浏览代码

Fixed some arc bugs

Erik van der Zalm 13 年前
父节点
当前提交
5cf349a24a
共有 2 个文件被更改,包括 12 次插入114 次删除
  1. 5
    108
      Marlin/Marlin.pde
  2. 7
    6
      Marlin/motion_control.cpp

+ 5
- 108
Marlin/Marlin.pde 查看文件

@@ -1139,8 +1139,8 @@ inline void get_coordinates()
1139 1139
 inline void get_arc_coordinates()
1140 1140
 {
1141 1141
    get_coordinates();
1142
-   if(code_seen("I")) offset[0] = code_value();
1143
-   if(code_seen("J")) offset[1] = code_value();
1142
+   if(code_seen('I')) offset[0] = code_value();
1143
+   if(code_seen('J')) offset[1] = code_value();
1144 1144
 }
1145 1145
 
1146 1146
 void prepare_move()
@@ -1152,119 +1152,16 @@ void prepare_move()
1152 1152
 }
1153 1153
 
1154 1154
 void prepare_arc_move(char isclockwise) {
1155
-#if 0
1156
-  if (radius_mode) {
1157
-    /* 
1158
-      We need to calculate the center of the circle that has the designated radius and passes
1159
-      through both the current position and the target position. This method calculates the following
1160
-      set of equations where [x,y] is the vector from current to target position, d == magnitude of 
1161
-      that vector, h == hypotenuse of the triangle formed by the radius of the circle, the distance to
1162
-      the center of the travel vector. A vector perpendicular to the travel vector [-y,x] is scaled to the 
1163
-      length of h [-y/d*h, x/d*h] and added to the center of the travel vector [x/2,y/2] to form the new point 
1164
-      [i,j] at [x/2-y/d*h, y/2+x/d*h] which will be the center of our arc.
1165
-      
1166
-      d^2 == x^2 + y^2
1167
-      h^2 == r^2 - (d/2)^2
1168
-      i == x/2 - y/d*h
1169
-      j == y/2 + x/d*h
1170
-      
1171
-                                                           O <- [i,j]
1172
-                                                        -  |
1173
-                                              r      -     |
1174
-                                                  -        |
1175
-                                               -           | h
1176
-                                            -              |
1177
-                              [0,0] ->  C -----------------+--------------- T  <- [x,y]
1178
-                                        | <------ d/2 ---->|
1179
-                
1180
-      C - Current position
1181
-      T - Target position
1182
-      O - center of circle that pass through both C and T
1183
-      d - distance from C to T
1184
-      r - designated radius
1185
-      h - distance from center of CT to O
1186
-      
1187
-      Expanding the equations:
1188
-
1189
-      d -> sqrt(x^2 + y^2)
1190
-      h -> sqrt(4 * r^2 - x^2 - y^2)/2
1191
-      i -> (x - (y * sqrt(4 * r^2 - x^2 - y^2)) / sqrt(x^2 + y^2)) / 2 
1192
-      j -> (y + (x * sqrt(4 * r^2 - x^2 - y^2)) / sqrt(x^2 + y^2)) / 2
1193
-     
1194
-      Which can be written:
1195
-      
1196
-      i -> (x - (y * sqrt(4 * r^2 - x^2 - y^2))/sqrt(x^2 + y^2))/2
1197
-      j -> (y + (x * sqrt(4 * r^2 - x^2 - y^2))/sqrt(x^2 + y^2))/2
1198
-      
1199
-      Which we for size and speed reasons optimize to:
1200
-
1201
-      h_x2_div_d = sqrt(4 * r^2 - x^2 - y^2)/sqrt(x^2 + y^2)
1202
-      i = (x - (y * h_x2_div_d))/2
1203
-      j = (y + (x * h_x2_div_d))/2
1204
-      
1205
-    */
1206
-    
1207
-    // Calculate the change in position along each selected axis
1208
-    double x = target[gc.plane_axis_0]-gc.position[gc.plane_axis_0];
1209
-    double y = target[gc.plane_axis_1]-gc.position[gc.plane_axis_1];
1210
-    
1211
-    clear_vector(offset);
1212
-    double h_x2_div_d = -sqrt(4 * r*r - x*x - y*y)/hypot(x,y); // == -(h * 2 / d)
1213
-    // If r is smaller than d, the arc is now traversing the complex plane beyond the reach of any
1214
-    // real CNC, and thus - for practical reasons - we will terminate promptly:
1215
-    if(isnan(h_x2_div_d)) { FAIL(STATUS_FLOATING_POINT_ERROR); return(gc.status_code); }
1216
-    // Invert the sign of h_x2_div_d if the circle is counter clockwise (see sketch below)
1217
-    if (gc.motion_mode == MOTION_MODE_CCW_ARC) { h_x2_div_d = -h_x2_div_d; }
1218
-    
1219
-    /* The counter clockwise circle lies to the left of the target direction. When offset is positive,
1220
-       the left hand circle will be generated - when it is negative the right hand circle is generated.
1221
-       
1222
-       
1223
-                                                         T  <-- Target position
1224
-                                                         
1225
-                                                         ^ 
1226
-              Clockwise circles with this center         |          Clockwise circles with this center will have
1227
-              will have > 180 deg of angular travel      |          < 180 deg of angular travel, which is a good thing!
1228
-                                               \         |          /   
1229
-  center of arc when h_x2_div_d is positive ->  x <----- | -----> x <- center of arc when h_x2_div_d is negative
1230
-                                                         |
1231
-                                                         |
1232
-                                                         
1233
-                                                         C  <-- Current position                                 */
1234
-                
1235
-
1236
-    // Negative R is g-code-alese for "I want a circle with more than 180 degrees of travel" (go figure!), 
1237
-    // even though it is advised against ever generating such circles in a single line of g-code. By 
1238
-    // inverting the sign of h_x2_div_d the center of the circles is placed on the opposite side of the line of
1239
-    // travel and thus we get the unadvisably long arcs as prescribed.
1240
-    if (r < 0) { 
1241
-        h_x2_div_d = -h_x2_div_d; 
1242
-        r = -r; // Finished with r. Set to positive for mc_arc
1243
-    }        
1244
-    // Complete the operation by calculating the actual center of the arc
1245
-    offset[gc.plane_axis_0] = 0.5*(x-(y*h_x2_div_d));
1246
-    offset[gc.plane_axis_1] = 0.5*(y+(x*h_x2_div_d));
1247
-
1248
-  } else { // Offset mode specific computations
1249
-#endif
1250
-    float r = hypot(offset[X_AXIS], offset[Y_AXIS]); // Compute arc radius for mc_arc
1251
-
1252
-//  }
1253
-  
1254
-  // Set clockwise/counter-clockwise sign for mc_arc computations
1255
-//  uint8_t isclockwise = false;
1256
-//  if (gc.motion_mode == MOTION_MODE_CW_ARC) { isclockwise = true; }
1155
+  float r = hypot(offset[X_AXIS], offset[Y_AXIS]); // Compute arc radius for mc_arc
1257 1156
 
