|
@@ -29,12 +29,12 @@
|
29
|
29
|
|
30
|
30
|
#include "Marlin.h"
|
31
|
31
|
|
32
|
|
-#ifdef ENABLE_AUTO_BED_LEVELING
|
|
32
|
+#ifdef ENABLE_AUTO_BED_COMPENSATION
|
33
|
33
|
#include "vector_3.h"
|
34
|
|
- #ifdef AUTO_BED_LEVELING_GRID
|
|
34
|
+ #ifdef AUTO_BED_COMPENSATION_GRID
|
35
|
35
|
#include "qr_solve.h"
|
36
|
36
|
#endif
|
37
|
|
-#endif // ENABLE_AUTO_BED_LEVELING
|
|
37
|
+#endif // ENABLE_AUTO_BED_COMPENSATION
|
38
|
38
|
|
39
|
39
|
#include "ultralcd.h"
|
40
|
40
|
#include "planner.h"
|
|
@@ -520,7 +520,7 @@ void servo_init()
|
520
|
520
|
}
|
521
|
521
|
#endif
|
522
|
522
|
|
523
|
|
- #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
|
|
523
|
+ #if defined (ENABLE_AUTO_BED_COMPENSATION) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
|
524
|
524
|
delay(PROBE_SERVO_DEACTIVATION_DELAY);
|
525
|
525
|
servos[servo_endstops[Z_AXIS]].detach();
|
526
|
526
|
#endif
|
|
@@ -962,16 +962,16 @@ static void axis_is_at_home(int axis) {
|
962
|
962
|
#endif
|
963
|
963
|
}
|
964
|
964
|
|
965
|
|
-#ifdef ENABLE_AUTO_BED_LEVELING
|
966
|
|
-#ifdef AUTO_BED_LEVELING_GRID
|
967
|
|
-static void set_bed_level_equation_lsq(double *plane_equation_coefficients)
|
|
965
|
+#ifdef ENABLE_AUTO_BED_COMPENSATION
|
|
966
|
+#ifdef AUTO_BED_COMPENSATION_GRID
|
|
967
|
+static void set_bed_compensation_equation_lsq(double *plane_equation_coefficients)
|
968
|
968
|
{
|
969
|
969
|
vector_3 planeNormal = vector_3(-plane_equation_coefficients[0], -plane_equation_coefficients[1], 1);
|
970
|
970
|
planeNormal.debug("planeNormal");
|
971
|
|
- plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
|
972
|
|
- //bedLevel.debug("bedLevel");
|
|
971
|
+ plan_bed_compensation_matrix = matrix_3x3::create_look_at(planeNormal);
|
|
972
|
+ //bedCompensation.debug("bedCompensation");
|
973
|
973
|
|
974
|
|
- //plan_bed_level_matrix.debug("bed level before");
|
|
974
|
+ //plan_bed_compensation_matrix.debug("bed compensation before");
|
975
|
975
|
//vector_3 uncorrected_position = plan_get_position_mm();
|
976
|
976
|
//uncorrected_position.debug("position before");
|
977
|
977
|
|
|
@@ -987,11 +987,11 @@ static void set_bed_level_equation_lsq(double *plane_equation_coefficients)
|
987
|
987
|
plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
|
988
|
988
|
}
|
989
|
989
|
|
990
|
|
-#else // not AUTO_BED_LEVELING_GRID
|
|
990
|
+#else // not AUTO_BED_COMPENSATION_GRID
|
991
|
991
|
|
992
|
|
-static void set_bed_level_equation_3pts(float z_at_pt_1, float z_at_pt_2, float z_at_pt_3) {
|
|
992
|
+static void set_bed_compensation_equation_3pts(float z_at_pt_1, float z_at_pt_2, float z_at_pt_3) {
|
993
|
993
|
|
994
|
|
- plan_bed_level_matrix.set_to_identity();
|
|
994
|
+ plan_bed_compensation_matrix.set_to_identity();
|
995
|
995
|
|
996
|
996
|
vector_3 pt1 = vector_3(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, z_at_pt_1);
|
997
|
997
|
vector_3 pt2 = vector_3(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, z_at_pt_2);
