|
@@ -23,17 +23,26 @@
|
23
|
23
|
/**
|
24
|
24
|
* The class Servo uses the PWM class to implement it's functions
|
25
|
25
|
*
|
26
|
|
- * The PWM1 module is only used to generate interrups at specified times. It
|
27
|
|
- * is NOT used to directly toggle pins. The ISR writes to the pin assigned to
|
28
|
|
- * that interrupt
|
29
|
|
- *
|
30
|
26
|
* All PWMs use the same repetition rate - 20mS because that's the normal servo rate
|
|
27
|
+*/
|
|
28
|
+
|
|
29
|
+/**
|
|
30
|
+ * This is a hybrid system.
|
|
31
|
+ *
|
|
32
|
+ * The PWM1 module is used to directly control the Servo 0, 1 & 3 pins. This keeps
|
|
33
|
+ * the pulse width jitter to under a microsecond.
|
31
|
34
|
*
|
|
35
|
+ * For all other pins the PWM1 module is used to generate interrupts. The ISR
|
|
36
|
+ * routine does the actual setting/clearing of pins. The upside is that any pin can
|
|
37
|
+ * have a PWM channel assigned to it. The downside is that there is more pulse width
|
|
38
|
+ * jitter. The jitter depends on what else is happening in the system and what ISRs
|
|
39
|
+ * prempt the PWM ISR. Writing to the SD card can add 20 microseconds to the pulse
|
|
40
|
+ * width.
|
32
|
41
|
*/
|
33
|
|
-
|
|
42
|
+
|
34
|
43
|
/**
|
35
|
44
|
* The data structures are setup to minimize the computation done by the ISR which
|
36
|
|
- * minimizes ISR execution time. Execution times are 1.7 to 1.9 microseconds.
|
|
45
|
+ * minimizes ISR execution time. Execution times are 2.2 - 3.7 microseconds.
|
37
|
46
|
*
|
38
|
47
|
* Two tables are used. active_table is used by the ISR. Changes to the table are
|
39
|
48
|
* are done by copying the active_table into the work_table, updating the work_table
|
|
@@ -47,34 +56,39 @@
|
47
|
56
|
*
|
48
|
57
|
* The ISR's priority is set to the maximum otherwise other ISRs can cause considerable
|
49
|
58
|
* jitter in the PWM high time.
|
|
59
|
+ *
|
|
60
|
+ * See the end of this file for details on the hardware/firmware interaction
|
50
|
61
|
*/
|
51
|
62
|
|
52
|
63
|
|
53
|
64
|
#ifdef TARGET_LPC1768
|
54
|
65
|
#include <lpc17xx_pinsel.h>
|
55
|
|
-//#include "../HAL.h"
|
56
|
|
-//#include "../../../macros.h"
|
57
|
|
-#include "serial.h"
|
58
|
|
-
|
59
|
|
-typedef struct { // holds all data needed to control the 6 PWM channels
|
60
|
|
- uint8_t sequence; // 0: available slot, 1 - 6: PWM channel assigned to that slot
|
61
|
|
- uint8_t logical_pin;
|
62
|
|
- uint16_t PWM_mask;
|
|
66
|
+
|
|
67
|
+#define NUM_PWMS 6
|
|
68
|
+
|
|
69
|
+typedef struct { // holds all data needed to control/init one of the PWM channels
|
|
70
|
+ uint8_t sequence; // 0: available slot, 1 - 6: PWM channel assigned to that slot
|
|
71
|
+ uint8_t logical_pin;
|
|
72
|
+ uint16_t PWM_mask; // MASK TO CHECK/WRITE THE IR REGISTER
|
63
|
73
|
volatile uint32_t* set_register;
|
64
|
74
|
volatile uint32_t* clr_register;
|
65
|
|
- uint32_t write_mask;
|
66
|
|
- uint32_t microseconds;
|
67
|
|
- uint32_t min;
|
68
|
|
- uint32_t max;
|
69
|
|
- bool PWM_flag; //
|
70
|
|
- uint8_t servo_index; // 0 - MAX_SERVO -1 : servo index, 0xFF : PWM channel
|
71
|
|
- bool active_flag;
|
|
75
|
+ uint32_t write_mask; // USED BY SET/CLEAR COMMANDS
|
|
76
|
