Browse Source

[1.1.x] G33 magic numbers (#8173)

* [1.1.x] G33 magic numbers

* oops

* comments

* oops

* warning

* better comment section

* remarks

* extra grids
Luc Van Daele 6 years ago
parent
commit
0e4b6b373d

+ 128
- 87
Marlin/Marlin_main.cpp View File

@@ -5375,6 +5375,26 @@ void home_all_axes() { gcode_G28(true); }
5375 5375
 
5376 5376
   #if ENABLED(DELTA_AUTO_CALIBRATION)
5377 5377
 
5378
+    constexpr uint8_t _7P_STEP = 1,              // 7-point step - to change number of calibration points
5379
+                      _4P_STEP = _7P_STEP * 2,   // 4-point step
5380
+                      NPP      = _7P_STEP * 6;   // number of calibration points on the radius
5381
+    enum CalEnum {                               // the 7 main calibration points - add definitions if needed
5382
+      CEN      = 0,
5383
+      __A      = 1,
5384
+      _AB      = __A + _7P_STEP,
5385
+      __B      = _AB + _7P_STEP,
5386
+      _BC      = __B + _7P_STEP,
5387
+      __C      = _BC + _7P_STEP,
5388
+      _CA      = __C + _7P_STEP,
5389
+    };
5390
+    
5391
+    #define LOOP_CAL_PT(VAR, S, N) for (uint8_t VAR=S; VAR<=NPP; VAR+=N) 
5392
+    #define F_LOOP_CAL_PT(VAR, S, N) for (float VAR=S; VAR<NPP+0.9999; VAR+=N) 
5393
+    #define I_LOOP_CAL_PT(VAR, S, N) for (float VAR=S; VAR>CEN+0.9999; VAR-=N)
5394
+    #define LOOP_CAL_ALL(VAR) LOOP_CAL_PT(VAR, CEN, 1)
5395
+    #define LOOP_CAL_RAD(VAR) LOOP_CAL_PT(VAR, __A, _7P_STEP)
5396
+    #define LOOP_CAL_ACT(VAR, _4P, _OP) LOOP_CAL_PT(VAR, _OP ? _AB : __A, _4P ? _4P_STEP : _7P_STEP)
5397
+
5378 5398
     static void print_signed_float(const char * const prefix, const float &f) {
5379 5399
       SERIAL_PROTOCOLPGM("  ");
5380 5400
       serialprintPGM(prefix);
@@ -5407,13 +5427,13 @@ void home_all_axes() { gcode_G28(true); }
5407 5427
       SERIAL_EOL();
5408 5428
     }
5409 5429
 
5410
-    static void print_G33_results(const float z_at_pt[13], const bool tower_points, const bool opposite_points) {
5430
+    static void print_G33_results(const float z_at_pt[NPP + 1], const bool tower_points, const bool opposite_points) {
5411 5431
       SERIAL_PROTOCOLPGM(".    ");
5412
-      print_signed_float(PSTR("c"), z_at_pt[0]);
5432
+      print_signed_float(PSTR("c"), z_at_pt[CEN]);
5413 5433
       if (tower_points) {
5414
-        print_signed_float(PSTR(" x"), z_at_pt[1]);
5415
-        print_signed_float(PSTR(" y"), z_at_pt[5]);
5416
-        print_signed_float(PSTR(" z"), z_at_pt[9]);
5434
+        print_signed_float(PSTR(" x"), z_at_pt[__A]);
5435
+        print_signed_float(PSTR(" y"), z_at_pt[__B]);
5436
+        print_signed_float(PSTR(" z"), z_at_pt[__C]);
5417 5437
       }
5418 5438
       if (tower_points && opposite_points) {
5419 5439
         SERIAL_EOL();
@@ -5421,9 +5441,9 @@ void home_all_axes() { gcode_G28(true); }
5421 5441
         SERIAL_PROTOCOL_SP(13);
5422 5442
       }
5423 5443
       if (opposite_points) {
5424
-        print_signed_float(PSTR("yz"), z_at_pt[7]);
5425
-        print_signed_float(PSTR("zx"), z_at_pt[11]);
5426
-        print_signed_float(PSTR("xy"), z_at_pt[3]);
5444
+        print_signed_float(PSTR("yz"), z_at_pt[_BC]);
5445
+        print_signed_float(PSTR("zx"), z_at_pt[_CA]);
5446
+        print_signed_float(PSTR("xy"), z_at_pt[_AB]);
5427 5447
       }
5428 5448
       SERIAL_EOL();
5429 5449
     }
@@ -5450,85 +5470,111 @@ void home_all_axes() { gcode_G28(true); }
5450 5470
       #endif
5451 5471
     }
5452 5472
 
