|
@@ -26,227 +26,238 @@
|
26
|
26
|
* This code watches the free memory block between the bottom of the heap and the top of the stack.
|
27
|
27
|
* This memory block is initialized and watched via the M100 command.
|
28
|
28
|
*
|
29
|
|
- * M100 I Initializes the free memory block and prints vitals statistics about the area
|
30
|
|
- * M100 F Identifies how much of the free memory block remains free and unused. It also
|
31
|
|
- * detects and reports any corruption within the free memory block that may have
|
32
|
|
- * happened due to errant firmware.
|
33
|
|
- * M100 D Does a hex display of the free memory block along with a flag for any errant
|
34
|
|
- * data that does not match the expected value.
|
35
|
|
- * M100 C x Corrupts x locations within the free memory block. This is useful to check the
|
36
|
|
- * correctness of the M100 F and M100 D commands.
|
|
29
|
+ * M100 I Initializes the free memory block and prints vitals statistics about the area
|
|
30
|
+ *
|
|
31
|
+ * M100 F Identifies how much of the free memory block remains free and unused. It also
|
|
32
|
+ * detects and reports any corruption within the free memory block that may have
|
|
33
|
+ * happened due to errant firmware.
|
|
34
|
+ *
|
|
35
|
+ * M100 D Does a hex display of the free memory block along with a flag for any errant
|
|
36
|
+ * data that does not match the expected value.
|
|
37
|
+ *
|
|
38
|
+ * M100 C x Corrupts x locations within the free memory block. This is useful to check the
|
|
39
|
+ * correctness of the M100 F and M100 D commands.
|
37
|
40
|
*
|
38
|
41
|
* Initial version by Roxy-3D
|
39
|
42
|
*/
|
40
|
|
-#define M100_FREE_MEMORY_DUMPER // Comment out to remove Dump sub-command
|
41
|
|
-#define M100_FREE_MEMORY_CORRUPTOR // Comment out to remove Corrupt sub-command
|
|
43
|
+#define M100_FREE_MEMORY_DUMPER // Enable for the `M110 D` Dump sub-command
|
|
44
|
+#define M100_FREE_MEMORY_CORRUPTOR // Enable for the `M100 C` Corrupt sub-command
|
42
|
45
|
|
43
|
|
-#include "Marlin.h"
|
|
46
|
+#include "MarlinConfig.h"
|
44
|
47
|
|
45
|
48
|
#if ENABLED(M100_FREE_MEMORY_WATCHER)
|
|
49
|
+
|
|
50
|
+#define TEST_BYTE 0xE5
|
|
51
|
+
|
46
|
52
|
extern char* __brkval;
|
47
|
53
|
extern size_t __heap_start, __heap_end, __flp;
|
48
|
54
|
extern char __bss_end;
|
49
|
55
|
|
|
56
|
+#include "Marlin.h"
|
|
57
|
+#include "hex_print_routines.h"
|
|
58
|
+
|
50
|
59
|
//
|
51
|
|
-// Utility functions used by M100 to get its work done.
|
|
60
|
+// Utility functions
|
52
|
61
|
//
|
53
|
62
|
|
54
|
|
-#include "hex_print_routines.h"
|
|
63
|
+#define END_OF_HEAP() (__brkval ? __brkval : &__bss_end)
|
55
|
64
|
|
56
|
|
-char* top_of_stack();
|
57
|
|
-int how_many_E5s_are_here(char*);
|
58
|
|
-int free_memory_is_corrupted(); // int not bool!!!! it will tell us how many blocks of
|
59
|
|
- // free memory it found.
|
60
|
|
-void gcode_M100() {
|
61
|
|
- static bool m100_not_initialized = true;
|
62
|
|
- char* sp, *ptr;
|
63
|
|
- int i, j, n;
|
64
|
|
- //
|
65
|
|
- // M100 D dumps the free memory block from __brkval to the stack pointer.
|
66
|
|
- // malloc() eats memory from the start of the block and the stack grows
|
67
|
|
- // up from the bottom of the block. Solid 0xE5's indicate nothing has
|
68
|
|
- // used that memory yet. There should not be anything but 0xE5's within
|
69
|
|
- // the block of 0xE5's. If there is, that would indicate memory corruption
|
70
|
|
- // probably caused by bad pointers. Any unexpected values will be flagged in
|
71
|
|
- // the right hand column to help spotting them.