|
|
@@ -1002,7 +1002,7 @@ static void set_bed_level_equation_3pts(float z_at_pt_1, float z_at_pt_2, float
|
1002
|
1002
|
vector_3 planeNormal = vector_3::cross(from_2_to_1, from_2_to_3).get_normal();
|
1003
|
1003
|
planeNormal = vector_3(planeNormal.x, planeNormal.y, abs(planeNormal.z));
|
1004
|
1004
|
|
1005
|
|
- plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
|
|
1005
|
+ plan_bed_compensation_matrix = matrix_3x3::create_look_at(planeNormal);
|
1006
|
1006
|
|
1007
|
1007
|
vector_3 corrected_position = plan_get_position();
|
1008
|
1008
|
current_position[X_AXIS] = corrected_position.x;
|
|
@@ -1016,10 +1016,10 @@ static void set_bed_level_equation_3pts(float z_at_pt_1, float z_at_pt_2, float
|
1016
|
1016
|
|
1017
|
1017
|
}
|
1018
|
1018
|
|
1019
|
|
-#endif // AUTO_BED_LEVELING_GRID
|
|
1019
|
+#endif // AUTO_BED_COMPENSATION_GRID
|
1020
|
1020
|
|
1021
|
1021
|
static void run_z_probe() {
|
1022
|
|
- plan_bed_level_matrix.set_to_identity();
|
|
1022
|
+ plan_bed_compensation_matrix.set_to_identity();
|
1023
|
1023
|
feedrate = homing_feedrate[Z_AXIS];
|
1024
|
1024
|
|
1025
|
1025
|
// move down until you find the bed
|
|
@@ -1088,11 +1088,11 @@ static void engage_z_probe() {
|
1088
|
1088
|
// Engage Z Servo endstop if enabled
|
1089
|
1089
|
#ifdef SERVO_ENDSTOPS
|
1090
|
1090
|
if (servo_endstops[Z_AXIS] > -1) {
|
1091
|
|
-#if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
|
|
1091
|
+#if defined (ENABLE_AUTO_BED_COMPENSATION) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
|
1092
|
1092
|
servos[servo_endstops[Z_AXIS]].attach(0);
|
1093
|
1093
|
#endif
|
1094
|
1094
|
servos[servo_endstops[Z_AXIS]].write(servo_endstop_angles[Z_AXIS * 2]);
|
1095
|
|
-#if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
|
|
1095
|
+#if defined (ENABLE_AUTO_BED_COMPENSATION) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
|
1096
|
1096
|
delay(PROBE_SERVO_DEACTIVATION_DELAY);
|
1097
|
1097
|
servos[servo_endstops[Z_AXIS]].detach();
|
1098
|
1098
|
#endif
|
|
@@ -1104,11 +1104,11 @@ static void retract_z_probe() {
|
1104
|
1104
|
// Retract Z Servo endstop if enabled
|
1105
|
1105
|
#ifdef SERVO_ENDSTOPS
|
1106
|
1106
|
if (servo_endstops[Z_AXIS] > -1) {
|
1107
|
|
-#if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
|
|
1107
|
+#if defined (ENABLE_AUTO_BED_COMPENSATION) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
|
1108
|
1108
|
servos[servo_endstops[Z_AXIS]].attach(0);
|
1109
|
1109
|
#endif
|
1110
|
1110
|
servos[servo_endstops[Z_AXIS]].write(servo_endstop_angles[Z_AXIS * 2 + 1]);
|
1111
|
|
-#if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
|
|
1111
|
+#if defined (ENABLE_AUTO_BED_COMPENSATION) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
|
1112
|
1112
|
delay(PROBE_SERVO_DEACTIVATION_DELAY);
|
1113
|
1113
|
servos[servo_endstops[Z_AXIS]].detach();
|
1114
|
1114
|
#endif
|
|
@@ -1142,7 +1142,7 @@ static float probe_pt(float x, float y, float z_before) {
|
1142
|
1142
|
return measured_z;