5453
-    static float probe_G33_points(float z_at_pt[13], const int8_t probe_points, const bool towers_set, const bool stow_after_each) {
5473
+    static float probe_G33_points(float z_at_pt[NPP + 1], const int8_t probe_points, const bool towers_set, const bool stow_after_each) {
5454 5474
       const bool _0p_calibration      = probe_points == 0,
5455 5475
                  _1p_calibration      = probe_points == 1,
5456 5476
                  _4p_calibration      = probe_points == 2,
5457 5477
                  _4p_opposite_points  = _4p_calibration && !towers_set,
5458 5478
                  _7p_calibration      = probe_points >= 3 || probe_points == 0,
5459
-                 _7p_half_circle      = probe_points == 3,
5460
-                 _7p_double_circle    = probe_points == 5,
5461
-                 _7p_triple_circle    = probe_points == 6,
5462
-                 _7p_quadruple_circle = probe_points == 7,
5479
+                 _7p_no_intermediates = probe_points == 3,
5480
+                 _7p_1_intermediates  = probe_points == 4,
5481
+                 _7p_2_intermediates  = probe_points == 5,
5482
+                 _7p_4_intermediates  = probe_points == 6,
5483
+                 _7p_6_intermediates  = probe_points == 7,
5484
+                 _7p_8_intermediates  = probe_points == 8,
5485
+                 _7p_11_intermediates = probe_points == 9,
5486
+                 _7p_14_intermediates = probe_points == 10,
5463 5487
                  _7p_intermed_points  = probe_points >= 4,
5464
-                 _7p_multi_circle     = probe_points >= 5;
5465
-    
5488
+                 _7p_6_centre         = probe_points >= 5 && probe_points <= 7,
5489
+                 _7p_9_centre         = probe_points >= 8;
5490
+
5466 5491
       #if DISABLED(PROBE_MANUALLY)
5467 5492
         const float dx = (X_PROBE_OFFSET_FROM_EXTRUDER),
5468 5493
                     dy = (Y_PROBE_OFFSET_FROM_EXTRUDER);
5469 5494
       #endif
5470 5495
 
5471
-      for (uint8_t i = 0; i <= 12; i++) z_at_pt[i] = 0.0;
5496
+          LOOP_CAL_ALL(axis) z_at_pt[axis] = 0.0;
5472 5497
     
5473 5498
       if (!_0p_calibration) {
5474 5499
     
5475
-        if (!_7p_half_circle && !_7p_triple_circle) { // probe the center
5500
+        if (!_7p_no_intermediates && !_7p_4_intermediates && !_7p_11_intermediates) { // probe the center
5476 5501
           #if ENABLED(PROBE_MANUALLY)
5477
-            z_at_pt[0] += lcd_probe_pt(0, 0);
5502
+            z_at_pt[CEN] += lcd_probe_pt(0, 0);
5478 5503
           #else
5479
-            z_at_pt[0] += probe_pt(dx, dy, stow_after_each, 1, false);
5504
+            z_at_pt[CEN] += probe_pt(dx, dy, stow_after_each, 1, false);
5480 5505
           #endif
5481 5506
         }
5482 5507
 
5483 5508
         if (_7p_calibration) { // probe extra center points
5484
-          for (int8_t axis = _7p_multi_circle ? 11 : 9; axis > 0; axis -= _7p_multi_circle ? 2 : 4) {
5485
-            const float a = RADIANS(180 + 30 * axis), r = delta_calibration_radius * 0.1;
5509
+          const float start  = _7p_9_centre ? _CA + _7P_STEP / 3.0 : _7p_6_centre ? _CA : __C,
5510
+                      steps  = _7p_9_centre ? _4P_STEP / 3.0 : _7p_6_centre ? _7P_STEP : _4P_STEP;
5511
+          I_LOOP_CAL_PT(axis, start, steps) {
5512
+            const float a = RADIANS(210 + (360 / NPP) *  (axis - 1)),
5513
+                        r = delta_calibration_radius * 0.1;
5486 5514
             #if ENABLED(PROBE_MANUALLY)
5487
-              z_at_pt[0] += lcd_probe_pt(cos(a) * r, sin(a) * r);
5515
+              z_at_pt[CEN] += lcd_probe_pt(cos(a) * r, sin(a) * r);
5488 5516
             #else
5489
-              z_at_pt[0] += probe_pt(cos(a) * r + dx, sin(a) * r + dy, stow_after_each, 1);
5517
+              z_at_pt[CEN] += probe_pt(cos(a) * r + dx, sin(a) * r + dy, stow_after_each, 1);
5490 5518
             #endif
5491 5519
           }
5492
-          z_at_pt[0] /= float(_7p_double_circle ? 7 : probe_points);
5520
+          z_at_pt[CEN] /= float(_7p_2_intermediates ? 7 : probe_points);
5493 5521
         }
5494 5522
 