+ uint32_t microseconds; // value written to MR register
|
|
77
|
+ uint32_t min; // lower value limit checked by WRITE routine before writing to the MR register
|
|
78
|
+ uint32_t max; // upper value limit checked by WRITE routine before writing to the MR register
|
|
79
|
+ bool PWM_flag; // 0 - USED BY sERVO, 1 - USED BY ANALOGWRITE
|
|
80
|
+ uint8_t servo_index; // 0 - MAX_SERVO -1 : servo index, 0xFF : PWM channel
|
|
81
|
+ bool active_flag; // THIS TABLE ENTRY IS ACTIVELY TOGGLING A PIN
|
|
82
|
+ uint8_t assigned_MR; // Which MR (1-6) is used by this logical channel
|
|
83
|
+ uint32_t PCR_bit; // PCR register bit to enable PWM1 control of this pin
|
|
84
|
+ uint32_t PINSEL3_bits; // PINSEL3 register bits to set pin mode to PWM1 control
|
72
|
85
|
|
73
|
86
|
} PWM_map;
|
74
|
87
|
|
|
88
|
+
|
75
|
89
|
#define MICRO_MAX 0xffffffff
|
76
|
90
|
|
77
|
|
-#define PWM_MAP_INIT_ROW {0, 0xff, 0, 0, 0, 0, MICRO_MAX, 0, 0, 0, 0, 0}
|
|
91
|
+#define PWM_MAP_INIT_ROW {0, 0xff, 0, 0, 0, 0, MICRO_MAX, 0, 0, 0, 0, 0, 0, 0, 0}
|
78
|
92
|
#define PWM_MAP_INIT {PWM_MAP_INIT_ROW,\
|
79
|
93
|
PWM_MAP_INIT_ROW,\
|
80
|
94
|
PWM_MAP_INIT_ROW,\
|
|
@@ -83,18 +97,14 @@ typedef struct { // holds all data needed to control the 6 PWM channels
|
83
|
97
|
PWM_MAP_INIT_ROW,\
|
84
|
98
|
};
|
85
|
99
|
|
86
|
|
-PWM_map PWM1_map_A[6] = PWM_MAP_INIT;
|
87
|
|
-PWM_map PWM1_map_B[6] = PWM_MAP_INIT;
|
|
100
|
+PWM_map PWM1_map_A[NUM_PWMS] = PWM_MAP_INIT;
|
|
101
|
+PWM_map PWM1_map_B[NUM_PWMS] = PWM_MAP_INIT;
|
88
|
102
|
|
89
|
103
|
PWM_map *active_table = PWM1_map_A;
|
90
|
104
|
PWM_map *work_table = PWM1_map_B;
|
91
|
105
|
PWM_map *ISR_table;
|
92
|
106
|
|
93
|
107
|
|
94
|
|
-#define NUM_PWMS 6
|
95
|
|
-
|
96
|
|
-volatile uint8_t PWM1_ISR_index = 0;
|
97
|
|
-
|
98
|
108
|
#define IR_BIT(p) (p >= 0 && p <= 3 ? p : p + 4 )
|
99
|
109
|
#define COPY_ACTIVE_TABLE for (uint8_t i = 0; i < 6 ; i++) work_table[i] = active_table[i]
|
100
|
110
|
#define PIN_IS_INVERTED(p) 0 // place holder in case inverting PWM output is offered
|
|
@@ -169,11 +179,12 @@ void LPC1768_PWM_init(void) {
|
169
|
179
|
}
|
170
|
180
|
|
171
|
181
|
|
172
|
|
-bool PWM_table_swap; // flag to tell the ISR that the tables have been swapped
|
173
|
|
-
|
|
182
|
+bool PWM_table_swap = false; // flag to tell the ISR that the tables have been swapped
|
|
183
|
+bool PWM_MR0_wait = false; // flag to ensure don't delay MR0 interrupt
|
174
|
184
|
|
175
|
185
|
|
176
|
186
|
bool LPC1768_PWM_attach_pin(uint8_t pin, uint32_t min = 1, uint32_t max = (LPC_PWM1_MR0 - MR0_MARGIN), uint8_t servo_index = 0xff) {
|
|
187
|
+ while (PWM_table_swap) delay(5); // don't do anything until the previous change has been implemented by the ISR
|
177
|
188
|
COPY_ACTIVE_TABLE; // copy active table into work table
|
178
|
189
|
uint8_t slot = 0;
|
179
|
190
|
for (uint8_t i = 0; i < NUM_PWMS ; i++) // see if already in table
|
|
@@ -196,6 +207,9 @@ bool LPC1768_PWM_attach_pin(uint8_t pin, uint32_t min = 1, uint32_t max = (LPC_P
|
196
|
207
|
work_table[slot].active_flag = false;
|
197
|
208
|
|
198
|
209
|
//swap tables
|
|
210
|
+ PWM_MR0_wait = true;
|
|
211
|
+ while (PWM_MR0_wait) delay(5); //wait until MR0 interrupt has happend so don't delay it.
