Browse Source

Added endstop reporting

Erik van der Zalm 13 years ago
parent
commit
4e5becfc51
4 changed files with 138 additions and 146 deletions
  1. 11
    13
      Marlin/Marlin.pde
  2. 1
    0
      Marlin/planner.cpp
  3. 76
    83
      Marlin/stepper.cpp
  4. 50
    50
      Marlin/stepper.h

+ 11
- 13
Marlin/Marlin.pde View File

465
     destination[LETTER##_AXIS] = 1.5 * LETTER##_MAX_LENGTH * LETTER##_HOME_DIR; \
465
     destination[LETTER##_AXIS] = 1.5 * LETTER##_MAX_LENGTH * LETTER##_HOME_DIR; \
466
     feedrate = homing_feedrate[LETTER##_AXIS]; \
466
     feedrate = homing_feedrate[LETTER##_AXIS]; \
467
     prepare_move(); \
467
     prepare_move(); \
468
-    st_synchronize();\
469
     \
468
     \
470
     current_position[LETTER##_AXIS] = 0;\
469
     current_position[LETTER##_AXIS] = 0;\
471
     plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);\
470
     plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);\
472
     destination[LETTER##_AXIS] = -5 * LETTER##_HOME_DIR;\
471
     destination[LETTER##_AXIS] = -5 * LETTER##_HOME_DIR;\
473
     prepare_move(); \
472
     prepare_move(); \
474
-    st_synchronize();\
475
     \
473
     \
476
     destination[LETTER##_AXIS] = 10 * LETTER##_HOME_DIR;\
474
     destination[LETTER##_AXIS] = 10 * LETTER##_HOME_DIR;\
477
     feedrate = homing_feedrate[LETTER##_AXIS]/2 ;  \
475
     feedrate = homing_feedrate[LETTER##_AXIS]/2 ;  \
478
     prepare_move(); \
476
     prepare_move(); \
479
-    st_synchronize();\
480
     \
477
     \
481
     current_position[LETTER##_AXIS] = (LETTER##_HOME_DIR == -1) ? 0 : LETTER##_MAX_LENGTH;\
478
     current_position[LETTER##_AXIS] = (LETTER##_HOME_DIR == -1) ? 0 : LETTER##_MAX_LENGTH;\
482
     plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);\
479
     plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);\
483
     destination[LETTER##_AXIS] = current_position[LETTER##_AXIS];\
480
     destination[LETTER##_AXIS] = current_position[LETTER##_AXIS];\
484
     feedrate = 0.0;\
481
     feedrate = 0.0;\
485
     st_synchronize();\
482
     st_synchronize();\
483
+    plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);\
486
     endstops_hit_on_purpose();\
484
     endstops_hit_on_purpose();\
487
   }
485
   }
488
 