5495 5523
         if (!_1p_calibration) {  // probe the radius
5524
+          const CalEnum start  = _4p_opposite_points ? _AB : __A;
5525
+          const float   steps  = _7p_14_intermediates ? _7P_STEP / 15.0 : // 15r * 6 + 10c = 100
5526
+                                 _7p_11_intermediates ? _7P_STEP / 12.0 : // 12r * 6 +  9c = 81
5527
+                                 _7p_8_intermediates  ? _7P_STEP /  9.0 : //  9r * 6 + 10c = 64
5528
+                                 _7p_6_intermediates  ? _7P_STEP /  7.0 : //  7r * 6 +  7c = 49
5529
+                                 _7p_4_intermediates  ? _7P_STEP /  5.0 : //  5r * 6 +  6c = 36
5530
+                                 _7p_2_intermediates  ? _7P_STEP /  3.0 : //  3r * 6 +  7c = 25 
5531
+                                 _7p_1_intermediates  ? _7P_STEP /  2.0 : //  2r * 6 +  4c = 16 
5532
+                                 _7p_no_intermediates ? _7P_STEP :        //  1r * 6 +  3c = 9
5533
+                                 _4P_STEP;                                // .5r * 6 +  1c = 4
5496 5534
           bool zig_zag = true;
5497
-          const uint8_t start = _4p_opposite_points ? 3 : 1,
5498
-                        step = _4p_calibration ? 4 : _7p_half_circle ? 2 : 1;
5499
-          for (uint8_t axis = start; axis <= 12; axis += step) {
5500
-            const float zigadd = (zig_zag ? 0.5 : 0.0),
5501
-                        offset_circles = _7p_quadruple_circle ? zigadd + 1.0 :
5502
-                                         _7p_triple_circle    ? zigadd + 0.5 :
5503
-                                         _7p_double_circle    ? zigadd : 0;
5504
-            for (float circles = -offset_circles ; circles <= offset_circles; circles++) {
5505
-              const float a = RADIANS(180 + 30 * axis),
5506
-                          r = delta_calibration_radius * (1 + circles * (zig_zag ? 0.1 : -0.1));
5535
+          F_LOOP_CAL_PT(axis, start, _7p_9_centre ? steps * 3 : steps) {
5536
+            const int8_t offset = _7p_9_centre ? 1 : 0;
5537
+            for (int8_t circle = -offset; circle <= offset; circle++) {
5538
+              const float a = RADIANS(210 + (360 / NPP) *  (axis - 1)),
5539
+                          r = delta_calibration_radius * (1 + 0.1 * (zig_zag ? circle : - circle)),
5540
+                          interpol = fmod(axis, 1);
5507 5541
               #if ENABLED(PROBE_MANUALLY)
5508
-                z_at_pt[axis] += lcd_probe_pt(cos(a) * r, sin(a) * r);
5542
+                 float z_temp = lcd_probe_pt(cos(a) * r, sin(a) * r);
5509 5543
               #else
5510
-                z_at_pt[axis] += probe_pt(cos(a) * r + dx, sin(a) * r + dy, stow_after_each, 1);
5544
+                float z_temp = probe_pt(cos(a) * r + dx, sin(a) * r + dy, stow_after_each, 1);
5511 5545
               #endif
5546
+              // split probe point to neighbouring calibration points
5547
+              z_at_pt[round(axis - interpol + NPP - 1) % NPP + 1] += z_temp * sq(cos(RADIANS(interpol * 90)));
5548
+              z_at_pt[round(axis - interpol) % NPP + 1] += z_temp * sq(sin(RADIANS(interpol * 90)));
5512 5549
             }
5513 5550
             zig_zag = !zig_zag;
5514
-            z_at_pt[axis] /= (2 * offset_circles + 1);
5515 5551
           }
5552
+          if (_7p_intermed_points)
5553
+            LOOP_CAL_RAD(axis) {
5554
+/*
5555
+            // average intermediate points to towers and opposites - only required with _7P_STEP >= 2
5556
+              for (int8_t i = 1; i < _7P_STEP; i++) {
5557
+                const float interpol = i * (1.0 / _7P_STEP);
5558
+                z_at_pt[axis] += (z_at_pt[(axis + NPP - i - 1) % NPP + 1]
5559
+                                 + z_at_pt[axis + i]) * sq(cos(RADIANS(interpol * 90)));
5560
+              }
5561
+*/
5562
+              z_at_pt[axis] /= _7P_STEP  / steps;
5563
+            }
5516 5564
         }
5517 5565
 
5518
-        if (_7p_intermed_points) // average intermediates to tower and opposites
5519
-          for (uint8_t axis = 1; axis <= 12; axis += 2)
5520
-            z_at_pt[axis] = (z_at_pt[axis] + (z_at_pt[axis + 1] + z_at_pt[(axis + 10) % 12 + 1]) / 2.0) / 2.0;
5521 5566
 