|
|
212
|
+
|
199
|
213
|
NVIC_DisableIRQ(PWM1_IRQn);
|
200
|
214
|
PWM_map *pointer_swap = active_table;
|
201
|
215
|
active_table = work_table;
|
|
@@ -206,18 +220,36 @@ bool LPC1768_PWM_attach_pin(uint8_t pin, uint32_t min = 1, uint32_t max = (LPC_P
|
206
|
220
|
return 1;
|
207
|
221
|
}
|
208
|
222
|
|
209
|
|
-
|
210
|
|
-
|
211
|
|
-bool LPC1768_PWM_write(uint8_t pin, uint32_t value) {
|
212
|
|
- COPY_ACTIVE_TABLE; // copy active table into work table
|
213
|
|
- uint8_t slot = 0xFF;
|
214
|
|
- for (uint8_t i = 0; i < NUM_PWMS; i++) // find slot
|
215
|
|
- if (work_table[i].logical_pin == pin) slot = i;
|
216
|
|
- if (slot == 0xFF) return false; // return error if pin not found
|
217
|
|
- digitalWrite(pin, 0); // set pin to output & set it low
|
218
|
|
- work_table[slot].microseconds = MAX(MIN(value, work_table[slot].max), work_table[slot].min);
|
219
|
|
- work_table[slot].active_flag = true;
|
220
|
|
-
|
|
223
|
+#define pin_11_PWM_channel 2
|
|
224
|
+#define pin_6_PWM_channel 3
|
|
225
|
+#define pin_4_PWM_channel 1
|
|
226
|
+
|
|
227
|
+// used to keep track of which Match Registers have been used and if they will be used by the
|
|
228
|
+// PWM1 module to directly control the pin or will be used to generate an interrupt
|
|
229
|
+typedef struct { // status of PWM1 channel
|
|
230
|
+ uint8_t map_used; // 0 - this MR register not used/assigned
|
|
231
|
+ uint8_t map_PWM_INT; // 0 - available for interrupts, 1 - in use by PWM
|
|
232
|
+ uint8_t map_PWM_PIN; // logical pin number for this PwM1 controlled pin / port
|
|
233
|
+ volatile uint32_t* MR_register; // address of the MR register for this PWM1 channel
|
|
234
|
+ uint32_t PCR_bit; // PCR register bit to enable PWM1 control of this pin
|
|
235
|
+ uint32_t PINSEL3_bits; // PINSEL3 register bits to set pin mode to PWM1 control
|
|
236
|
+} MR_map;
|
|
237
|
+
|
|
238
|
+MR_map map_MR[NUM_PWMS];
|
|
239
|
+
|
|
240
|
+void LPC1768_PWM_update_map_MR(void) {
|
|
241
|
+ map_MR[0] = {0, (uint8_t) (LPC_PWM1->PCR & _BV(8 + pin_4_PWM_channel) ? 1 : 0), 4, &LPC_PWM1->MR1, 0, 0};
|
|
242
|
+ map_MR[1] = {0, (uint8_t) (LPC_PWM1->PCR & _BV(8 + pin_11_PWM_channel) ? 1 : 0), 11, &LPC_PWM1->MR2, 0, 0};
|
|
243
|
+ map_MR[2] = {0, (uint8_t) (LPC_PWM1->PCR & _BV(8 + pin_6_PWM_channel) ? 1 : 0), 6, &LPC_PWM1->MR3, 0, 0};
|
|
244
|
+ map_MR[3] = {0, 0, 0, &LPC_PWM1->MR4, 0, 0};
|
|
245
|
+ map_MR[4] = {0, 0, 0, &LPC_PWM1->MR5, 0, 0};
|
|
246
|
+ map_MR[5] = {0, 0, 0, &LPC_PWM1->MR6, 0, 0};
|
|
247
|
+}
|
|
248
|
+
|
|
249
|
+
|
|
250
|
+uint32_t LPC1768_PWM_interrupt_mask = 1;
|
|
251
|
+
|
|
252
|
+void LPC1768_PWM_update(void) {
|
221
|
253
|
for (uint8_t i = NUM_PWMS; --i;) { // (bubble) sort table by microseconds
|
222
|
254
|
bool didSwap = false;
|
223
|
255
|
PWM_map temp;
|
|
@@ -232,122 +264,137 @@ bool LPC1768_PWM_write(uint8_t pin, uint32_t value) {
|
232
|
264
|
if (!didSwap) break;
|
233
|
265
|
}
|
234
|
266
|
|
235
|
|
- for (uint8_t i = 0; i < NUM_PWMS; i++) // set the index & PWM_mask
|
|
267
|
+ LPC1768_PWM_interrupt_mask = 0; // set match registers to new values, build IRQ mask
|
|
268
|
+ for (uint8_t i = 0; i < NUM_PWMS; i++) {
|
236
|
269
|
if (work_table[i].active_flag == true) {
|
237