|
1143
|
1143
|
}
|
1144
|
1144
|
|
1145
|
|
-#endif // #ifdef ENABLE_AUTO_BED_LEVELING
|
|
1145
|
+#endif // #ifdef ENABLE_AUTO_BED_COMPENSATION
|
1146
|
1146
|
|
1147
|
1147
|
static void homeaxis(int axis) {
|
1148
|
1148
|
#define HOMEAXIS_DO(LETTER) \
|
|
@@ -1165,7 +1165,7 @@ static void homeaxis(int axis) {
|
1165
|
1165
|
#ifndef Z_PROBE_SLED
|
1166
|
1166
|
// Engage Servo endstop if enabled
|
1167
|
1167
|
#ifdef SERVO_ENDSTOPS
|
1168
|
|
- #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
|
|
1168
|
+ #if defined (ENABLE_AUTO_BED_COMPENSATION) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
|
1169
|
1169
|
if (axis==Z_AXIS) {
|
1170
|
1170
|
engage_z_probe();
|
1171
|
1171
|
}
|
|
@@ -1216,7 +1216,7 @@ static void homeaxis(int axis) {
|
1216
|
1216
|
servos[servo_endstops[axis]].write(servo_endstop_angles[axis * 2 + 1]);
|
1217
|
1217
|
}
|
1218
|
1218
|
#endif
|
1219
|
|
-#if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
|
|
1219
|
+#if defined (ENABLE_AUTO_BED_COMPENSATION) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
|
1220
|
1220
|
#ifndef Z_PROBE_SLED
|
1221
|
1221
|
if (axis==Z_AXIS) retract_z_probe();
|
1222
|
1222
|
#endif
|
|
@@ -1325,7 +1325,7 @@ void process_commands()
|
1325
|
1325
|
{
|
1326
|
1326
|
unsigned long codenum; //throw away variable
|
1327
|
1327
|
char *starpos = NULL;
|
1328
|
|
-#ifdef ENABLE_AUTO_BED_LEVELING
|
|
1328
|
+#ifdef ENABLE_AUTO_BED_COMPENSATION
|
1329
|
1329
|
float x_tmp, y_tmp, z_tmp, real_z;
|
1330
|
1330
|
#endif
|
1331
|
1331
|
if(code_seen('G'))
|
|
@@ -1399,9 +1399,9 @@ void process_commands()
|
1399
|
1399
|
break;
|
1400
|
1400
|
#endif //FWRETRACT
|
1401
|
1401
|
case 28: //G28 Home all Axis one at a time
|
1402
|
|
-#ifdef ENABLE_AUTO_BED_LEVELING
|
1403
|
|
- plan_bed_level_matrix.set_to_identity(); //Reset the plane ("erase" all leveling data)
|
1404
|
|
-#endif //ENABLE_AUTO_BED_LEVELING
|
|
1402
|
+#ifdef ENABLE_AUTO_BED_COMPENSATION
|
|
1403
|
+ plan_bed_compensation_matrix.set_to_identity(); //Reset the plane ("erase" all compensation data)
|
|
1404
|
+#endif //ENABLE_AUTO_BED_COMPENSATION
|
1405
|
1405
|
|
1406
|
1406
|
saved_feedrate = feedrate;
|
1407
|
1407
|
saved_feedmultiply = feedmultiply;
|
|
@@ -1605,7 +1605,7 @@ void process_commands()
|
1605
|
1605
|
current_position[Z_AXIS]=code_value()+add_homing[Z_AXIS];
|
1606
|
1606
|
}
|
1607
|
1607
|
}
|
1608
|
|
- #ifdef ENABLE_AUTO_BED_LEVELING
|
|
1608
|
+ #ifdef ENABLE_AUTO_BED_COMPENSATION
|
1609
|
1609
|
if((home_all_axis) || (code_seen(axis_codes[Z_AXIS]))) {
|
1610
|
1610
|
current_position[Z_AXIS] += zprobe_zoffset; //Add Z_Probe offset (the distance is negative)
|
1611
|
1611
|
}
|
|
@@ -1628,11 +1628,11 @@ void process_commands()
|
1628
|
1628
|
endstops_hit_on_purpose();
|
1629
|
1629
|
break;
|
1630
|
1630
|
|
1631
|
|
-#ifdef ENABLE_AUTO_BED_LEVELING
|
|
1631
|
+#ifdef ENABLE_AUTO_BED_COMPENSATION
|
1632
|
1632
|
case 29: // G29 Detailed Z-Probe, probes the bed at 3 or more points.