486
 
680
     case 140: // M140 set bed temp
678
     case 140: // M140 set bed temp
681
       if (code_seen('S')) setTargetBed(code_value());
679
       if (code_seen('S')) setTargetBed(code_value());
682
       break;
680
       break;
683
-    case 105: // M105
681
+    case 105 : // M105
684
       //SERIAL_ECHOLN(freeMemory());
682
       //SERIAL_ECHOLN(freeMemory());
685
        //test watchdog:
683
        //test watchdog:
686
        //delay(20000);
684
        //delay(20000);
817
       axis_relative_modes[3] = true;
815
       axis_relative_modes[3] = true;
818
       break;
816
       break;
819
     case 18: //compatibility
817
     case 18: //compatibility
820
-    case 84:
818
+    case 84: // M84
821
       if(code_seen('S')){ 
819
       if(code_seen('S')){ 
822
         stepper_inactive_time = code_value() * 1000; 
820
         stepper_inactive_time = code_value() * 1000; 
823
       }
821
       }
854
       SERIAL_PROTOCOL(current_position[Z_AXIS]);
852
       SERIAL_PROTOCOL(current_position[Z_AXIS]);
855
       SERIAL_PROTOCOLPGM("E:");      
853
       SERIAL_PROTOCOLPGM("E:");      
856
       SERIAL_PROTOCOL(current_position[E_AXIS]);
854
       SERIAL_PROTOCOL(current_position[E_AXIS]);
857
-      #ifdef DEBUG_STEPS
858
-        SERIAL_PROTOCOLPGM(" Count X:");
859
-        SERIAL_PROTOCOL(float(count_position[X_AXIS])/axis_steps_per_unit[X_AXIS]);
860
-        SERIAL_PROTOCOLPGM("Y:");
861
-        SERIAL_PROTOCOL(float(count_position[Y_AXIS])/axis_steps_per_unit[Y_AXIS]);
862
-        SERIAL_PROTOCOLPGM("Z:");
863
-        SERIAL_PROTOCOL(float(count_position[Z_AXIS])/axis_steps_per_unit[Z_AXIS]);
864
-      #endif
855
+      
856
+      SERIAL_PROTOCOLPGM(" Count X:");
857
+      SERIAL_PROTOCOL(float(st_get_position(X_AXIS))/axis_steps_per_unit[X_AXIS]);
858
+      SERIAL_PROTOCOLPGM("Y:");
859
+      SERIAL_PROTOCOL(float(st_get_position(Y_AXIS))/axis_steps_per_unit[Y_AXIS]);
860
+      SERIAL_PROTOCOLPGM("Z:");
861
+      SERIAL_PROTOCOL(float(st_get_position(Z_AXIS))/axis_steps_per_unit[Z_AXIS]);
862
+      
865
       SERIAL_PROTOCOLLN("");
863
       SERIAL_PROTOCOLLN("");
866
       break;
864
       break;
867
     case 119: // M119
865
     case 119: // M119

+ 1
- 0
Marlin/planner.cpp View File

754
   position[Y_AXIS] = lround(y*axis_steps_per_unit[Y_AXIS]);
754
   position[Y_AXIS] = lround(y*axis_steps_per_unit[Y_AXIS]);
755
   position[Z_AXIS] = lround(z*axis_steps_per_unit[Z_AXIS]);     
755
   position[Z_AXIS] = lround(z*axis_steps_per_unit[Z_AXIS]);     
756
   position[E_AXIS] = lround(e*axis_steps_per_unit[E_AXIS]);  
756
   position[E_AXIS] = lround(e*axis_steps_per_unit[E_AXIS]);  
757
+  st_set_position(position[X_AXIS], position[Y_AXIS], position[Z_AXIS], position[E_AXIS]);
757
   previous_nominal_speed = 0.0; // Resets planner junction speeds. Assumes start from rest.
758
   previous_nominal_speed = 0.0; // Resets planner junction speeds. Assumes start from rest.
758
   previous_speed[0] = 0.0;
759
   previous_speed[0] = 0.0;
759
   previous_speed[1] = 0.0;
760
   previous_speed[1] = 0.0;

+ 76
- 83
Marlin/stepper.cpp View File

66
 
66
 
67
 volatile long endstops_trigsteps[3]={0,0,0};
67
 volatile long endstops_trigsteps[3]={0,0,0};
68
 volatile long endstops_stepsTotal,endstops_stepsDone;
68
 volatile long endstops_stepsTotal,endstops_stepsDone;
69
-static volatile bool endstops_hit=false;
69
+static volatile bool endstop_x_hit=false;
70
+static volatile bool endstop_y_hit=false;
71
+static volatile bool endstop_z_hit=false;
70
 
72
 
71
-// if DEBUG_STEPS is enabled, M114 can be used to compare two methods of determining the X,Y,Z position of the printer.
72
-// for debugging purposes only, should be disabled by default
73
-#ifdef DEBUG_STEPS
74
-  volatile long count_position[NUM_AXIS] = { 0, 0, 0, 0};
75
-  volatile int count_direction[NUM_AXIS] = { 1, 1, 1, 1};
76
-#endif
73
+volatile long count_position[NUM_AXIS] = { 0, 0, 0, 0};
74
+volatile char count_direction[NUM_AXIS] = { 1, 1, 1, 1};
77
 