|
270
|
work_table[i].sequence = i + 1;
|
238
|
|
- work_table[i].PWM_mask = _BV(IR_BIT(i + 1));
|
|
271
|
+
|
|
272
|
+ // first see if there is a PWM1 controlled pin for this entry
|
|
273
|
+ bool found = false;
|
|
274
|
+ for (uint8_t j = 0; (j < NUM_PWMS) && !found; j++) {
|
|
275
|
+ if ( (map_MR[j].map_PWM_PIN == work_table[i].logical_pin) && map_MR[j].map_PWM_INT ) {
|
|
276
|
+ *map_MR[j].MR_register = work_table[i].microseconds; // found one of the PWM pins
|
|
277
|
+ work_table[i].PWM_mask = 0;
|
|
278
|
+ work_table[i].PCR_bit = map_MR[j].PCR_bit; // PCR register bit to enable PWM1 control of this pin
|
|
279
|
+ work_table[i].PINSEL3_bits = map_MR[j].PINSEL3_bits; // PINSEL3 register bits to set pin mode to PWM1 control} MR_map;
|
|
280
|
+ map_MR[j].map_used = 2;
|
|
281
|
+ work_table[i].assigned_MR = j +1; // only used to help in debugging
|
|
282
|
+ found = true;
|
|
283
|
+ }
|
|
284
|
+ }
|
|
285
|
+
|
|
286
|
+ // didn't find a PWM1 pin so get an interrupt
|
|
287
|
+ for (uint8_t k = 0; (k < NUM_PWMS) && !found; k++) {
|
|
288
|
+ if ( !(map_MR[k].map_PWM_INT || map_MR[k].map_used)) {
|
|
289
|
+ *map_MR[k].MR_register = work_table[i].microseconds; // found one for an interrupt pin
|
|
290
|
+ map_MR[k].map_used = 1;
|
|
291
|
+ LPC1768_PWM_interrupt_mask |= _BV(3 * (k + 1)); // set bit in the MCR to enable this MR to generate an interrupt
|
|
292
|
+ work_table[i].PWM_mask = _BV(IR_BIT(k + 1)); // bit in the IR that will go active when this MR generates an interrupt
|
|
293
|
+ work_table[i].assigned_MR = k +1; // only used to help in debugging
|
|
294
|
+ found = true;
|
|
295
|
+ }
|
|
296
|
+ }
|
239
|
297
|
}
|
240
|
|
- else work_table[i].sequence = 0;
|
241
|
|
-
|
242
|
|
- uint32_t interrupt_mask = 0; // set match registers to new values, build IRQ mask
|
243
|
|
- if (work_table[0].active_flag == true) {
|
244
|
|
- LPC_PWM1->MR1 = work_table[0].microseconds;
|
245
|
|
- interrupt_mask |= _BV(3);
|
246
|
|
- }
|
247
|
|
- if (work_table[1].active_flag == true) {
|
248
|
|
- LPC_PWM1->MR2 = work_table[1].microseconds;
|
249
|
|
- interrupt_mask |= _BV(6);
|
250
|
|
- }
|
251
|
|
- if (work_table[2].active_flag == true) {
|
252
|
|
- LPC_PWM1->MR3 = work_table[2].microseconds;
|
253
|
|
- interrupt_mask |= _BV(9);
|
254
|
|
- }
|
255
|
|
- if (work_table[3].active_flag == true) {
|
256
|
|
- LPC_PWM1->MR4 = work_table[3].microseconds;
|
257
|
|
- interrupt_mask |= _BV(12);
|
258
|
|
- }
|
259
|
|
- if (work_table[4].active_flag == true) {
|
260
|
|
- LPC_PWM1->MR5 = work_table[4].microseconds;
|
261
|
|
- interrupt_mask |= _BV(15);
|
262
|
|
- }
|
263
|
|
- if (work_table[5].active_flag == true) {
|
264
|
|
- LPC_PWM1->MR6 = work_table[5].microseconds;
|
265
|
|
- interrupt_mask |= _BV(18);
|
266
|
|
- }
|
267
|
|
- interrupt_mask |= _BV(0); // add in MR0 interrupt
|
268
|
|
-
|
269
|
|
- // swap tables
|
|
298
|
+ else
|
|
299
|
+ work_table[i].sequence = 0;
|
|
300
|
+ }
|
|
301
|
+ LPC1768_PWM_interrupt_mask |= (uint32_t) _BV(0); // add in MR0 interrupt
|
|
302
|
+
|
|
303
|
+ // swap tables
|
|
304
|
+
|
|
305
|
+ PWM_MR0_wait = true;
|
|
306
|
+ while (PWM_MR0_wait) delay(5); //wait until MR0 interrupt has happend so don't delay it.