5522
-        float S1 = z_at_pt[0],
5523
-              S2 = sq(z_at_pt[0]);
5567
+        float S1 = z_at_pt[CEN],
5568
+              S2 = sq(z_at_pt[CEN]);
5524 5569
         int16_t N = 1;
5525
-        if (!_1p_calibration) // std dev from zero plane
5526
-          for (uint8_t axis = (_4p_opposite_points ? 3 : 1); axis <= 12; axis += (_4p_calibration ? 4 : 2)) {
5570
+        if (!_1p_calibration) { // std dev from zero plane
5571
+          LOOP_CAL_ACT(axis, _4p_calibration, _4p_opposite_points) {
5527 5572
             S1 += z_at_pt[axis];
5528 5573
             S2 += sq(z_at_pt[axis]);
5529 5574
             N++;
5530 5575
           }
5531
-        return round(SQRT(S2 / N) * 1000.0) / 1000.0 + 0.00001;
5576
+          return round(SQRT(S2 / N) * 1000.0) / 1000.0 + 0.00001;
5577
+        }
5532 5578
       }
5533 5579
     
5534 5580
       return 0.00001;
@@ -5537,8 +5583,8 @@ void home_all_axes() { gcode_G28(true); }
5537 5583
     #if DISABLED(PROBE_MANUALLY)
5538 5584
 
5539 5585
       static void G33_auto_tune() {
5540
-        float z_at_pt[13]      = { 0.0 },
5541
-              z_at_pt_base[13] = { 0.0 },
5586
+        float z_at_pt[NPP + 1]      = { 0.0 },
5587
+              z_at_pt_base[NPP + 1] = { 0.0 },
5542 5588
               z_temp, h_fac = 0.0, r_fac = 0.0, a_fac = 0.0, norm = 0.8;
5543 5589
     
5544 5590
         #define ZP(N,I) ((N) * z_at_pt[I])
@@ -5565,18 +5611,18 @@ void home_all_axes() { gcode_G28(true); }
5565 5611
           SERIAL_EOL();
5566 5612
 
5567 5613
           probe_G33_points(z_at_pt, 3, true, false);
5568
-          for (int8_t i = 0; i <= 12; i++) z_at_pt[i] -= z_at_pt_base[i];
5614
+          LOOP_CAL_ALL(axis) z_at_pt[axis] -= z_at_pt_base[axis];
5569 5615
           print_G33_results(z_at_pt, true, true);
5570 5616
           delta_endstop_adj[axis] += 1.0;
5571 5617
           switch (axis) {
5572 5618
             case A_AXIS :
5573
-              h_fac += 4.0 / (Z03(0) +Z01(1)                         +Z32(11) +Z32(3)); // Offset by X-tower end-stop
5619
+              h_fac += 4.0 / (Z03(CEN) +Z01(__A)                               +Z32(_CA) +Z32(_AB)); // Offset by X-tower end-stop
5574 5620
               break;
5575 5621
             case B_AXIS :
5576
-              h_fac += 4.0 / (Z03(0)         +Z01(5)         +Z32(7)          +Z32(3)); // Offset by Y-tower end-stop
5622
+              h_fac += 4.0 / (Z03(CEN)           +Z01(__B)           +Z32(_BC)           +Z32(_AB)); // Offset by Y-tower end-stop
5577 5623
               break;
5578 5624
             case C_AXIS :
5579
-              h_fac += 4.0 / (Z03(0)                 +Z01(9) +Z32(7) +Z32(11)        ); // Offset by Z-tower end-stop
5625
+              h_fac += 4.0 / (Z03(CEN)                     +Z01(__C) +Z32(_BC) +Z32(_CA)          ); // Offset by Z-tower end-stop
5580 5626
               break;
5581 5627
           }
5582 5628
         }
@@ -5595,11 +5641,11 @@ void home_all_axes() { gcode_G28(true); }
5595 5641
           SERIAL_PROTOCOL(zig_zag == -1 ? "-" : "+");
5596 5642
           SERIAL_EOL();
5597 5643
           probe_G33_points(z_at_pt, 3, true, false);
5598
-          for (int8_t i = 0; i <= 12; i++) z_at_pt[i] -= z_at_pt_base[i];
5644
+          LOOP_CAL_ALL(axis) z_at_pt[axis] -= z_at_pt_base[axis];
5599 5645
           print_G33_results(z_at_pt, true, true);
5600 5646
           delta_radius -= 1.0 * zig_zag;
5601 5647
           recalc_delta_settings(delta_radius, delta_diagonal_rod, delta_tower_angle_trim);
5602
-          r_fac -= zig_zag * 6.0 / (Z03(1) + Z03(5) + Z03(9) + Z03(7) + Z03(11) + Z03(3)); // Offset by delta radius
5648
+          r_fac -= zig_zag * 6.0 / (Z03(__A) +Z03(__B) +Z03(__C) +Z03(_BC) +Z03(_CA) +Z03(_AB)); // Offset by delta radius
5603 5649
         }
5604 5650
         r_fac /= 2.0;
5605 5651
         r_fac *= 3 * norm; // Normalize to 2.25 for Kossel mini
@@ -5622,7 +5668,7 @@ void home_all_axes() { gcode_G28(true); }
5622 5668
           SERIAL_EOL();
5623 5669
 