|
1633
|
1633
|
{
|
1634
|
1634
|
#if Z_MIN_PIN == -1
|
1635
|
|
- #error "You must have a Z_MIN endstop in order to enable Auto Bed Leveling feature!!! Z_MIN_PIN must point to a valid hardware pin."
|
|
1635
|
+ #error "You must have a Z_MIN endstop in order to enable Auto Bed Compensation feature!!! Z_MIN_PIN must point to a valid hardware pin."
|
1636
|
1636
|
#endif
|
1637
|
1637
|
|
1638
|
1638
|
// Prevent user from running a G29 without first homing in X and Y
|
|
@@ -1648,10 +1648,10 @@ void process_commands()
|
1648
|
1648
|
dock_sled(false);
|
1649
|
1649
|
#endif // Z_PROBE_SLED
|
1650
|
1650
|
st_synchronize();
|
1651
|
|
- // make sure the bed_level_rotation_matrix is identity or the planner will get it incorectly
|
|
1651
|
+ // make sure the bed_compensation_rotation_matrix is identity or the planner will get it incorectly
|
1652
|
1652
|
//vector_3 corrected_position = plan_get_position_mm();
|
1653
|
1653
|
//corrected_position.debug("position before G29");
|
1654
|
|
- plan_bed_level_matrix.set_to_identity();
|
|
1654
|
+ plan_bed_compensation_matrix.set_to_identity();
|
1655
|
1655
|
vector_3 uncorrected_position = plan_get_position();
|
1656
|
1656
|
//uncorrected_position.debug("position durring G29");
|
1657
|
1657
|
current_position[X_AXIS] = uncorrected_position.x;
|
|
@@ -1661,11 +1661,11 @@ void process_commands()
|
1661
|
1661
|
setup_for_endstop_move();
|
1662
|
1662
|
|
1663
|
1663
|
feedrate = homing_feedrate[Z_AXIS];
|
1664
|
|
-#ifdef AUTO_BED_LEVELING_GRID
|
|
1664
|
+#ifdef AUTO_BED_COMPENSATION_GRID
|
1665
|
1665
|
// probe at the points of a lattice grid
|
1666
|
1666
|
|
1667
|
|
- int xGridSpacing = (RIGHT_PROBE_BED_POSITION - LEFT_PROBE_BED_POSITION) / (AUTO_BED_LEVELING_GRID_POINTS-1);
|
1668
|
|
- int yGridSpacing = (BACK_PROBE_BED_POSITION - FRONT_PROBE_BED_POSITION) / (AUTO_BED_LEVELING_GRID_POINTS-1);
|
|
1667
|
+ int xGridSpacing = (RIGHT_PROBE_BED_POSITION - LEFT_PROBE_BED_POSITION) / (AUTO_BED_COMPENSATION_GRID_POINTS-1);
|
|
1668
|
+ int yGridSpacing = (BACK_PROBE_BED_POSITION - FRONT_PROBE_BED_POSITION) / (AUTO_BED_COMPENSATION_GRID_POINTS-1);
|
1669
|
1669
|
|
1670
|
1670
|
|
1671
|
1671
|
// solve the plane equation ax + by + d = z
|
|
@@ -1675,9 +1675,9 @@ void process_commands()
|
1675
|
1675
|
// so Vx = -a Vy = -b Vz = 1 (we want the vector facing towards positive Z
|
1676
|
1676
|
|
1677
|
1677
|
// "A" matrix of the linear system of equations
|
1678
|
|
- double eqnAMatrix[AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS*3];
|
|
1678
|
+ double eqnAMatrix[AUTO_BED_COMPENSATION_GRID_POINTS*AUTO_BED_COMPENSATION_GRID_POINTS*3];
|
1679
|
1679
|
// "B" vector of Z points
|
1680
|
|
- double eqnBVector[AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS];
|
|
1680
|
+ double eqnBVector[AUTO_BED_COMPENSATION_GRID_POINTS*AUTO_BED_COMPENSATION_GRID_POINTS];
|
1681
|
1681
|
|
1682
|
1682
|
|
1683
|
1683
|
int probePointCounter = 0;
|
|
@@ -1700,7 +1700,7 @@ void process_commands()
|
1700
