller_dia , $fn=$fn*4 ); if (cut_roller_holder) { translate([-roller_thread_dia / 2 - 1, -roller_thread_dia, -1]) cube([roller_thread_dia + 2, roller_thread_dia, roller_h + 2]); } } %color("blue") sphere(d = roller_dia); } module roller_mount() { echo(roller_h); translate([0, 0, -1-roller_h + roller_dia / 2]) { difference() { cylinder(d=roller_mount_dia+wall,h=roller_h/2); translate([0,0,1]) cylinder(d=roller_mount_dia+$c*2,h=roller_h/2+$e); } } } module roller_mount_test() { roller_holder(); roller_mount(); } module roller_mount_tri() { difference() { union(){ difference() { hull() { translate([0, 0, 0]) for (r = [0 : roller_count - 1]) rotate([0, 0, roller_mount_angle_off + 360 / roller_count * r]) translate([sphere_r_at_h(roller_ball_h - ball_dia / 2, ball_dia / 2), 0, -ball_dia / 2 + roller_ball_h]) rotate([0, 180 + sphere_angle_at_rh(roller_ball_h - ball_dia / 2, ball_dia / 2), 0]) translate([0, 0, -roller_h]) cylinder(d=roller_mount_dia+wall+1,h=roller_h+1); translate([0,0,-ball_dia/2-5]) cylinder(d=base_dia,h=$e); } for (r = [0 : roller_count - 1]) rotate([0, 0, roller_mount_angle_off + 360 / roller_count * r]) translate([sphere_r_at_h(roller_ball_h - ball_dia / 2, ball_dia / 2), 0, -ball_dia / 2 + roller_ball_h]) rotate([0, 180 + sphere_angle_at_rh(roller_ball_h - ball_dia / 2, ball_dia / 2), 0]) translate([0, 0, -roller_h]) cylinder(d=roller_mount_dia+0.2,h=ball_dia/2+roller_h); sphere($fn=$fn*4, d=ball_dia+$c*2+1); } for (r = [0 : roller_count - 1]) rotate([0, 0, roller_mount_angle_off + 360 / roller_count * r]) translate([sphere_r_at_h(roller_ball_h - ball_dia / 2, ball_dia / 2), 0, -ball_dia / 2 + roller_ball_h]) rotate([0, 180 + sphere_angle_at_rh(roller_ball_h - ball_dia / 2, ball_dia / 2), 0]) translate([0, 0, 0]) roller_mount(); } translate([0, 0, 0]) for (r = [0 : roller_count - 1]) rotate([0, 0, roller_mount_angle_off + 360 / roller_count * r]) translate([sphere_r_at_h(roller_ball_h - ball_dia / 2, ball_dia / 2), 0, -ball_dia / 2 + roller_ball_h]) rotate([0, 180 + sphere_angle_at_rh(roller_ball_h - ball_dia / 2, ball_dia / 2), 0]) translate([0, 0, -roller_h/2]) rotate([0,-90,0]) translate([0,0,2]) { cylinder(d=m2_thread,h=ball_dia); translate([0,0,roller_mount_dia/4+wall]) cylinder(d=m2_thread+1,h=ball_dia); } } } base_dia = pico_l + 9; module trackball() { %translate([0, 0, ball_dia / 2 + ball_h]) ball_and_roller(); %rotate([0, 180, 0]) pico(); %translate([0, sensor_l / 2 - sensor_cut_off_y - sensor_cut_h + sensor_cut_edge_to_pin1 + sensor_pin1_to_optical_center, ball_h + sensor_chip_h - sensor_ball_to_chip_bottom]) sensor(); translate([0, 0, ball_dia / 2 + ball_h]) for (r = [0 : roller_count - 1]) rotate([0, 0, roller_mount_angle_off + 360 / roller_count * r]) translate([sphere_r_at_h(roller_ball_h - ball_dia / 2, ball_dia / 2), 0, -ball_dia / 2 + roller_ball_h]) rotate([0, 180 + sphere_angle_at_rh(roller_ball_h - ball_dia / 2, ball_dia / 2), 0]) translate([0, 0, -roller_dia / 2]) translate([0, 0, -roller_h + roller_dia / 2 - roller_ball_h_off]) roller_mount(); color("grey") translate([0, 0, -8]) cylinder(d = base_dia, h = wall); }