|
@@ -946,28 +946,23 @@ void Planner::check_axes_activity() {
|
946
|
946
|
|
947
|
947
|
// Compute and limit the acceleration rate for the trapezoid generator.
|
948
|
948
|
float steps_per_mm = block->step_event_count / block->millimeters;
|
949
|
|
- long bsx = block->steps[X_AXIS], bsy = block->steps[Y_AXIS], bsz = block->steps[Z_AXIS], bse = block->steps[E_AXIS];
|
950
|
|
- if (bsx == 0 && bsy == 0 && bsz == 0) {
|
951
|
|
- block->acceleration_steps_per_s2 = ceil(retract_acceleration * steps_per_mm); // convert to: acceleration steps/sec^2
|
952
|
|
- }
|
953
|
|
- else if (bse == 0) {
|
954
|
|
- block->acceleration_steps_per_s2 = ceil(travel_acceleration * steps_per_mm); // convert to: acceleration steps/sec^2
|
955
|
|
- }
|
956
|
|
- else {
|
957
|
|
- block->acceleration_steps_per_s2 = ceil(acceleration * steps_per_mm); // convert to: acceleration steps/sec^2
|
958
|
|
- }
|
|
949
|
+ block->acceleration_steps_per_s2 = ceil((
|
|
950
|
+ (block->steps[X_AXIS] == 0 && block->steps[Y_AXIS] == 0 && block->steps[Z_AXIS] == 0) ?
|
|
951
|
+ retract_acceleration : block->steps[E_AXIS] == 0 ?
|
|
952
|
+ travel_acceleration :
|
|
953
|
+ acceleration
|
|
954
|
+ ) * steps_per_mm
|
|
955
|
+ );
|
959
|
956
|
// Limit acceleration per axis
|
960
|
|
- unsigned long acc_st = block->acceleration_steps_per_s2,
|
961
|
|
- x_acc_st = max_acceleration_steps_per_s2[X_AXIS],
|
962
|
|
- y_acc_st = max_acceleration_steps_per_s2[Y_AXIS],
|
963
|
|
- z_acc_st = max_acceleration_steps_per_s2[Z_AXIS],
|
964
|
|
- e_acc_st = max_acceleration_steps_per_s2[E_AXIS],
|
965
|
|
- allsteps = block->step_event_count;
|
966
|
|
- if (x_acc_st < (acc_st * bsx) / allsteps) acc_st = (x_acc_st * allsteps) / bsx;
|
967
|
|
- if (y_acc_st < (acc_st * bsy) / allsteps) acc_st = (y_acc_st * allsteps) / bsy;
|
968
|
|
- if (z_acc_st < (acc_st * bsz) / allsteps) acc_st = (z_acc_st * allsteps) / bsz;
|
969
|
|
- if (e_acc_st < (acc_st * bse) / allsteps) acc_st = (e_acc_st * allsteps) / bse;
|
970
|
|
-
|
|
957
|
+ long acc_st = block->acceleration_steps_per_s2;
|
|
958
|
+ if (max_acceleration_steps_per_s2[X_AXIS] < (acc_st * block->steps[X_AXIS]) / block->step_event_count)
|
|
959
|
+ acc_st = (max_acceleration_steps_per_s2[X_AXIS] * block->step_event_count) / block->steps[X_AXIS];
|
|
960
|
+ if (max_acceleration_steps_per_s2[Y_AXIS] < (acc_st * block->steps[Y_AXIS]) / block->step_event_count)
|
|
961
|
+ acc_st = (max_acceleration_steps_per_s2[Y_AXIS] * block->step_event_count) / block->steps[Y_AXIS];
|
|
962
|
+ if (max_acceleration_steps_per_s2[Z_AXIS] < (acc_st * block->steps[Z_AXIS]) / block->step_event_count)
|
|
963
|
+ acc_st = (max_acceleration_steps_per_s2[Z_AXIS] * block->step_event_count) / block->steps[Z_AXIS];
|
|
964
|
+ if (max_acceleration_steps_per_s2[E_AXIS] < (acc_st * block->steps[E_AXIS]) / block->step_event_count)
|
|
965
|
+ acc_st = (max_acceleration_steps_per_s2[E_AXIS] * block->step_event_count) / block->steps[E_AXIS];
|
971
|
966
|
block->acceleration_steps_per_s2 = acc_st;
|
972
|
967
|
block->acceleration = acc_st / steps_per_mm;
|
973
|
968
|
block->acceleration_rate = (long)(acc_st * 16777216.0 / (F_CPU / 8.0));
|
|
@@ -1064,12 +1059,12 @@ void Planner::check_axes_activity() {
|
1064
|
1059
|
|
1065
|
1060
|
#if ENABLED(LIN_ADVANCE)
|
1066
|
1061
|
|
1067
|
|
- // bse == allsteps: A problem occurs when there's a very tiny move before a retract.
|
|
1062
|
+ // block->steps[E_AXIS] == block->step_event_count: A problem occurs when there's a very tiny move before a retract.
|
1068
|
1063
|
// In this case, the retract and the move will be executed together.
|
1069
|
1064
|
// This leads to an enormous number of advance steps due to a huge e_acceleration.
|
1070
|
1065
|
// The math is correct, but you don't want a retract move done with advance!
|
1071
|
1066
|
// So this situation is filtered out here.
|
1072
|
|
- if (!bse || (!bsx && !bsy && !bsz) || stepper.get_advance_k() == 0 || (uint32_t) bse == allsteps) {
|
|
1067
|
+ if (!block->steps[E_AXIS] || (!block->steps[X_AXIS] && !block->steps[Y_AXIS] && !block->steps[Z_AXIS]) || stepper.get_advance_k() == 0 || (uint32_t) block->steps[E_AXIS] == block->step_event_count) {
|
1073
|
1068
|
block->use_advance_lead = false;
|
1074
|
1069
|
}
|
1075
|
1070
|
else {
|
|
@@ -1080,7 +1075,7 @@ void Planner::check_axes_activity() {
|
1080
|
1075
|
#elif ENABLED(ADVANCE)
|
1081
|
1076
|
|
1082
|
1077
|
// Calculate advance rate
|
1083
|
|
- if (!bse || (!bsx && !bsy && !bsz)) {
|
|
1078
|
+ if (!block->steps[E_AXIS] || (!block->steps[X_AXIS] && !block->steps[Y_AXIS] && !block->steps[Z_AXIS])) {
|
1084
|
1079
|
block->advance_rate = 0;
|
1085
|
1080
|
block->advance = 0;
|
1086
|
1081
|
}
|