|
|
307
|
+
|
270
|
308
|
NVIC_DisableIRQ(PWM1_IRQn);
|
271
|
309
|
LPC_PWM1->LER = 0x07E; // Set the latch Enable Bits to load the new Match Values for MR1 - MR6
|
272
|
310
|
PWM_map *pointer_swap = active_table;
|
273
|
311
|
active_table = work_table;
|
274
|
312
|
work_table = pointer_swap;
|
275
|
313
|
PWM_table_swap = true; // tell the ISR that the tables have been swapped
|
276
|
|
- LPC_PWM1->MCR = interrupt_mask; // enable new PWM individual channel interrupts
|
277
|
314
|
NVIC_EnableIRQ(PWM1_IRQn); // re-enable PWM interrupts
|
278
|
|
-
|
279
|
|
- return 1;
|
280
|
315
|
}
|
281
|
316
|
|
282
|
317
|
|
283
|
|
-
|
284
|
|
-bool LPC1768_PWM_detach_pin(uint8_t pin) {
|
|
318
|
+bool LPC1768_PWM_write(uint8_t pin, uint32_t value) {
|
|
319
|
+ while (PWM_table_swap) delay(5); // don't do anything until the previous change has been implemented by the ISR
|
285
|
320
|
COPY_ACTIVE_TABLE; // copy active table into work table
|
286
|
321
|
uint8_t slot = 0xFF;
|
287
|
322
|
for (uint8_t i = 0; i < NUM_PWMS; i++) // find slot
|
288
|
323
|
if (work_table[i].logical_pin == pin) slot = i;
|
289
|
324
|
if (slot == 0xFF) return false; // return error if pin not found
|
290
|
|
- pinMode(pin, INPUT_PULLUP); // set pin to input with pullup
|
291
|
|
- work_table[slot] = PWM_MAP_INIT_ROW;
|
292
|
325
|
|
293
|
|
- for (uint8_t i = NUM_PWMS; --i;) { // (bubble) sort table by microseconds
|
294
|
|
- bool didSwap = false;
|
295
|
|
- PWM_map temp;
|
296
|
|
- for (uint16_t j = 0; j < i; ++j) {
|
297
|
|
- if (work_table[j].microseconds > work_table[j + 1].microseconds) {
|
298
|
|
- temp = work_table[j + 1];
|
299
|
|
- work_table[j + 1] = work_table[j];
|
300
|
|
- work_table[j] = temp;
|
301
|
|
- didSwap = true;
|
302
|
|
- }
|
303
|
|
- }
|
304
|
|
- if (!didSwap) break;
|
305
|
|
- }
|
|
326
|
+ LPC1768_PWM_update_map_MR();
|
|
327
|
+
|
|
328
|
+ switch(pin) {
|
|
329
|
+ case 11: // Servo 0, PWM1 channel 2 (Pin 11 P1.20 PWM1.2)
|
|
330
|
+ map_MR[pin_11_PWM_channel - 1].PCR_bit = _BV(8 + pin_11_PWM_channel); // enable PWM1 module control of this pin
|
|
331
|
+ map_MR[pin_11_PWM_channel - 1].map_PWM_INT = 1; // 0 - available for interrupts, 1 - in use by PWM
|
|
332
|
+ map_MR[pin_11_PWM_channel - 1].PINSEL3_bits = 0x2 << 8; // ISR must do this AFTER setting PCR
|
|
333
|
+ break;
|
|
334
|
+ case 6: // Servo 1, PWM1 channel 3 (Pin 6 P1.21 PWM1.3)
|
|
335
|
+ map_MR[pin_6_PWM_channel - 1].PCR_bit = _BV(8 + pin_6_PWM_channel); // enable PWM1 module control of this pin
|
|
336
|
+ map_MR[pin_6_PWM_channel - 1].map_PWM_INT = 1; // 0 - available for interrupts, 1 - in use by PWM
|
|
337
|
+ map_MR[pin_6_PWM_channel - 1].PINSEL3_bits = 0x2 << 10; // ISR must do this AFTER setting PCR
|
|
338
|
+ break;
|
|
339
|
+ case 4: // Servo 3, PWM1 channel 1 (Pin 4 P1.18 PWM1.1)
|
|
340
|
+ map_MR[pin_4_PWM_channel - 1].PCR_bit = _BV(8 + pin_4_PWM_channel); // enable PWM1 module control of this pin
|
|
341
|
+ map_MR[pin_4_PWM_channel - 1].map_PWM_INT = 1; // 0 - available for interrupts, 1 - in use by PWM
|
|
342
|
+ map_MR[pin_4_PWM_channel - 1].PINSEL3_bits = 0x2 << 4; // ISR must do this AFTER setting PCR
|
|
343
|
+ break;
|
|
344
|
+ default: // ISR pins
|
|
345
|
+ pinMode(pin, OUTPUT); // set pin to output but don't write anything in case it's already in use
|
|
346
|
+ break;
|
|
347
|
+ }
|
|
348
|
+
|
|
349
|
+ work_table[slot].microseconds = MAX(MIN(value, work_table[slot].max), work_table[slot].min);
|
|
350
|
+ work_table[slot].active_flag = true;
|
306
|
351
|
|
307
|
|
- for (uint8_t i = 0; i < NUM_PWMS; i++) // set the index & PWM_mask
|
308
|
|
- if (work_table[i].active_flag == true) {