|
72
|
|
- //
|
73
|
|
- SERIAL_ECHOPAIR("\n__brkval : 0x", hex_word((uint16_t)__brkval) );
|
74
|
|
- SERIAL_ECHOPAIR("\n__bss_end : 0x", hex_word((uint16_t)&__bss_end));
|
75
|
|
- //
|
76
|
|
- // With out malloc() we need to be smart and use &__bss_end
|
77
|
|
- //
|
78
|
|
- ptr = __brkval ? __brkval : &__bss_end;
|
79
|
|
- SERIAL_ECHOPAIR("\nstart of free space : 0x", hex_word((uint16_t)ptr));
|
80
|
|
-
|
81
|
|
- sp = top_of_stack();
|
82
|
|
- SERIAL_ECHOLNPAIR("\nStack Pointer : 0x", hex_word((uint16_t)sp));
|
83
|
|
-
|
84
|
|
- #if ENABLED(M100_FREE_MEMORY_DUMPER) // Disable to remove Dump sub-command
|
85
|
|
- if (code_seen('D')) {
|
86
|
|
- //
|
87
|
|
- // We want to start and end the dump on a nice 16 byte boundry even though
|
88
|
|
- // the values we are using are not 16 byte aligned.
|
89
|
|
- //
|
90
|
|
- ptr = (char*) ((uint16_t) ptr & 0xfff0);
|
91
|
|
- sp = (char*) ((uint16_t) sp | 0x000f);
|
92
|
|
-
|
93
|
|
- n = sp - ptr;
|
94
|
|
- //
|
95
|
|
- // This is the main loop of the Dump command.
|
96
|
|
- //
|
97
|
|
- while (ptr < sp) {
|
98
|
|
- print_hex_word((uint16_t)ptr); // Print the address
|
99
|
|
- SERIAL_CHAR(':');
|
100
|
|
- for (i = 0; i < 16; i++) { // and 16 data bytes
|
101
|
|
- if (i==8)
|
102
|
|
- SERIAL_CHAR('-');
|
103
|
|
- print_hex_byte(*(ptr + i));
|
104
|
|
- SERIAL_CHAR(' ');
|
105
|
|
- }
|
106
|
|
- SERIAL_CHAR('|'); // now show where non 0xE5's are
|
107
|
|
- for (i = 0; i < 16; i++)
|
108
|
|
- SERIAL_CHAR((*(ptr + i) == (char)0xe5) ? ' ' : '?');
|
109
|
|
- SERIAL_EOL;
|
110
|
|
- ptr += 16;
|
111
|
|
- idle();
|
|
65
|
+// Location of a variable on its stack frame. Returns a value above
|
|
66
|
+// the stack (once the function returns to the caller).
|
|
67
|
+char* top_of_stack() {
|
|
68
|
+ char x;
|
|
69
|
+ return &x + 1; // x is pulled on return;
|
|
70
|
+}
|
|
71
|
+
|
|
72
|
+// Count the number of test bytes at the specified location.
|
|
73
|
+int16_t count_test_bytes(const char * const ptr) {
|
|
74
|
+ for (uint16_t i = 0; i < 32000; i++)
|
|
75
|
+ if (ptr[i] != TEST_BYTE)
|
|
76
|
+ return i - 1;
|
|
77
|
+
|
|
78
|
+ return -1;
|
|
79
|
+}
|
|
80
|
+
|
|
81
|
+// Return a count of free memory blocks.
|
|
82
|
+uint16_t free_memory_is_corrupted(char * const ptr, const uint16_t size) {
|
|
83
|
+ // Find the longest block of test bytes in the given buffer
|
|
84
|
+ uint16_t block_cnt = 0;
|
|
85
|
+ for (uint16_t i = 0; i < size; i++) {
|
|
86
|
+ if (ptr[i] == TEST_BYTE) {
|
|
87
|
+ const uint16_t j = count_test_bytes(ptr + i);
|
|
88
|
+ if (j > 8) {
|
|
89
|
+ //SERIAL_ECHOPAIR("Found ", j);
|
|
90
|
+ //SERIAL_ECHOLNPAIR(" bytes free at 0x", hex_word((uint16_t)ptr + i));
|
|
91
|
+ i += j;
|
|
92
|
+ block_cnt++;
|
112
|
93
|
}
|
113
|
|
- return;
|
114
|
94
|
}
|
115
|
|
- #endif
|
116
|
|
- //
|
117
|
|
- // M100 F requests the code to return the number of free bytes in the memory pool along with
|
118
|
|
- // other vital statistics that define the memory pool.