75
 
78
 //===========================================================================
76
 //===========================================================================
79
 //=============================functions         ============================
77
 //=============================functions         ============================
155
 #define ENABLE_STEPPER_DRIVER_INTERRUPT()  TIMSK1 |= (1<<OCIE1A)
153
 #define ENABLE_STEPPER_DRIVER_INTERRUPT()  TIMSK1 |= (1<<OCIE1A)
156
 #define DISABLE_STEPPER_DRIVER_INTERRUPT() TIMSK1 &= ~(1<<OCIE1A)
154
 #define DISABLE_STEPPER_DRIVER_INTERRUPT() TIMSK1 &= ~(1<<OCIE1A)
157
 
155
 
158
-
159
-inline void endstops_triggered(const unsigned long &stepstaken)  
160
-{
161
-  //this will only work if there is no bufferig
162
-  //however, if you perform a move at which the endstops should be triggered, and wait for it to complete, i.e. by blocking command, it should work
163
-  //yes, it uses floats, but: if endstops are triggered, thats hopefully not critical anymore anyways.
164
-  //endstops_triggerpos;
165
-  
166
-  if(endstops_hit) //hitting a second time while the first hit is not reported
167
-    return;
168
-  if(current_block == NULL)
169
-    return;
170
-  endstops_stepsTotal=current_block->step_event_count;
171
-  endstops_stepsDone=stepstaken;
172
-  endstops_trigsteps[0]=current_block->steps_x;
173
-  endstops_trigsteps[1]=current_block->steps_y;
174
-  endstops_trigsteps[2]=current_block->steps_z;
175
-
176
-  endstops_hit=true;
177
-}
178
-
179
 void checkHitEndstops()
156
 void checkHitEndstops()
180
 {
157
 {
181
-  if( !endstops_hit)
182
-   return;
183
-  float endstops_triggerpos[3]={0,0,0};
184
-  float ratiodone=endstops_stepsDone/float(endstops_stepsTotal);  //ratio of current_block thas was performed
185
-  
186
-  endstops_triggerpos[0]=current_position[0]-(endstops_trigsteps[0]*ratiodone)/float(axis_steps_per_unit[0]);
187
-  endstops_triggerpos[1]=current_position[1]-(endstops_trigsteps[1]*ratiodone)/float(axis_steps_per_unit[1]);
188
-  endstops_triggerpos[2]=current_position[2]-(endstops_trigsteps[2]*ratiodone)/float(axis_steps_per_unit[2]);
189
- SERIAL_ECHO_START;
190
- SERIAL_ECHOPGM("endstops hit: ");
191
- SERIAL_ECHOPAIR(" X:",endstops_triggerpos[0]);
192
- SERIAL_ECHOPAIR(" Y:",endstops_triggerpos[1]);
193
- SERIAL_ECHOPAIR(" Z:",endstops_triggerpos[2]);
194
- SERIAL_ECHOLN("");
195
- endstops_hit=false;
158
+ if( endstop_x_hit || endstop_y_hit || endstop_z_hit) {
159
+   SERIAL_ECHO_START;
160
+   SERIAL_ECHOPGM("endstops hit: ");
161
+   if(endstop_x_hit) {
162
+     SERIAL_ECHOPAIR(" X:",(float)endstops_trigsteps[X_AXIS]/axis_steps_per_unit[X_AXIS]);
163
+   }
164
+   if(endstop_y_hit) {
165
+     SERIAL_ECHOPAIR(" Y:",(float)endstops_trigsteps[Y_AXIS]/axis_steps_per_unit[Y_AXIS]);
166
+   }
167
+   if(endstop_z_hit) {
168
+     SERIAL_ECHOPAIR(" Z:",(float)endstops_trigsteps[Z_AXIS]/axis_steps_per_unit[Z_AXIS]);
169
+   }
170
+   SERIAL_ECHOLN("");
171
+   endstop_x_hit=false;
172
+   endstop_y_hit=false;
173
+   endstop_z_hit=false;
174
+ }
196
 }
175
 }
197
 