|
1700
|
zig = true;
|
1701
|
1701
|
}
|
1702
|
1702
|
|
1703
|
|
- for (int xCount=0; xCount < AUTO_BED_LEVELING_GRID_POINTS; xCount++)
|
|
1703
|
+ for (int xCount=0; xCount < AUTO_BED_COMPENSATION_GRID_POINTS; xCount++)
|
1704
|
1704
|
{
|
1705
|
1705
|
float z_before;
|
1706
|
1706
|
if (probePointCounter == 0)
|
|
@@ -1717,9 +1717,9 @@ void process_commands()
|
1717
|
1717
|
|
1718
|
1718
|
eqnBVector[probePointCounter] = measured_z;
|
1719
|
1719
|
|
1720
|
|
- eqnAMatrix[probePointCounter + 0*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = xProbe;
|
1721
|
|
- eqnAMatrix[probePointCounter + 1*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = yProbe;
|
1722
|
|
- eqnAMatrix[probePointCounter + 2*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = 1;
|
|
1720
|
+ eqnAMatrix[probePointCounter + 0*AUTO_BED_COMPENSATION_GRID_POINTS*AUTO_BED_COMPENSATION_GRID_POINTS] = xProbe;
|
|
1721
|
+ eqnAMatrix[probePointCounter + 1*AUTO_BED_COMPENSATION_GRID_POINTS*AUTO_BED_COMPENSATION_GRID_POINTS] = yProbe;
|
|
1722
|
+ eqnAMatrix[probePointCounter + 2*AUTO_BED_COMPENSATION_GRID_POINTS*AUTO_BED_COMPENSATION_GRID_POINTS] = 1;
|
1723
|
1723
|
probePointCounter++;
|
1724
|
1724
|
xProbe += xInc;
|
1725
|
1725
|
}
|
|
@@ -1727,7 +1727,7 @@ void process_commands()
|
1727
|
1727
|
clean_up_after_endstop_move();
|
1728
|
1728
|
|
1729
|
1729
|
// solve lsq problem
|
1730
|
|
- double *plane_equation_coefficients = qr_solve(AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS, 3, eqnAMatrix, eqnBVector);
|
|
1730
|
+ double *plane_equation_coefficients = qr_solve(AUTO_BED_COMPENSATION_GRID_POINTS*AUTO_BED_COMPENSATION_GRID_POINTS, 3, eqnAMatrix, eqnBVector);
|
1731
|
1731
|
|
1732
|
1732
|
SERIAL_PROTOCOLPGM("Eqn coefficients: a: ");
|
1733
|
1733
|
SERIAL_PROTOCOL(plane_equation_coefficients[0]);
|
|
@@ -1737,11 +1737,11 @@ void process_commands()
|
1737
|
1737
|
SERIAL_PROTOCOLLN(plane_equation_coefficients[2]);
|
1738
|
1738
|
|
1739
|
1739
|
|
1740
|
|
- set_bed_level_equation_lsq(plane_equation_coefficients);
|
|
1740
|
+ set_bed_compensation_equation_lsq(plane_equation_coefficients);
|
1741
|
1741
|
|
1742
|
1742
|
free(plane_equation_coefficients);
|
1743
|
1743
|
|
1744
|
|
-#else // AUTO_BED_LEVELING_GRID not defined
|
|
1744
|
+#else // AUTO_BED_COMPENSATION_GRID not defined
|
1745
|
1745
|
|
1746
|
1746
|
// Probe at 3 arbitrary points
|
1747
|
1747
|
// probe 1
|
|
@@ -1755,21 +1755,21 @@ void process_commands()
|
1755
|
1755
|
|
1756
|
1756
|
clean_up_after_endstop_move();
|
1757
|
1757
|
|
1758
|
|
- set_bed_level_equation_3pts(z_at_pt_1, z_at_pt_2, z_at_pt_3);
|
|
1758
|
+ set_bed_compensation_equation_3pts(z_at_pt_1, z_at_pt_2, z_at_pt_3);
|
1759
|
1759
|
|
1760
|
1760
|
|
1761
|
|
-#endif // AUTO_BED_LEVELING_GRID
|
|
1761
|
+#endif // AUTO_BED_COMPENSATION_GRID
|
1762
|
1762
|
st_synchronize();
|
1763
|
1763
|
|
1764
|
1764
|
// The following code correct the Z height difference from z-probe position and hotend tip position.