|
119
|
|
- //
|
120
|
|
- if (code_seen('F')) {
|
121
|
|
- int max_cnt = -1, block_cnt = 0;
|
122
|
|
- uint16_t max_addr=0;
|
123
|
|
- ptr = __brkval ? __brkval : &__bss_end;
|
124
|
|
- sp = top_of_stack();
|
125
|
|
- n = sp - ptr;
|
126
|
|
- // Scan through the range looking for the biggest block of 0xE5's we can find
|
127
|
|
- for (i = 0; i < n; i++) {
|
128
|
|
- if (*(ptr + i) == (char)0xe5) {
|
129
|
|
- j = how_many_E5s_are_here(ptr + i);
|
130
|
|
- if (j > 8) {
|
131
|
|
- SERIAL_ECHOPAIR("Found ", j);
|
132
|
|
- SERIAL_ECHOLNPAIR(" bytes free at 0x", hex_word((uint16_t)(ptr + i)));
|
133
|
|
- if (j > max_cnt) {
|
134
|
|
- max_cnt = j;
|
135
|
|
- max_addr = (uint16_t) ptr + i;
|
136
|
|
- }
|
137
|
|
- i += j;
|
138
|
|
- block_cnt++;
|
139
|
|
- }
|
|
95
|
+ }
|
|
96
|
+ //if (block_cnt > 1) {
|
|
97
|
+ // SERIAL_ECHOLNPGM("\nMemory Corruption detected in free memory area.");
|
|
98
|
+ // SERIAL_ECHOLNPAIR("\nLargest free block is ", max_cnt);
|
|
99
|
+ //}
|
|
100
|
+ return block_cnt;
|
|
101
|
+}
|
|
102
|
+
|
|
103
|
+//
|
|
104
|
+// M100 sub-commands
|
|
105
|
+//
|
|
106
|
+
|
|
107
|
+#if ENABLED(M100_FREE_MEMORY_DUMPER)
|
|
108
|
+ /**
|
|
109
|
+ * M100 D
|
|
110
|
+ * Dump the free memory block from __brkval to the stack pointer.
|
|
111
|
+ * malloc() eats memory from the start of the block and the stack grows
|
|
112
|
+ * up from the bottom of the block. Solid test bytes indicate nothing has
|
|
113
|
+ * used that memory yet. There should not be anything but test bytes within
|
|
114
|
+ * the block. If so, it may indicate memory corruption due to a bad pointer.
|
|
115
|
+ * Unexpected bytes are flagged in the right column.
|
|
116
|
+ */
|
|
117
|
+ void dump_free_memory(char *ptr, char *sp) {
|
|
118
|
+ //
|
|
119
|
+ // Start and end the dump on a nice 16 byte boundary
|
|
120
|
+ // (even though the values are not 16-byte aligned).
|
|
121
|
+ //
|
|
122
|
+ ptr = (char*)((uint16_t)ptr & 0xFFF0); // Align to 16-byte boundary
|
|
123
|
+ sp = (char*)((uint16_t)sp | 0x000F); // Align sp to the 15th byte (at or above sp)
|
|
124
|
+
|
|
125
|
+ // Dump command main loop
|
|
126
|
+ while (ptr < sp) {
|
|
127
|
+ print_hex_word((uint16_t)ptr); // Print the address
|
|
128
|
+ SERIAL_CHAR(':');
|
|
129
|
+ for (uint8_t i = 0; i < 16; i++) { // and 16 data bytes
|
|
130
|
+ if (i == 8) SERIAL_CHAR('-');
|
|
131
|
+ print_hex_byte(ptr[i]);
|
|
132
|
+ SERIAL_CHAR(' ');
|
140
|
133
|
}
|
|
134
|
+ SERIAL_CHAR('|'); // Point out non test bytes
|
|
135
|
+ for (uint8_t i = 0; i < 16; i++)
|
|
136
|
+ SERIAL_CHAR(ptr[i] == TEST_BYTE ? ' ' : '?');
|
|
137
|
+ SERIAL_EOL;
|
|
138
|
+ ptr += 16;
|
|
139
|
+ idle();
|
141
|
140
|
}
|
142
|
|
- if (block_cnt > 1) {
|
143
|
|
- SERIAL_ECHOLNPGM("\nMemory Corruption detected in free memory area.");
|
144
|
|
- SERIAL_ECHOPAIR("\nLargest free block is ", max_cnt);
|
145
|
|
- SERIAL_ECHOLNPAIR(" bytes big at 0x", hex_word(max_addr));
|
|
141
|
+ }
|
|
142
|
+#endif // M100_FREE_MEMORY_DUMPER
|
|
143
|
+
|
|
144
|
+/**
|
|
145
|
+ * M100 F
|
|
146
|
+ * Return the number of free bytes in the memory pool,
|
|
147
|
+ * with other vital statistics defining the pool.