5624 5670
           probe_G33_points(z_at_pt, 3, true, false);
5625
-          for (int8_t i = 0; i <= 12; i++) z_at_pt[i] -= z_at_pt_base[i];
5671
+          LOOP_CAL_ALL(axis) z_at_pt[axis] -= z_at_pt_base[axis];
5626 5672
           print_G33_results(z_at_pt, true, true);
5627 5673
 
5628 5674
           delta_tower_angle_trim[axis] -= 1.0;
@@ -5634,13 +5680,13 @@ void home_all_axes() { gcode_G28(true); }
5634 5680
           recalc_delta_settings(delta_radius, delta_diagonal_rod, delta_tower_angle_trim);
5635 5681
           switch (axis) {
5636 5682
             case A_AXIS :
5637
-            a_fac += 4.0 / (       Z06(5) -Z06(9)         +Z06(11) -Z06(3)); // Offset by alpha tower angle
5683
+            a_fac += 4.0 / (          Z06(__B) -Z06(__C)           +Z06(_CA) -Z06(_AB)); // Offset by alpha tower angle
5638 5684
             break;
5639 5685
             case B_AXIS :
5640
-            a_fac += 4.0 / (-Z06(1)       +Z06(9) -Z06(7)          +Z06(3)); // Offset by beta tower angle
5686
+            a_fac += 4.0 / (-Z06(__A)          +Z06(__C) -Z06(_BC)           +Z06(_AB)); // Offset by beta tower angle
5641 5687
             break;
5642 5688
             case C_AXIS :
5643
-            a_fac += 4.0 / (Z06(1) -Z06(5)        +Z06(7) -Z06(11)        ); // Offset by gamma tower angle
5689
+            a_fac += 4.0 / (Z06(__A) -Z06(__B)           +Z06(_BC) -Z06(_CA)          ); // Offset by gamma tower angle
5644 5690
             break;
5645 5691
           }
5646 5692
         }
@@ -5671,7 +5717,7 @@ void home_all_axes() { gcode_G28(true); }
5671 5717
      *      P1     Probe center and set height only.
5672 5718
      *      P2     Probe center and towers. Set height, endstops and delta radius.
5673 5719
      *      P3     Probe all positions: center, towers and opposite towers. Set all.
5674
-     *      P4-P7  Probe all positions at different locations and average them.
5720
+     *      P4-P10 Probe all positions + at different itermediate locations and average them.
5675 5721
      *
5676 5722
      *   T   Don't calibrate tower angle corrections
5677 5723
      *
@@ -5691,8 +5737,8 @@ void home_all_axes() { gcode_G28(true); }
5691 5737
     inline void gcode_G33() {
5692 5738
 
5693 5739
       const int8_t probe_points = parser.intval('P', DELTA_CALIBRATION_DEFAULT_POINTS);
5694
-      if (!WITHIN(probe_points, 0, 7)) {
5695
-        SERIAL_PROTOCOLLNPGM("?(P)oints is implausible (0-7).");
5740
+      if (!WITHIN(probe_points, 0, 10)) {
5741
+        SERIAL_PROTOCOLLNPGM("?(P)oints is implausible (0-10).");
5696 5742
         return;
5697 5743
       }
5698 5744
 
@@ -5720,15 +5766,13 @@ void home_all_axes() { gcode_G28(true); }
5720 5766
                  _0p_calibration      = probe_points == 0,
5721 5767
                  _1p_calibration      = probe_points == 1,
5722 5768
                  _4p_calibration      = probe_points == 2,
5769
+                 _7p_9_centre         = probe_points >= 8,
5723 5770
                  _tower_results       = (_4p_calibration && towers_set)
5724 5771
                                         || probe_points >= 3 || probe_points == 0,
5725 5772
                  _opposite_results    = (_4p_calibration && !towers_set)
5726 5773
                                         || probe_points >= 3 || probe_points == 0,
5727 5774
                  _endstop_results     = probe_points != 1,
5728
-                 _angle_results       = (probe_points >= 3 || probe_points == 0) && towers_set,
5729
-                 _7p_double_circle    = probe_points == 5,
5730
-                 _7p_triple_circle    = probe_points == 6,
5731
-                 _7p_quadruple_circle = probe_points == 7;
5775
+                 _angle_results       = (probe_points >= 3 || probe_points == 0) && towers_set;
5732 5776
       const static char save_message[] PROGMEM = "Save with M500 and/or copy to Configuration.h";
5733 5777
       int8_t iterations = 0;
5734 5778
       float test_precision,
@@ -5750,12 +5794,9 @@ void home_all_axes() { gcode_G28(true); }
5750 5794
       SERIAL_PROTOCOLLNPGM("G33 Auto Calibrate");
5751 5795
 