|
1765
|
1765
|
// The Z height on homing is measured by Z-Probe, but the probe is quite far from the hotend.
|
1766
|
1766
|
// When the bed is uneven, this height must be corrected.
|
1767
|
|
- real_z = float(st_get_position(Z_AXIS))/axis_steps_per_unit[Z_AXIS]; //get the real Z (since the auto bed leveling is already correcting the plane)
|
|
1767
|
+ real_z = float(st_get_position(Z_AXIS))/axis_steps_per_unit[Z_AXIS]; //get the real Z (since the auto bed compensation is already correcting the plane)
|
1768
|
1768
|
x_tmp = current_position[X_AXIS] + X_PROBE_OFFSET_FROM_EXTRUDER;
|
1769
|
1769
|
y_tmp = current_position[Y_AXIS] + Y_PROBE_OFFSET_FROM_EXTRUDER;
|
1770
|
1770
|
z_tmp = current_position[Z_AXIS];
|
1771
|
1771
|
|
1772
|
|
- apply_rotation_xyz(plan_bed_level_matrix, x_tmp, y_tmp, z_tmp); //Apply the correction sending the probe offset
|
|
1772
|
+ apply_rotation_xyz(plan_bed_compensation_matrix, x_tmp, y_tmp, z_tmp); //Apply the correction sending the probe offset
|
1773
|
1773
|
current_position[Z_AXIS] = z_tmp - real_z + current_position[Z_AXIS]; //The difference is added to current position and sent to planner.
|
1774
|
1774
|
plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
|
1775
|
1775
|
#ifdef Z_PROBE_SLED
|
|
@@ -1782,7 +1782,7 @@ void process_commands()
|
1782
|
1782
|
{
|
1783
|
1783
|
engage_z_probe(); // Engage Z Servo endstop if available
|
1784
|
1784
|
st_synchronize();
|
1785
|
|
- // TODO: make sure the bed_level_rotation_matrix is identity or the planner will get set incorectly
|
|
1785
|
+ // TODO: make sure the bed_compensation_rotation_matrix is identity or the planner will get set incorectly
|
1786
|
1786
|
setup_for_endstop_move();
|
1787
|
1787
|
|
1788
|
1788
|
feedrate = homing_feedrate[Z_AXIS];
|
|
@@ -1809,7 +1809,7 @@ void process_commands()
|
1809
|
1809
|
dock_sled(false);
|
1810
|
1810
|
break;
|
1811
|
1811
|
#endif // Z_PROBE_SLED
|
1812
|
|
-#endif // ENABLE_AUTO_BED_LEVELING
|
|
1812
|
+#endif // ENABLE_AUTO_BED_COMPENSATION
|
1813
|
1813
|
case 90: // G90
|
1814
|
1814
|
relative_mode = false;
|
1815
|
1815
|
break;
|
|
@@ -2068,7 +2068,7 @@ void process_commands()
|
2068
|
2068
|
//
|
2069
|
2069
|
// This function assumes the bed has been homed. Specificaly, that a G28 command
|
2070
|
2070
|
// as been issued prior to invoking the M48 Z-Probe repeatability measurement function.