|
|
148
|
+ */
|
|
149
|
+void free_memory_pool_report(const char * const ptr, const uint16_t size) {
|
|
150
|
+ int16_t max_cnt = -1;
|
|
151
|
+ uint16_t block_cnt = 0;
|
|
152
|
+ char *max_addr = NULL;
|
|
153
|
+ // Find the longest block of test bytes in the buffer
|
|
154
|
+ for (uint16_t i = 0; i < size; i++) {
|
|
155
|
+ char * const addr = ptr + i;
|
|
156
|
+ if (*addr == TEST_BYTE) {
|
|
157
|
+ const uint16_t j = count_test_bytes(addr);
|
|
158
|
+ if (j > 8) {
|
|
159
|
+ SERIAL_ECHOPAIR("Found ", j);
|
|
160
|
+ SERIAL_ECHOLNPAIR(" bytes free at 0x", hex_word((uint16_t)addr));
|
|
161
|
+ if (j > max_cnt) {
|
|
162
|
+ max_cnt = j;
|
|
163
|
+ max_addr = addr;
|
|
164
|
+ }
|
|
165
|
+ i += j;
|
|
166
|
+ block_cnt++;
|
|
167
|
+ }
|
146
|
168
|
}
|
147
|
|
- SERIAL_ECHOLNPAIR("free_memory_is_corrupted() = ", free_memory_is_corrupted());
|
148
|
|
- return;
|
149
|
169
|
}
|
150
|
|
- //
|
151
|
|
- // M100 C x Corrupts x locations in the free memory pool and reports the locations of the corruption.
|
152
|
|
- // This is useful to check the correctness of the M100 D and the M100 F commands.
|
153
|
|
- //
|
154
|
|
- #if ENABLED(M100_FREE_MEMORY_CORRUPTOR)
|
|
170
|
+ if (block_cnt > 1) {
|
|
171
|
+ SERIAL_ECHOLNPGM("\nMemory Corruption detected in free memory area.");
|
|
172
|
+ SERIAL_ECHOPAIR("\nLargest free block is ", max_cnt);
|
|
173
|
+ SERIAL_ECHOLNPAIR(" bytes at 0x", hex_word((uint16_t)max_addr));
|
|
174
|
+ }
|
|
175
|
+ SERIAL_ECHOLNPAIR("free_memory_is_corrupted() = ", free_memory_is_corrupted(ptr, size));
|
|
176
|
+}
|
|
177
|
+
|
|
178
|
+#if ENABLED(M100_FREE_MEMORY_CORRUPTOR)
|
|
179
|
+ /**
|
|
180
|
+ * M100 C<num>
|
|
181
|
+ * Corrupt <num> locations in the free memory pool and report the corrupt addresses.
|
|
182
|
+ * This is useful to check the correctness of the M100 D and the M100 F commands.
|
|
183
|
+ */
|
|
184
|
+ void corrupt_free_memory(char *ptr, const uint16_t size) {
|
155
|
185
|
if (code_seen('C')) {
|
156
|
|
- int x = code_value_int(); // x gets the # of locations to corrupt within the memory pool
|
157
|
|
- SERIAL_ECHOLNPGM("Corrupting free memory block.\n");
|
158
|
186
|
ptr += 8;
|
159
|
|
- sp = top_of_stack();
|
160
|
|
- n = sp - ptr - 250; // -250 just to keep us from finding interrupt activity that
|
161
|
|
- // has altered the stack.
|
162
|
|
- j = n / (x + 1);
|
163
|
|
- for (i = 1; i <= x; i++) {
|
164
|
|
- *(ptr + (i * j)) = i;
|
165
|
|
- SERIAL_ECHOPAIR("\nCorrupting address: 0x", hex_word((uint16_t)(ptr + i * j)));
|
166
|
|
- }
|
167
|
|
- SERIAL_ECHOLNPGM("\n");
|
168
|
|
- return;
|
169
|
|
- }
|
170
|
|
- #endif
|
171
|
|
- //
|
172
|
|
- // M100 I Initializes the free memory pool so it can be watched and prints vital
|
173
|
|
- // statistics that define the free memory pool.