176
 
198
 void endstops_hit_on_purpose()
177
 void endstops_hit_on_purpose()
199
 {
178
 {
200
-  endstops_hit=false;
179
+  endstop_x_hit=false;
180
+  endstop_y_hit=false;
181
+  endstop_z_hit=false;
201
 }
182
 }
202
 
183
 
203
 //         __________________________
184
 //         __________________________
312
     // Set direction en check limit switches
293
     // Set direction en check limit switches
313
     if ((out_bits & (1<<X_AXIS)) != 0) {   // -direction
294
     if ((out_bits & (1<<X_AXIS)) != 0) {   // -direction
314
       WRITE(X_DIR_PIN, INVERT_X_DIR);
295
       WRITE(X_DIR_PIN, INVERT_X_DIR);
315
-      #ifdef DEBUG_STEPS
316
-        count_direction[X_AXIS]=-1;
317
-      #endif
296
+      count_direction[X_AXIS]=-1;
318
       #if X_MIN_PIN > -1
297
       #if X_MIN_PIN > -1
319
-        if(READ(X_MIN_PIN) != ENDSTOPS_INVERTING) {
320
- //         endstops_triggered(step_events_completed);
298
+        if((READ(X_MIN_PIN) != ENDSTOPS_INVERTING) && (current_block->steps_x > 0)) {
299
+          endstops_trigsteps[X_AXIS] = count_position[X_AXIS];
300
+          endstop_x_hit=true;
321
           step_events_completed = current_block->step_event_count;
301
           step_events_completed = current_block->step_event_count;
322
         }
302
         }
323
       #endif
303
       #endif
324
     }
304
     }
325
     else { // +direction 
305
     else { // +direction 
326
       WRITE(X_DIR_PIN,!INVERT_X_DIR);
306
       WRITE(X_DIR_PIN,!INVERT_X_DIR);
327
-      #ifdef DEBUG_STEPS
328
-        count_direction[X_AXIS]=1;
329
-      #endif
307
+      count_direction[X_AXIS]=1;
330
       #if X_MAX_PIN > -1
308
       #if X_MAX_PIN > -1
331
-        if((READ(X_MAX_PIN) != ENDSTOPS_INVERTING)  && (current_block->steps_x >0)){
332
- //         endstops_triggered(step_events_completed);
309
+        if((READ(X_MAX_PIN) != ENDSTOPS_INVERTING) && (current_block->steps_x > 0)){
310
+          endstops_trigsteps[X_AXIS] = count_position[X_AXIS];
311
+          endstop_x_hit=true;
333
           step_events_completed = current_block->step_event_count;
312
           step_events_completed = current_block->step_event_count;
334
         }
313
         }
335
       #endif
314
       #endif
337
 
316
 
338
     if ((out_bits & (1<<Y_AXIS)) != 0) {   // -direction
317
     if ((out_bits & (1<<Y_AXIS)) != 0) {   // -direction
339
       WRITE(Y_DIR_PIN,INVERT_Y_DIR);
318
       WRITE(Y_DIR_PIN,INVERT_Y_DIR);
340
-      #ifdef DEBUG_STEPS
341
-        count_direction[Y_AXIS]=-1;
342
-      #endif
319
+      count_direction[Y_AXIS]=-1;
343
       #if Y_MIN_PIN > -1
320
       #if Y_MIN_PIN > -1
344
-        if(READ(Y_MIN_PIN) != ENDSTOPS_INVERTING) {
345
-//          endstops_triggered(step_events_completed);
321
+        if((READ(Y_MIN_PIN) != ENDSTOPS_INVERTING) && (current_block->steps_y > 0)) {
322
+          endstops_trigsteps[Y_AXIS] = count_position[Y_AXIS];
323
+          endstop_y_hit=true;
346
           step_events_completed = current_block->step_event_count;
324
           step_events_completed = current_block->step_event_count;
347
         }
325
         }
348
       #endif
326
       #endif
349
     }
327
     }
350
     else { // +direction
328
     else { // +direction
351
     WRITE(Y_DIR_PIN,!INVERT_Y_DIR);
329
     WRITE(Y_DIR_PIN,!INVERT_Y_DIR);
352
-      #ifdef DEBUG_STEPS
353
-        count_direction[Y_AXIS]=1;
354
-      #endif
330
+      count_direction[Y_AXIS]=1;
355
       #if Y_MAX_PIN > -1
331
       #if Y_MAX_PIN > -1
356
-      if((READ(Y_MAX_PIN) != ENDSTOPS_INVERTING) && (current_block->steps_y >0)){
357
- //         endstops_triggered(step_events_completed);
332
+      if((READ(Y_MAX_PIN) != ENDSTOPS_INVERTING) && (current_block->steps_y > 0)){
333
+          endstops_trigsteps[Y_AXIS] = count_position[Y_AXIS];
334
+          endstop_y_hit=true;
358
           step_events_completed = current_block->step_event_count;
335
           step_events_completed = current_block->step_event_count;
359
         }
336
         }
360
       #endif
337
       #endif
362
 