|
2071
|
|
-// Any information generated by a prior G29 Bed leveling command will be lost and need to be
|
|
2071
|
+// Any information generated by a prior G29 Bed compensation command will be lost and need to be
|
2072
|
2072
|
// regenerated.
|
2073
|
2073
|
//
|
2074
|
2074
|
// The number of samples will default to 10 if not specified. You can use upper or lower case
|
|
@@ -2076,7 +2076,7 @@ void process_commands()
|
2076
|
2076
|
// N for its communication protocol and will get horribly confused if you send it a capital N.
|
2077
|
2077
|
//
|
2078
|
2078
|
|
2079
|
|
-#ifdef ENABLE_AUTO_BED_LEVELING
|
|
2079
|
+#ifdef ENABLE_AUTO_BED_COMPENSATION
|
2080
|
2080
|
#ifdef Z_PROBE_REPEATABILITY_TEST
|
2081
|
2081
|
|
2082
|
2082
|
case 48: // M48 Z-Probe repeatability
|
|
@@ -2154,7 +2154,7 @@ void process_commands()
|
2154
|
2154
|
//
|
2155
|
2155
|
|
2156
|
2156
|
st_synchronize();
|
2157
|
|
- plan_bed_level_matrix.set_to_identity();
|
|
2157
|
+ plan_bed_compensation_matrix.set_to_identity();
|
2158
|
2158
|
plan_buffer_line( X_current, Y_current, Z_start_location,
|
2159
|
2159
|
ext_position,
|
2160
|
2160
|
homing_feedrate[Z_AXIS]/60,
|
|
@@ -2333,7 +2333,7 @@ Sigma_Exit:
|
2333
|
2333
|
break;
|
2334
|
2334
|
}
|
2335
|
2335
|
#endif // Z_PROBE_REPEATABILITY_TEST
|
2336
|
|
-#endif // ENABLE_AUTO_BED_LEVELING
|
|
2336
|
+#endif // ENABLE_AUTO_BED_COMPENSATION
|
2337
|
2337
|
|
2338
|
2338
|
case 104: // M104
|
2339
|
2339
|
if(setTargetedHotend(104)){
|
|
@@ -3093,11 +3093,11 @@ Sigma_Exit:
|
3093
|
3093
|
if (code_seen('S')) {
|
3094
|
3094
|
servo_position = code_value();
|
3095
|
3095
|
if ((servo_index >= 0) && (servo_index < NUM_SERVOS)) {
|
3096
|
|
-#if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
|
|
3096
|
+#if defined (ENABLE_AUTO_BED_COMPENSATION) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
|
3097
|
3097
|
servos[servo_index].attach(0);
|
3098
|
3098
|
#endif
|
3099
|
3099
|
servos[servo_index].write(servo_position);
|
3100
|
|
-#if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
|
|
3100
|
+#if defined (ENABLE_AUTO_BED_COMPENSATION) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
|
3101
|
3101
|
delay(PROBE_SERVO_DEACTIVATION_DELAY);
|
3102
|
3102
|
servos[servo_index].detach();
|
3103
|
3103
|
#endif
|
|
@@ -3362,7 +3362,7 @@ Sigma_Exit:
|
3362
|
3362
|
st_synchronize();
|
3363
|
3363
|
}
|
3364
|
3364
|
break;
|
3365
|
|
-#if defined(ENABLE_AUTO_BED_LEVELING) && defined(SERVO_ENDSTOPS) && not defined(Z_PROBE_SLED)
|
|
3365
|
+#if defined(ENABLE_AUTO_BED_COMPENSATION) && defined(SERVO_ENDSTOPS) && not defined(Z_PROBE_SLED)
|
3366
|
3366
|
case 401:
|
3367
|
3367
|
{
|
3368
|
3368
|
engage_z_probe(); // Engage Z Servo endstop if available
|