|
174
|
|
- //
|
175
|
|
- if (m100_not_initialized || code_seen('I')) { // If no sub-command is specified, the first time
|
176
|
|
- SERIAL_ECHOLNPGM("Initializing free memory block.\n"); // this happens, it will Initialize.
|
177
|
|
- // Repeated M100 with no sub-command will not destroy the
|
178
|
|
- // state of the initialized free memory pool.
|
179
|
|
- ptr += 8;
|
180
|
|
- SERIAL_ECHOLNPGM("\n");
|
181
|
|
- n = sp - ptr - 250; // -250 just to keep us from finding interrupt activity that
|
182
|
|
- // has altered the stack.
|
183
|
|
- SERIAL_ECHO(n);
|
184
|
|
- SERIAL_ECHOLNPGM(" bytes of memory initialized.\n");
|
185
|
|
- for (i = 0; i < n; i++)
|
186
|
|
- *(ptr + i) = (char)0xe5;
|
187
|
|
- for (i = 0; i < n; i++) {
|
188
|
|
- if (*(ptr + i) != (char)0xe5) {
|
189
|
|
- SERIAL_ECHOPAIR("? address : ", hex_word(ptr+i) );
|
190
|
|
- SERIAL_ECHOPAIR("=", hex_byte(*(ptr + i)) );
|
191
|
|
- SERIAL_ECHOLNPGM("\n");
|
|
187
|
+ const uint16_t near_top = top_of_stack() - ptr - 250, // -250 to avoid interrupt activity that's altered the stack.
|
|
188
|
+ j = near_top / (size + 1);
|
|
189
|
+
|
|
190
|
+ SERIAL_ECHOLNPGM("Corrupting free memory block.\n");
|
|
191
|
+ for (uint16_t i = 1; i <= size; i++) {
|
|
192
|
+ char * const addr = ptr + i * j;
|
|
193
|
+ *addr = i;
|
|
194
|
+ SERIAL_ECHOPAIR("\nCorrupting address: 0x", hex_word((uint16_t)addr));
|
192
|
195
|
}
|
|
196
|
+ SERIAL_EOL;
|
193
|
197
|
}
|
194
|
|
- m100_not_initialized = false;
|
195
|
|
- return;
|
196
|
198
|
}
|
197
|
|
- return;
|
198
|
|
-}
|
|
199
|
+#endif // M100_FREE_MEMORY_CORRUPTOR
|
199
|
200
|
|
200
|
|
-// top_of_stack() returns the location of a variable on its stack frame. The value returned is above
|
201
|
|
-// the stack once the function returns to the caller.
|
|
201
|
+/**
|
|
202
|
+ * M100 I
|
|
203
|
+ * Init memory for the M100 tests. (Automatically applied on the first M100.)
|
|
204
|
+ */
|
|
205
|
+void init_free_memory(char *ptr, int16_t size) {
|
|
206
|
+ SERIAL_ECHOLNPGM("Initializing free memory block.\n\n");
|
202
|
207
|
|
203
|
|
-char* top_of_stack() {
|
204
|
|
- char x;
|
205
|
|
- return &x + 1; // x is pulled on return;
|
206
|
|
-}
|
|
208
|
+ size -= 250; // -250 to avoid interrupt activity that's altered the stack.
|
|
209
|
+ if (size < 0) return;
|
207
|
210
|
|
208
|
|
-// how_many_E5s_are_here() is a utility function to easily find out how many 0xE5's are
|
209
|
|
-// at the specified location. Having this logic as a function simplifies the search code.