339
 
363
     if ((out_bits & (1<<Z_AXIS)) != 0) {   // -direction
340
     if ((out_bits & (1<<Z_AXIS)) != 0) {   // -direction
364
       WRITE(Z_DIR_PIN,INVERT_Z_DIR);
341
       WRITE(Z_DIR_PIN,INVERT_Z_DIR);
365
-      #ifdef DEBUG_STEPS
366
       count_direction[Z_AXIS]=-1;
342
       count_direction[Z_AXIS]=-1;
367
-      #endif
368
       #if Z_MIN_PIN > -1
343
       #if Z_MIN_PIN > -1
369
-        if(READ(Z_MIN_PIN) != ENDSTOPS_INVERTING) {
370
- //         endstops_triggered(step_events_completed);
344
+        if((READ(Z_MIN_PIN) != ENDSTOPS_INVERTING) && (current_block->steps_z > 0)) {
345
+          endstops_trigsteps[Z_AXIS] = count_position[Z_AXIS];
346
+          endstop_z_hit=true;
371
           step_events_completed = current_block->step_event_count;
347
           step_events_completed = current_block->step_event_count;
372
         }
348
         }
373
       #endif
349
       #endif
374
     }
350
     }
375
     else { // +direction
351
     else { // +direction
376
       WRITE(Z_DIR_PIN,!INVERT_Z_DIR);
352
       WRITE(Z_DIR_PIN,!INVERT_Z_DIR);
377
-      #ifdef DEBUG_STEPS
378
         count_direction[Z_AXIS]=1;
353
         count_direction[Z_AXIS]=1;
379
-      #endif
380
       #if Z_MAX_PIN > -1
354
       #if Z_MAX_PIN > -1
381
-        if((READ(Z_MAX_PIN) != ENDSTOPS_INVERTING)  && (current_block->steps_z >0)){
382
- //         endstops_triggered(step_events_completed);
355
+        if((READ(Z_MAX_PIN) != ENDSTOPS_INVERTING)  && (current_block->steps_z > 0)){
356
+          endstops_trigsteps[Z_AXIS] = count_position[Z_AXIS];
357
+          endstop_z_hit=true;
383
           step_events_completed = current_block->step_event_count;
358
           step_events_completed = current_block->step_event_count;
384
         }
359
         }
385
       #endif
360
       #endif
386
     }
361
     }
387
 
362
 
388
     #ifndef ADVANCE
363
     #ifndef ADVANCE
389
-      if ((out_bits & (1<<E_AXIS)) != 0)   // -direction
364
+      if ((out_bits & (1<<E_AXIS)) != 0) {  // -direction
390
         WRITE(E_DIR_PIN,INVERT_E_DIR);
365
         WRITE(E_DIR_PIN,INVERT_E_DIR);
391
-      else // +direction
366
+        count_direction[E_AXIS]=-1;
367
+      }
368
+      else { // +direction
392
         WRITE(E_DIR_PIN,!INVERT_E_DIR);
369
         WRITE(E_DIR_PIN,!INVERT_E_DIR);
370
+        count_direction[E_AXIS]=-1;
371
+      }
393
     #endif //!ADVANCE
372
     #endif //!ADVANCE
394
 