5752 5796
       if (!_1p_calibration && !_0p_calibration) {  // test if the outer radius is reachable
5753
-        const float circles = (_7p_quadruple_circle ? 1.5 :
5754
-                               _7p_triple_circle    ? 1.0 :
5755
-                               _7p_double_circle    ? 0.5 : 0),
5756
-                    r = (1 + circles * 0.1) * delta_calibration_radius;
5757
-        for (uint8_t axis = 1; axis <= 12; ++axis) {
5758
-          const float a = RADIANS(180 + 30 * axis);
5797
+        LOOP_CAL_RAD(axis) {
5798
+          const float a = RADIANS(210 + (360 / NPP) *  (axis - 1)),
5799
+                      r = delta_calibration_radius * (1 + (_7p_9_centre ? 0.1 : 0.0));
5759 5800
           if (!position_is_reachable_xy(cos(a) * r, sin(a) * r)) {
5760 5801
             SERIAL_PROTOCOLLNPGM("?(M665 B)ed radius is implausible.");
5761 5802
             return;
@@ -5806,7 +5847,7 @@ void home_all_axes() { gcode_G28(true); }
5806 5847
 
5807 5848
       do {
5808 5849
 
5809
-        float z_at_pt[13] = { 0.0 };
5850
+        float z_at_pt[NPP + 1] = { 0.0 };
5810 5851
 
5811 5852
         test_precision = zero_std_dev;
5812 5853
 
@@ -5864,34 +5905,34 @@ void home_all_axes() { gcode_G28(true); }
5864 5905
 
5865 5906
             case 1:
5866 5907
               test_precision = 0.00; // forced end
5867
-              LOOP_XYZ(axis) e_delta[axis] = Z1(0);
5908
+              LOOP_XYZ(axis) e_delta[axis] = Z1(CEN);
5868 5909
               break;
5869 5910
 
5870 5911
             case 2:
5871 5912
               if (towers_set) {
5872
-                e_delta[A_AXIS] = (Z6(0) + Z4(1) - Z2(5) - Z2(9)) * h_factor;
5873
-                e_delta[B_AXIS] = (Z6(0) - Z2(1) + Z4(5) - Z2(9)) * h_factor;
5874
-                e_delta[C_AXIS] = (Z6(0) - Z2(1) - Z2(5) + Z4(9)) * h_factor;
5875
-                r_delta         = (Z6(0) - Z2(1) - Z2(5) - Z2(9)) * r_factor;
5913
+                e_delta[A_AXIS] = (Z6(CEN) +Z4(__A) -Z2(__B) -Z2(__C)) * h_factor;
5914
+                e_delta[B_AXIS] = (Z6(CEN) -Z2(__A) +Z4(__B) -Z2(__C)) * h_factor;
5915
+                e_delta[C_AXIS] = (Z6(CEN) -Z2(__A) -Z2(__B) +Z4(__C)) * h_factor;
5916
+                r_delta         = (Z6(CEN) -Z2(__A) -Z2(__B) -Z2(__C)) * r_factor;
5876 5917
               }
5877 5918
               else {
5878
-                e_delta[A_AXIS] = (Z6(0) - Z4(7) + Z2(11) + Z2(3)) * h_factor;
5879
-                e_delta[B_AXIS] = (Z6(0) + Z2(7) - Z4(11) + Z2(3)) * h_factor;
5880
-                e_delta[C_AXIS] = (Z6(0) + Z2(7) + Z2(11) - Z4(3)) * h_factor;
5881
-                r_delta         = (Z6(0) - Z2(7) - Z2(11) - Z2(3)) * r_factor;
5919
+                e_delta[A_AXIS] = (Z6(CEN) -Z4(_BC) +Z2(_CA) +Z2(_AB)) * h_factor;
5920
+                e_delta[B_AXIS] = (Z6(CEN) +Z2(_BC) -Z4(_CA) +Z2(_AB)) * h_factor;
5921
+                e_delta[C_AXIS] = (Z6(CEN) +Z2(_BC) +Z2(_CA) -Z4(_AB)) * h_factor;
5922
+                r_delta         = (Z6(CEN) -Z2(_BC) -Z2(_CA) -Z2(_AB)) * r_factor;
5882 5923
               }
5883 5924
               break;
5884 5925
 