|
309
|
|
- work_table[i].sequence = i + 1;
|
310
|
|
- work_table[i].PWM_mask = _BV(IR_BIT(i + 1));
|
311
|
|
- }
|
312
|
|
- else work_table[i].sequence = 0;
|
|
352
|
+ LPC1768_PWM_update();
|
313
|
353
|
|
314
|
|
- uint32_t interrupt_mask = 0; // set match registers to new values, build IRQ mask
|
315
|
|
- if (work_table[0].active_flag == true) {
|
316
|
|
- LPC_PWM1->MR1 = work_table[0].microseconds;
|
317
|
|
- interrupt_mask |= _BV(3);
|
318
|
|
- }
|
319
|
|
- if (work_table[1].active_flag == true) {
|
320
|
|
- LPC_PWM1->MR2 = work_table[1].microseconds;
|
321
|
|
- interrupt_mask |= _BV(6);
|
322
|
|
- }
|
323
|
|
- if (work_table[2].active_flag == true) {
|
324
|
|
- LPC_PWM1->MR3 = work_table[2].microseconds;
|
325
|
|
- interrupt_mask |= _BV(9);
|
326
|
|
- }
|
327
|
|
- if (work_table[3].active_flag == true) {
|
328
|
|
- LPC_PWM1->MR4 = work_table[3].microseconds;
|
329
|
|
- interrupt_mask |= _BV(12);
|
330
|
|
- }
|
331
|
|
- if (work_table[4].active_flag == true) {
|
332
|
|
- LPC_PWM1->MR5 = work_table[4].microseconds;
|
333
|
|
- interrupt_mask |= _BV(15);
|
334
|
|
- }
|
335
|
|
- if (work_table[5].active_flag == true) {
|
336
|
|
- LPC_PWM1->MR6 = work_table[5].microseconds;
|
337
|
|
- interrupt_mask |= _BV(18);
|
338
|
|
- }
|
|
354
|
+ return 1;
|
|
355
|
+}
|
339
|
356
|
|
340
|
|
- interrupt_mask |= _BV(0); // add in MR0 interrupt
|
341
|
357
|
|
342
|
|
- // swap tables
|
343
|
|
- NVIC_DisableIRQ(PWM1_IRQn);
|
344
|
|
- LPC_PWM1->LER = 0x07E; // Set the latch Enable Bits to load the new Match Values for MR1 - MR6
|
345
|
|
- PWM_map *pointer_swap = active_table;
|
346
|
|
- active_table = work_table;
|
347
|
|
- work_table = pointer_swap;
|
348
|
|
- PWM_table_swap = true; // tell the ISR that the tables have been swapped
|
349
|
|
- LPC_PWM1->MCR = interrupt_mask; // enable remaining PWM individual channel interrupts
|
350
|
|
- NVIC_EnableIRQ(PWM1_IRQn); // re-enable PWM interrupts
|
|
358
|
+bool LPC1768_PWM_detach_pin(uint8_t pin) {
|
|
359
|
+ while (PWM_table_swap) delay(5); // don't do anything until the previous change has been implemented by the ISR
|
|
360
|
+ COPY_ACTIVE_TABLE; // copy active table into work table
|
|
361
|
+ uint8_t slot = 0xFF;
|
|
362
|
+ for (uint8_t i = 0; i < NUM_PWMS; i++) // find slot
|
|
363
|
+ if (work_table[i].logical_pin == pin) slot = i;
|
|
364
|
+ if (slot == 0xFF) return false; // return error if pin not found
|
|
365
|
+
|
|
366
|
+ LPC1768_PWM_update_map_MR();
|
|
367
|
+
|
|
368
|
+ // OK to make these changes before the MR0 interrupt
|
|
369
|
+ switch(pin) {
|
|
370
|
+ case 11: // Servo 0, PWM1 channel 2 (Pin 11 P1.20 PWM1.2)
|
|
371
|
+ LPC_PWM1->PCR &= ~(_BV(8 + pin_11_PWM_channel)); // disable PWM1 module control of this pin
|
|
372
|
+ map_MR[pin_11_PWM_channel - 1].PCR_bit = 0;
|
|
373
|
+ LPC_PINCON->PINSEL3 &= ~(0x3 << 8); // return pin to general purpose I/O
|
|
374
|
+ map_MR[pin_11_PWM_channel - 1].PINSEL3_bits = 0;
|
|
375
|
+ map_MR[pin_11_PWM_channel - 1].map_PWM_INT = 0; // 0 - available for interrupts, 1 - in use by PWM
|
|
376
|
+ break;
|
|
377
|
+ case 6: // Servo 1, PWM1 channel 3 (Pin 6 P1.21 PWM1.3)
|
|
378
|
+ LPC_PWM1->PCR &= ~(_BV(8 + pin_6_PWM_channel)); // disable PWM1 module control of this pin
|
|
379
|
+ map_MR[pin_6_PWM_channel - 1].PCR_bit = 0;
|
|
380
|
+ LPC_PINCON->PINSEL3 &= ~(0x3 << 10); // return pin to general purpose I/O
|
|
381
|
+ map_MR[pin_6_PWM_channel - 1].PINSEL3_bits = 0;
|
|
382
|
+ map_MR[pin_6_PWM_channel - 1].map_PWM_INT = 0; // 0 - available for interrupts, 1 - in use by PWM
|
|
383
|
+ break;
|
|
384
|
+ case 4: // Servo 3, PWM1 channel 1 (Pin 4 P1.18 PWM1.1)