373
 
395
     for(int8_t i=0; i < step_loops; i++) { // Take multiple steps per interrupt (For high speed moves) 
374
     for(int8_t i=0; i < step_loops; i++) { // Take multiple steps per interrupt (For high speed moves) 
422
         WRITE(X_STEP_PIN, HIGH);
401
         WRITE(X_STEP_PIN, HIGH);
423
         counter_x -= current_block->step_event_count;
402
         counter_x -= current_block->step_event_count;
424
         WRITE(X_STEP_PIN, LOW);
403
         WRITE(X_STEP_PIN, LOW);
425
-        #ifdef DEBUG_STEPS
426
-          count_position[X_AXIS]+=count_direction[X_AXIS];   
427
-        #endif
404
+        count_position[X_AXIS]+=count_direction[X_AXIS];   
428
       }
405
       }
429
 
406
 
430
       counter_y += current_block->steps_y;
407
       counter_y += current_block->steps_y;
432
         WRITE(Y_STEP_PIN, HIGH);
409
         WRITE(Y_STEP_PIN, HIGH);
433
         counter_y -= current_block->step_event_count;
410
         counter_y -= current_block->step_event_count;
434
         WRITE(Y_STEP_PIN, LOW);
411
         WRITE(Y_STEP_PIN, LOW);
435
-        #ifdef DEBUG_STEPS
436
-          count_position[Y_AXIS]+=count_direction[Y_AXIS];
437
-        #endif
412
+        count_position[Y_AXIS]+=count_direction[Y_AXIS];
438
       }
413
       }
439
 
414
 
440
       counter_z += current_block->steps_z;
415
       counter_z += current_block->steps_z;
442
         WRITE(Z_STEP_PIN, HIGH);
417
         WRITE(Z_STEP_PIN, HIGH);
443
         counter_z -= current_block->step_event_count;
418
         counter_z -= current_block->step_event_count;
444
         WRITE(Z_STEP_PIN, LOW);
419
         WRITE(Z_STEP_PIN, LOW);
445
-        #ifdef DEBUG_STEPS
446
-          count_position[Z_AXIS]+=count_direction[Z_AXIS];
447
-        #endif
420
+        count_position[Z_AXIS]+=count_direction[Z_AXIS];
448
       }
421
       }
449
 
422
 
450
       #ifndef ADVANCE
423
       #ifndef ADVANCE
453
           WRITE(E_STEP_PIN, HIGH);
426
           WRITE(E_STEP_PIN, HIGH);
454
           counter_e -= current_block->step_event_count;
427
           counter_e -= current_block->step_event_count;
455
           WRITE(E_STEP_PIN, LOW);
428
           WRITE(E_STEP_PIN, LOW);
429
+          count_position[E_AXIS]+=count_direction[E_AXIS];
456
         }
430
         }
457
       #endif //!ADVANCE
431
       #endif //!ADVANCE
458
       step_events_completed += 1;  
432
       step_events_completed += 1;  
669
     LCD_STATUS;
643
     LCD_STATUS;
670
   }   
644
   }   
671
 }
645
 }
646
+
647
+void st_set_position(const long &x, const long &y, const long &z, const long &e)
648
+{
649
+  CRITICAL_SECTION_START;
650
+  count_position[X_AXIS] = x;
651
+  count_position[Y_AXIS] = y;
652
+  count_position[Z_AXIS] = z;
653
+  count_position[E_AXIS] = e;
654
+  CRITICAL_SECTION_END;
655
+}
656
+
657
+long st_get_position(char axis)
658
+{
659
+  long count_pos;
660
+  CRITICAL_SECTION_START;
661
+  count_pos = count_position[axis];
662
+  CRITICAL_SECTION_END;
663
+  return count_pos;
664
+}