5885 5926
             default:
5886
-              e_delta[A_AXIS] = (Z6(0) + Z2(1) - Z1(5) - Z1(9) - Z2(7) + Z1(11) + Z1(3)) * h_factor;
5887
-              e_delta[B_AXIS] = (Z6(0) - Z1(1) + Z2(5) - Z1(9) + Z1(7) - Z2(11) + Z1(3)) * h_factor;
5888
-              e_delta[C_AXIS] = (Z6(0) - Z1(1) - Z1(5) + Z2(9) + Z1(7) + Z1(11) - Z2(3)) * h_factor;
5889
-              r_delta         = (Z6(0) - Z1(1) - Z1(5) - Z1(9) - Z1(7) - Z1(11) - Z1(3)) * r_factor;
5927
+              e_delta[A_AXIS] = (Z6(CEN) +Z2(__A) -Z1(__B) -Z1(__C) -Z2(_BC) +Z1(_CA) +Z1(_AB)) * h_factor;
5928
+              e_delta[B_AXIS] = (Z6(CEN) -Z1(__A) +Z2(__B) -Z1(__C) +Z1(_BC) -Z2(_CA) +Z1(_AB)) * h_factor;
5929
+              e_delta[C_AXIS] = (Z6(CEN) -Z1(__A) -Z1(__B) +Z2(__C) +Z1(_BC) +Z1(_CA) -Z2(_AB)) * h_factor;
5930
+              r_delta         = (Z6(CEN) -Z1(__A) -Z1(__B) -Z1(__C) -Z1(_BC) -Z1(_CA) -Z1(_AB)) * r_factor;
5890 5931
 
5891 5932
               if (towers_set) {
5892
-                t_delta[A_AXIS] = (       - Z4(5) + Z4(9)         - Z4(11) + Z4(3)) * a_factor;
5893
-                t_delta[B_AXIS] = ( Z4(1)         - Z4(9) + Z4(7)          - Z4(3)) * a_factor;
5894
-                t_delta[C_AXIS] = (-Z4(1) + Z4(5)         - Z4(7) + Z4(11)        ) * a_factor;
5933
+                t_delta[A_AXIS] = (         -Z4(__B) +Z4(__C)          -Z4(_CA) +Z4(_AB)) * a_factor;
5934
+                t_delta[B_AXIS] = ( Z4(__A)          -Z4(__C) +Z4(_BC)          -Z4(_AB)) * a_factor;
5935
+                t_delta[C_AXIS] = (-Z4(__A) +Z4(__B)          -Z4(_BC) +Z4(_CA)         ) * a_factor;
5895 5936
                 e_delta[A_AXIS] += (t_delta[B_AXIS] - t_delta[C_AXIS]) / 4.5;
5896 5937
                 e_delta[B_AXIS] += (t_delta[C_AXIS] - t_delta[A_AXIS]) / 4.5;
5897 5938
                 e_delta[C_AXIS] += (t_delta[A_AXIS] - t_delta[B_AXIS]) / 4.5;

+ 2
- 2
Marlin/example_configurations/delta/FLSUN/auto_calibrate/Configuration.h View File

@@ -497,7 +497,7 @@
497 497
     // set the default number of probe points : n*n (1 -> 7)
498 498
     #define DELTA_CALIBRATION_DEFAULT_POINTS 4
499 499
 
500
-    // Enable and set these values based on results of 'G33 A1'
500
+    // Enable and set these values based on results of 'G33 A'
501 501
     //#define H_FACTOR 1.01
502 502
     //#define R_FACTOR 2.61
503 503
     //#define A_FACTOR 0.87
@@ -505,7 +505,7 @@
505 505
   #endif
506 506
 
507 507
   #if ENABLED(DELTA_AUTO_CALIBRATION) || ENABLED(DELTA_CALIBRATION_MENU)
508
-    // Set the radius for the calibration probe points - max DELTA_PRINTABLE_RADIUS*0.869 for non-eccentric probes
508
+    // Set the radius for the calibration probe points - max DELTA_PRINTABLE_RADIUS for non-eccentric probes
509 509
     #define DELTA_CALIBRATION_RADIUS 73.5 // mm
510 510
     // Set the steprate for papertest probing
511 511
     #define PROBE_MANUALLY_STEP 0.025

+ 2
- 2
Marlin/example_configurations/delta/FLSUN/kossel_mini/Configuration.h View File

@@ -497,7 +497,7 @@
497 497
     // set the default number of probe points : n*n (1 -> 7)
498 498
     #define DELTA_CALIBRATION_DEFAULT_POINTS 4
499 499
 
500
-    // Enable and set these values based on results of 'G33 A1'
500
+    // Enable and set these values based on results of 'G33 A'
501 501
     //#define H_FACTOR 1.01
502 502
     //#define R_FACTOR 2.61
503 503
     //#define A_FACTOR 0.87
@@ -505,7 +505,7 @@
505 505
   #endif
506 506
 
507 507
   #if ENABLED(DELTA_AUTO_CALIBRATION) || ENABLED(DELTA_CALIBRATION_MENU)
508
-    // Set the radius for the calibration probe points - max DELTA_PRINTABLE_RADIUS*0.869 for non-eccentric probes
508
+    // Set the radius for the calibration probe points - max DELTA_PRINTABLE_RADIUS for non-eccentric probes
509 509
     #define DELTA_CALIBRATION_RADIUS 73.5 // mm
510 510
     // Set the steprate for papertest probing
511 511
     #define PROBE_MANUALLY_STEP 0.025