|
|
385
|
+ LPC_PWM1->PCR &= ~(_BV(8 + pin_4_PWM_channel)); // disable PWM1 module control of this pin
|
|
386
|
+ map_MR[pin_4_PWM_channel - 1].PCR_bit = 0;
|
|
387
|
+ LPC_PINCON->PINSEL3 &= ~(0x3 << 4); // return pin to general purpose I/O
|
|
388
|
+ map_MR[pin_4_PWM_channel - 1].PINSEL3_bits = 0;
|
|
389
|
+ map_MR[pin_4_PWM_channel - 1].map_PWM_INT = 0; // 0 - available for interrupts, 1 - in use by PWM
|
|
390
|
+ break;
|
|
391
|
+ }
|
|
392
|
+
|
|
393
|
+ pinMode(pin, INPUT);
|
|
394
|
+
|
|
395
|
+ work_table[slot] = PWM_MAP_INIT_ROW;
|
|
396
|
+
|
|
397
|
+ LPC1768_PWM_update();
|
351
|
398
|
|
352
|
399
|
return 1;
|
353
|
400
|
}
|
|
@@ -356,27 +403,101 @@ bool LPC1768_PWM_detach_pin(uint8_t pin) {
|
356
|
403
|
|
357
|
404
|
#define HAL_PWM_LPC1768_ISR extern "C" void PWM1_IRQHandler(void)
|
358
|
405
|
|
|
406
|
+
|
|
407
|
+// Both loops could be terminated when the last active channel is found but that would
|
|
408
|
+// result in variations ISR run time which results in variations in pulse width
|
|
409
|
+
|
|
410
|
+/**
|
|
411
|
+ * Changes to PINSEL3, PCR and MCR are only done during the MR0 interrupt otherwise
|
|
412
|
+ * the wrong pin may be toggled or even have the system hang.
|
|
413
|
+ */
|
|
414
|
+
|
|
415
|
+
|
359
|
416
|
HAL_PWM_LPC1768_ISR {
|
360
|
417
|
if (PWM_table_swap) ISR_table = work_table; // use old table if a swap was just done
|
361
|
418
|
else ISR_table = active_table;
|
362
|
419
|
|
363
|
420
|
if (LPC_PWM1->IR & 0x1) { // MR0 interrupt
|
364
|
|
- PWM_table_swap = false; // MR0 means new values could have been
|
365
|
|
- ISR_table = active_table; // loaded so set everything to normal operation
|
366
|
|
- for (uint8_t i = 0; (i < NUM_PWMS) && ISR_table[i].active_flag ; i++)
|
367
|
|
- *ISR_table[i].set_register = ISR_table[i].write_mask; // set all enabled channels active
|
|
421
|
+ ISR_table = active_table; // MR0 means new values could have been loaded so set everything
|
|
422
|
+ if (PWM_table_swap) LPC_PWM1->MCR = LPC1768_PWM_interrupt_mask; // enable new PWM individual channel interrupts
|
|
423
|
+
|
|
424
|
+ for (uint8_t i = 0; (i < NUM_PWMS) ; i++) {
|
|
425
|
+ if(ISR_table[i].active_flag && !((ISR_table[i].logical_pin == 11) ||
|
|
426
|
+ (ISR_table[i].logical_pin == 4) ||
|
|
427
|
+ (ISR_table[i].logical_pin == 6)))
|
|
428
|
+ *ISR_table[i].set_register = ISR_table[i].write_mask; // set pins for all enabled interrupt channels active
|
|
429
|
+ if (PWM_table_swap && ISR_table[i].PCR_bit) {
|
|
430
|
+ LPC_PWM1->PCR |= ISR_table[i].PCR_bit; // enable PWM1 module control of this pin
|
|
431
|
+ LPC_PINCON->PINSEL3 |= ISR_table[i].PINSEL3_bits; // set pin mode to PWM1 control - must be done after PCR
|
|
432
|
+ }
|
|
433
|
+ }
|
|
434
|
+ PWM_table_swap = false;
|
|
435
|
+ PWM_MR0_wait = false;
|
368
|
436
|
LPC_PWM1->IR = 0x01; // clear the MR0 interrupt flag bit
|
369
|
|
- PWM1_ISR_index = 0;
|
370
|
437
|
}
|
371
|
438
|
else {
|
372
|
|
- if (ISR_table[PWM1_ISR_index].active_flag && (LPC_PWM1->IR & ISR_table[PWM1_ISR_index].PWM_mask)) {
|
373
|
|
- LPC_PWM1->IR = ISR_table[PWM1_ISR_index].PWM_mask; // clear the interrupt flag bit
|
374
|
|
- *ISR_table[PWM1_ISR_index].clr_register = ISR_table[PWM1_ISR_index].write_mask; // set channel to inactive
|
375
|
|
- }
|
376
|
|
- PWM1_ISR_index++; // should be the index for the next interrupt
|
|
439
|
+ for (uint8_t i = 0; i < NUM_PWMS ; i++)
|
|
440
|
+ if (ISR_table[i].active_flag && (LPC_PWM1->IR & ISR_table[i].PWM_mask) ){
|
|
441
|
+ LPC_PWM1->IR = ISR_table[i].PWM_mask; // clear the interrupt flag bits for expected interrupts
|
|
442
|