+ 50
- 50
Marlin/stepper.h View File

1
-/*
2
-  stepper.h - stepper motor driver: executes motion plans of planner.c using the stepper motors
3
-  Part of Grbl
4
-
5
-  Copyright (c) 2009-2011 Simen Svale Skogsrud
6
-
7
-  Grbl is free software: you can redistribute it and/or modify
8
-  it under the terms of the GNU General Public License as published by
9
-  the Free Software Foundation, either version 3 of the License, or
10
-  (at your option) any later version.
11
-
12
-  Grbl is distributed in the hope that it will be useful,
13
-  but WITHOUT ANY WARRANTY; without even the implied warranty of
14
-  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15
-  GNU General Public License for more details.
16
-
17
-  You should have received a copy of the GNU General Public License
18
-  along with Grbl.  If not, see <http://www.gnu.org/licenses/>.
19
-*/
20
-
21
-#ifndef stepper_h
22
-#define stepper_h 
23
-
24
-#include "planner.h"
25
-
26
-// Initialize and start the stepper motor subsystem
27
-void st_init();
28
-
29
-// Block until all buffered steps are executed
30
-void st_synchronize();
31
-
32
-// The stepper subsystem goes to sleep when it runs out of things to execute. Call this
33
-// to notify the subsystem that it is time to go to work.
34
-void st_wake_up();
35
-
36
-// if DEBUG_STEPS is enabled, M114 can be used to compare two methods of determining the X,Y,Z position of the printer.
37
-// for debugging purposes only, should be disabled by default
38
-#ifdef DEBUG_STEPS
39
-  extern volatile long count_position[NUM_AXIS];
40
-  extern volatile int count_direction[NUM_AXIS];
41
-#endif
42
-  
43
-void checkHitEndstops(); //call from somwhere to create an serial error message with the locations the endstops where hit, in case they were triggered
44
-void endstops_hit_on_purpose(); //avoid creation of the message, i.e. after homeing and before a routine call of checkHitEndstops();
45
-
46
-
47
-
48
-extern block_t *current_block;  // A pointer to the block currently being traced
49
-
50
-
1
+/*
2
+  stepper.h - stepper motor driver: executes motion plans of planner.c using the stepper motors
3
+  Part of Grbl
4
+
5
+  Copyright (c) 2009-2011 Simen Svale Skogsrud
6
+
7
+  Grbl is free software: you can redistribute it and/or modify
8
+  it under the terms of the GNU General Public License as published by
9
+  the Free Software Foundation, either version 3 of the License, or
10
+  (at your option) any later version.
11
+
12
+  Grbl is distributed in the hope that it will be useful,
13
+  but WITHOUT ANY WARRANTY; without even the implied warranty of
14
+  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15
+  GNU General Public License for more details.
16
+
17
+  You should have received a copy of the GNU General Public License
18
+  along with Grbl.  If not, see <http://www.gnu.org/licenses/>.
19
+*/
20
+
21
+#ifndef stepper_h
22
+#define stepper_h 
23
+
24
+#include "planner.h"
25
+
26
+// Initialize and start the stepper motor subsystem
27
+void st_init();
28
+
29
+// Block until all buffered steps are executed
30
+void st_synchronize();
31
+
32
+// Set current position in steps
33
+void st_set_position(const long &x, const long &y, const long &z, const long &e);
34
+
35
+// Get current position in steps
36
+long st_get_position(char axis);
37
+
38
+// The stepper subsystem goes to sleep when it runs out of things to execute. Call this
39
+// to notify the subsystem that it is time to go to work.
40
+void st_wake_up();
41
+
42
+  
43
+void checkHitEndstops(); //call from somwhere to create an serial error message with the locations the endstops where hit, in case they were triggered
44
+void endstops_hit_on_purpose(); //avoid creation of the message, i.e. after homeing and before a routine call of checkHitEndstops();
45
+
46
+
47
+
48
+extern block_t *current_block;  // A pointer to the block currently being traced
49
+
50
+
51
 #endif
51
 #endif

Loading…
Cancel
Save