+ 2
- 2
Marlin/example_configurations/delta/generic/Configuration.h View File

@@ -487,7 +487,7 @@
487 487
     // set the default number of probe points : n*n (1 -> 7)
488 488
     #define DELTA_CALIBRATION_DEFAULT_POINTS 4
489 489
 
490
-    // Enable and set these values based on results of 'G33 A1'
490
+    // Enable and set these values based on results of 'G33 A'
491 491
     //#define H_FACTOR 1.01
492 492
     //#define R_FACTOR 2.61
493 493
     //#define A_FACTOR 0.87
@@ -495,7 +495,7 @@
495 495
   #endif
496 496
 
497 497
   #if ENABLED(DELTA_AUTO_CALIBRATION) || ENABLED(DELTA_CALIBRATION_MENU)
498
-    // Set the radius for the calibration probe points - max DELTA_PRINTABLE_RADIUS*0.869 for non-eccentric probes
498
+    // Set the radius for the calibration probe points - max DELTA_PRINTABLE_RADIUS for non-eccentric probes
499 499
     #define DELTA_CALIBRATION_RADIUS 121.5 // mm
500 500
     // Set the steprate for papertest probing
501 501
     #define PROBE_MANUALLY_STEP 0.025

+ 2
- 2
Marlin/example_configurations/delta/kossel_mini/Configuration.h View File

@@ -487,7 +487,7 @@
487 487
     // set the default number of probe points : n*n (1 -> 7)
488 488
     #define DELTA_CALIBRATION_DEFAULT_POINTS 4
489 489
 
490
-    // Enable and set these values based on results of 'G33 A1'
490
+    // Enable and set these values based on results of 'G33 A'
491 491
     //#define H_FACTOR 1.01
492 492
     //#define R_FACTOR 2.61
493 493
     //#define A_FACTOR 0.87
@@ -495,7 +495,7 @@
495 495
   #endif
496 496
 
497 497
   #if ENABLED(DELTA_AUTO_CALIBRATION) || ENABLED(DELTA_CALIBRATION_MENU)
498
-    // Set the radius for the calibration probe points - max DELTA_PRINTABLE_RADIUS*0.869 for non-eccentric probes
498
+    // Set the radius for the calibration probe points - max DELTA_PRINTABLE_RADIUS for non-eccentric probes
499 499
     #define DELTA_CALIBRATION_RADIUS 78.0 // mm
500 500
     // Set the steprate for papertest probing
501 501
     #define PROBE_MANUALLY_STEP 0.025

+ 2
- 2
Marlin/example_configurations/delta/kossel_pro/Configuration.h View File

@@ -473,7 +473,7 @@
473 473
     // set the default number of probe points : n*n (1 -> 7)
474 474
     #define DELTA_CALIBRATION_DEFAULT_POINTS 4
475 475
 
476
-    // Enable and set these values based on results of 'G33 A1'
476
+    // Enable and set these values based on results of 'G33 A'
477 477
     //#define H_FACTOR 1.01
478 478
     //#define R_FACTOR 2.61
479 479
     //#define A_FACTOR 0.87
@@ -481,7 +481,7 @@
481 481
   #endif
482 482
 
483 483
   #if ENABLED(DELTA_AUTO_CALIBRATION) || ENABLED(DELTA_CALIBRATION_MENU)
484
-    // Set the radius for the calibration probe points - max DELTA_PRINTABLE_RADIUS*0.869 for non-eccentric probes
484
+    // Set the radius for the calibration probe points - max DELTA_PRINTABLE_RADIUS for non-eccentric probes
485 485
     #define DELTA_CALIBRATION_RADIUS 110.0 // mm
486 486
     // Set the steprate for papertest probing
487 487
     #define PROBE_MANUALLY_STEP 0.025

+ 2
- 2
Marlin/example_configurations/delta/kossel_xl/Configuration.h View File

@@ -491,7 +491,7 @@
491 491
     // set the default number of probe points : n*n (1 -> 7)
492 492
     #define DELTA_CALIBRATION_DEFAULT_POINTS 4
493 493
 
494
-    // Enable and set these values based on results of 'G33 A1'
494
+    // Enable and set these values based on results of 'G33 A'
495 495
     //#define H_FACTOR 1.01
496 496
     //#define R_FACTOR 2.61
497 497
     //#define A_FACTOR 0.87
@@ -499,7 +499,7 @@
499 499
   #endif
500 500
 
501 501
   #if ENABLED(DELTA_AUTO_CALIBRATION) || ENABLED(DELTA_CALIBRATION_MENU)
502
-    // Set the radius for the calibration probe points - max DELTA_PRINTABLE_RADIUS*0.869 for non-eccentric probes
502
+    // Set the radius for the calibration probe points - max DELTA_PRINTABLE_RADIUS for non-eccentric probes
503 503
     #define DELTA_CALIBRATION_RADIUS 121.5 // mm
504 504
     // Set the steprate for papertest probing
505 505
     #define PROBE_MANUALLY_STEP 0.025

Loading…
Cancel
Save