|
@@ -1090,10 +1090,13 @@ void Planner::_buffer_steps(const int32_t (&target)[XYZE], float fr_mm_s, const
|
1090
|
1090
|
}
|
1091
|
1091
|
#endif
|
1092
|
1092
|
|
1093
|
|
- // Calculate and limit speed in mm/sec for each axis
|
|
1093
|
+ // Calculate and limit speed in mm/sec for each axis, calculate minimum acceleration ratio
|
1094
|
1094
|
float current_speed[NUM_AXIS], speed_factor = 1.0; // factor <1 decreases speed
|
|
1095
|
+ float max_stepper_speed = 0, min_axis_accel_ratio = 1; // ratio < 1 means acceleration ramp needed
|
1095
|
1096
|
LOOP_XYZE(i) {
|
1096
|
1097
|
const float cs = FABS((current_speed[i] = delta_mm[i] * inverse_secs));
|
|
1098
|
+ NOMORE(min_axis_accel_ratio, max_jerk[i] / cs);
|
|
1099
|
+ NOLESS(max_stepper_speed, cs);
|
1097
|
1100
|
#if ENABLED(DISTINCT_E_FACTORS)
|
1098
|
1101
|
if (i == E_AXIS) i += extruder;
|
1099
|
1102
|
#endif
|
|
@@ -1138,6 +1141,9 @@ void Planner::_buffer_steps(const int32_t (&target)[XYZE], float fr_mm_s, const
|
1138
|
1141
|
}
|
1139
|
1142
|
#endif // XY_FREQUENCY_LIMIT
|
1140
|
1143
|
|
|
1144
|
+ block->nominal_speed = max_stepper_speed; // (mm/sec) Always > 0
|
|
1145
|
+ block->nominal_rate = CEIL(block->step_event_count * inverse_secs); // (step/sec) Always > 0
|
|
1146
|
+
|
1141
|
1147
|
// Correct the speed
|
1142
|
1148
|
if (speed_factor < 1.0) {
|
1143
|
1149
|
LOOP_XYZE(i) current_speed[i] *= speed_factor;
|
|
@@ -1145,6 +1151,9 @@ void Planner::_buffer_steps(const int32_t (&target)[XYZE], float fr_mm_s, const
|
1145
|
1151
|
block->nominal_rate *= speed_factor;
|
1146
|
1152
|
}
|
1147
|
1153
|
|
|
1154
|
+ float safe_speed = block->nominal_speed * min_axis_accel_ratio;
|
|
1155
|
+ static float previous_safe_speed;
|
|
1156
|
+
|
1148
|
1157
|
// Compute and limit the acceleration rate for the trapezoid generator.
|
1149
|
1158
|
const float steps_per_mm = block->step_event_count * inverse_millimeters;
|
1150
|
1159
|
uint32_t accel;
|
|
@@ -1246,32 +1255,6 @@ void Planner::_buffer_steps(const int32_t (&target)[XYZE], float fr_mm_s, const
|
1246
|
1255
|
}
|
1247
|
1256
|
#endif
|
1248
|
1257
|
|
1249
|
|
- /**
|
1250
|
|
- * Adapted from Průša MKS firmware
|
1251
|
|
- * https://github.com/prusa3d/Prusa-Firmware
|
1252
|
|
- *
|
1253
|
|
- * Start with a safe speed (from which the machine may halt to stop immediately).
|
1254
|
|
- */
|
1255
|
|
-
|
1256
|
|
- // Exit speed limited by a jerk to full halt of a previous last segment
|
1257
|
|
- static float previous_safe_speed;
|
1258
|
|
-
|
1259
|
|
- float safe_speed = block->nominal_speed;
|
1260
|
|
- uint8_t limited = 0;
|
1261
|
|
- LOOP_XYZE(i) {
|
1262
|
|
- const float jerk = FABS(current_speed[i]), maxj = max_jerk[i];
|
1263
|
|
- if (jerk > maxj) {
|
1264
|
|
- if (limited) {
|
1265
|
|
- const float mjerk = maxj * block->nominal_speed;
|
1266
|
|
- if (jerk * safe_speed > mjerk) safe_speed = mjerk / jerk;
|
1267
|
|
- }
|
1268
|
|
- else {
|
1269
|
|
- ++limited;
|
1270
|
|
- safe_speed = maxj;
|
1271
|
|
- }
|
1272
|
|
- }
|
1273
|
|
- }
|
1274
|
|
-
|
1275
|
1258
|
if (moves_queued && !UNEAR_ZERO(previous_nominal_speed)) {
|
1276
|
1259
|
// Estimate a maximum velocity allowed at a joint of two successive segments.
|
1277
|
1260
|
// If this maximum velocity allowed is lower than the minimum of the entry / exit safe velocities,
|
|
@@ -1283,7 +1266,7 @@ void Planner::_buffer_steps(const int32_t (&target)[XYZE], float fr_mm_s, const
|
1283
|
1266
|
|
1284
|
1267
|
// Factor to multiply the previous / current nominal velocities to get componentwise limited velocities.
|
1285
|
1268
|
float v_factor = 1;
|
1286
|
|
- limited = 0;
|
|
1269
|
+ uint8_t limited = 0;
|
1287
|
1270
|
|
1288
|
1271
|
// Now limit the jerk in all axes.
|
1289
|
1272
|
const float smaller_speed_factor = vmax_junction / previous_nominal_speed;
|