+ *ISR_table[i].clr_register = ISR_table[i].write_mask; // set channel to inactive
|
|
443
|
+ }
|
377
|
444
|
}
|
|
445
|
+
|
|
446
|
+ LPC_PWM1->IR = 0x70F; // guarantees all interrupt flags are cleared which, if there is an unexpected
|
|
447
|
+ // PWM interrupt, will keep the ISR from hanging which will crash the controller
|
378
|
448
|
|
379
|
449
|
return;
|
380
|
450
|
}
|
381
|
|
-
|
382
|
451
|
#endif
|
|
452
|
+
|
|
453
|
+/////////////////////////////////////////////////////////////////
|
|
454
|
+///////////////// HARDWARE FIRMWARE INTERACTION ////////////////
|
|
455
|
+/////////////////////////////////////////////////////////////////
|
|
456
|
+
|
|
457
|
+/**
|
|
458
|
+ * Almost all changes to the hardware registers must be coordinated with the Match Register 0 (MR0)
|
|
459
|
+ * interrupt. The only exception is detaching pins. It doesn't matter when they go
|
|
460
|
+ * tristate.
|
|
461
|
+ *
|
|
462
|
+ * The LPC1768_PWM_init routine kicks off the MR0 interrupt. This interrupt is never disabled or
|
|
463
|
+ * delayed.
|
|
464
|
+ *
|
|
465
|
+ * The PWM_table_swap flag is set when the firmware has swapped in an updated table. It is
|
|
466
|
+ * cleared by the ISR during the MR0 interrupt as it completes the swap and accompanying updates.
|
|
467
|
+ * It serves two purposes:
|
|
468
|
+ * 1) Tells the ISR that the tables have been swapped
|
|
469
|
+ * 2) Keeps the firmware from starting a new update until the previous one has been completed.
|
|
470
|
+ *
|
|
471
|
+ * The PWM_MR0_wait flag is set when the firmware is ready to swap in an updated table and cleared by
|
|
472
|
+ * the ISR during the MR0 interrupt. It is used to avoid delaying the MR0 interrupt when swapping in
|
|
473
|
+ * an updated table. This avoids glitches in pulse width and/or repetition rate.
|
|
474
|
+ *
|
|
475
|
+ * The sequence of events during a write to a PWM channel is:
|
|
476
|
+ * 1) Waits until PWM_table_swap flag is false before starting
|
|
477
|
+ * 2) Copies the active table into the work table
|
|
478
|
+ * 3) Updates the work table
|
|
479
|
+ * NOTES - MR1-MR6 are updated at this time. The updates aren't put into use until the first
|
|
480
|
+ * MR0 after the LER register has been written. The LER register is written during the
|
|
481
|
+ * table swap process.
|
|
482
|
+ * - The MCR mask is created at this time. It is not used until the ISR writes the MCR
|
|
483
|
+ * during the MR0 interrupt in the table swap process.
|
|
484
|
+ * 4) Sets the PWM_MR0_wait flag
|
|
485
|
+ * 5) ISR clears the PWM_MR0_wait flag during the next MR0 interrupt
|
|
486
|
+ * 6) Once the PWM_MR0_wait flag is cleared then the firmware:
|
|
487
|
+ * disables the ISR interrupt
|
|
488
|
+ * swaps the pointers to the tables
|
|
489
|
+ * writes to the LER register
|
|
490
|
+ * sets the PWM_table_swap flag active
|
|
491
|
+ * re-enables the ISR
|
|
492
|
+ * 7) On the next interrupt the ISR changes it's pointer to the work table which is now the old,
|
|
493
|
+ * unmodified, active table.
|
|
494
|
+ * 8) On the next MR0 interrupt the ISR:
|
|
495
|
+ * switches over to the active table
|
|
496
|
+ * clears the PWM_table_swap and PWM_MR0_wait flags
|
|
497
|
+ * updates the MCR register with the possibly new interrupt sources/assignments
|
|
498
|
+ * writes to the PCR register to enable the direct control of the Servo 0, 1 & 3 pins by the PWM1 module
|
|
499
|
+ * sets the PINSEL3 register to function/mode 0x2 for the Servo 0, 1 & 3 pins
|
|
500
|
+ * NOTE - PCR must be set before PINSEL
|
|
501
|
+ * sets the pins controlled by the ISR to their active states
|
|
502
|
+ */
|
|
503
|
+
|