|
210
|
|
-//
|
211
|
|
-int how_many_E5s_are_here(char* p) {
|
212
|
|
- int n;
|
213
|
|
- for (n = 0; n < 32000; n++) {
|
214
|
|
- if (*(p + n) != (char)0xe5)
|
215
|
|
- return n - 1;
|
|
211
|
+ ptr += 8;
|
|
212
|
+ memset(ptr, TEST_BYTE, size);
|
|
213
|
+
|
|
214
|
+ SERIAL_ECHO(size);
|
|
215
|
+ SERIAL_ECHOLNPGM(" bytes of memory initialized.\n");
|
|
216
|
+
|
|
217
|
+ for (uint16_t i = 0; i < size; i++) {
|
|
218
|
+ if (ptr[i] != TEST_BYTE) {
|
|
219
|
+ SERIAL_ECHOPAIR("? address : 0x", hex_word((uint16_t)ptr + i));
|
|
220
|
+ SERIAL_ECHOPAIR("=", hex_byte(ptr[i]));
|
|
221
|
+ SERIAL_EOL; SERIAL_EOL;
|
|
222
|
+ }
|
216
|
223
|
}
|
217
|
|
- return -1;
|
218
|
224
|
}
|
219
|
225
|
|
|
226
|
+/**
|
|
227
|
+ * M100: Free Memory Check
|
|
228
|
+ */
|
|
229
|
+void gcode_M100() {
|
|
230
|
+ SERIAL_ECHOPAIR("\n__brkval : 0x", hex_word((uint16_t)__brkval));
|
|
231
|
+ SERIAL_ECHOPAIR("\n__bss_end : 0x", hex_word((uint16_t)&__bss_end));
|
220
|
232
|
|
221
|
|
-int free_memory_is_corrupted() {
|
222
|
|
- char *sp, *ptr;
|
223
|
|
- int block_cnt = 0, i, j, n;
|
|
233
|
+ char *ptr = END_OF_HEAP(), *sp = top_of_stack();
|
224
|
234
|
|
225
|
|
- ptr = __brkval ? __brkval : &__bss_end;
|
226
|
|
- sp = top_of_stack();
|
|
235
|
+ SERIAL_ECHOPAIR("\nstart of free space : 0x", hex_word((uint16_t)ptr));
|
|
236
|
+ SERIAL_ECHOLNPAIR("\nStack Pointer : 0x", hex_word((uint16_t)sp));
|
227
|
237
|
|
228
|
|
- n = sp - ptr;
|
|
238
|
+ // Always init on the first invocation of M100
|
|
239
|
+ static bool m100_not_initialized = true;
|
|
240
|
+ if (m100_not_initialized || code_seen('I')) {
|
|
241
|
+ m100_not_initialized = false;
|
|
242
|
+ init_free_memory(ptr, sp - ptr);
|
|
243
|
+ }
|
229
|
244
|
|
230
|
|
- // Scan through the range looking for the biggest block of 0xE5's we can find
|
231
|
|
- for (i = 0; i < n; i++) {
|
232
|
|
- if (*(ptr + i) == (char)0xe5) {
|
233
|
|
- j = how_many_E5s_are_here(ptr + i);
|
234
|
|
- if (j > 8) {
|
235
|
|
-// SERIAL_ECHOPAIR("Found ", j);
|
236
|
|
-// SERIAL_ECHOLNPAIR(" bytes free at 0x", hex_word((uint16_t)(ptr + i)));
|
|
245
|
+ #if ENABLED(M100_FREE_MEMORY_DUMPER)
|
237
|
246
|
|
238
|
|
- i += j;
|
239
|
|
- block_cnt++;
|
240
|
|
- }
|
241
|
|
- }
|
242
|
|
- }
|
|
247
|
+ if (code_seen('D'))
|
|
248
|
+ return dump_free_memory(ptr, sp);
|
243
|
249
|
|
244
|
|
-// if (block_cnt > 1) {
|
245
|
|
-// SERIAL_ECHOLNPGM("\nMemory Corruption detected in free memory area.");
|
246
|
|
-// SERIAL_ECHOLNPAIR("\nLargest free block is ", max_cnt);
|
247
|
|
-// }
|
248
|
|
- return block_cnt;
|
249
|
|
- }
|
|
250
|
+ #endif
|
250
|
251
|
|
251
|
|
-#endif
|
|
252
|
+ if (code_seen('F'))
|
|
253
|
+ return free_memory_pool_report(ptr, sp - ptr);
|
|
254
|
+
|
|
255
|
+ #if ENABLED(M100_FREE_MEMORY_CORRUPTOR)
|
|
256
|
+
|
|
257
|
+ if (code_seen('C'))
|
|
258
|
+ return corrupt_free_memory(ptr, code_value_int());
|
|
259
|
+
|
|
260
|
+ #endif
|
|
261
|
+}
|
252
|
262
|
|
|
263
|
+#endif // M100_FREE_MEMORY_WATCHER
|