1258 1157
   // Trace the arc
1259 1158
   mc_arc(current_position, destination, offset, X_AXIS, Y_AXIS, Z_AXIS, feedrate*feedmultiply/60.0/100.0, r, isclockwise);
1260
-    
1261
-//  }
1262 1159
   
1263 1160
   // As far as the parser is concerned, the position is now == target. In reality the
1264 1161
   // motion control system might still be processing the action and the real tool position
1265 1162
   // in any intermediate location.
1266
-  for(int ii=0; ii < NUM_AXIS; ii++) {
1267
-    current_position[ii] = destination[ii];
1163
+  for(int i=0; i < NUM_AXIS; i++) {
1164
+    current_position[i] = destination[i];
1268 1165
   }
1269 1166
 }
1270 1167
 

+ 7
- 6
Marlin/motion_control.cpp 查看文件

@@ -19,12 +19,8 @@
19 19
   along with Grbl.  If not, see <http://www.gnu.org/licenses/>.
20 20
 */
21 21
 
22
-//#include "motion_control.h"
23 22
 #include "Configuration.h"
24 23
 #include "Marlin.h"
25
-//#include <util/delay.h>
26
-//#include <math.h>
27
-//#include <stdlib.h>
28 24
 #include "stepper.h"
29 25
 #include "planner.h"
30 26
 
@@ -35,10 +31,10 @@ void mc_arc(float *position, float *target, float *offset, uint8_t axis_0, uint8
35 31
 {      
36 32
   //   int acceleration_manager_was_enabled = plan_is_acceleration_manager_enabled();
37 33
   //   plan_set_acceleration_manager_enabled(false); // disable acceleration management for the duration of the arc
38
-  SERIAL_ECHOLN("mc_arc.");
39 34
   float center_axis0 = position[axis_0] + offset[axis_0];
40 35
   float center_axis1 = position[axis_1] + offset[axis_1];
41 36
   float linear_travel = target[axis_linear] - position[axis_linear];
37
+  float extruder_travel = target[E_AXIS] - position[E_AXIS];
42 38
   float r_axis0 = -offset[axis_0];  // Radius vector from center to current location
43 39
   float r_axis1 = -offset[axis_1];
44 40
   float rt_axis0 = target[axis_0] - center_axis0;
@@ -60,6 +56,7 @@ void mc_arc(float *position, float *target, float *offset, uint8_t axis_0, uint8
60 56
   */
61 57
   float theta_per_segment = angular_travel/segments;
62 58
   float linear_per_segment = linear_travel/segments;
59
+  float extruder_per_segment = extruder_travel/segments;
63 60
   
64 61
   /* Vector rotation by transformation matrix: r is the original vector, r_T is the rotated vector,
65 62
      and phi is the angle of rotation. Based on the solution approach by Jens Geisler.
@@ -90,7 +87,7 @@ void mc_arc(float *position, float *target, float *offset, uint8_t axis_0, uint8
90 87
   float cos_T = 1-0.5*theta_per_segment*theta_per_segment; // Small angle approximation
91 88
   float sin_T = theta_per_segment;
92 89
   
93
-  float arc_target[3];
90
+  float arc_target[4];
94 91
   float sin_Ti;
95 92
   float cos_Ti;
96 93
   float r_axisi;
@@ -99,6 +96,9 @@ void mc_arc(float *position, float *target, float *offset, uint8_t axis_0, uint8
99 96
 
100 97
   // Initialize the linear axis
101 98
   arc_target[axis_linear] = position[axis_linear];
99
+  
100
+  // Initialize the extruder axis
101
+  arc_target[E_AXIS] = position[E_AXIS];
102 102
 
103 103
   for (i = 1; i<segments; i++) { // Increment (segments-1)
104 104
     
@@ -122,6 +122,7 @@ void mc_arc(float *position, float *target, float *offset, uint8_t axis_0, uint8
122 122
     arc_target[axis_0] = center_axis0 + r_axis0;
123 123
     arc_target[axis_1] = center_axis1 + r_axis1;
124 124
     arc_target[axis_linear] += linear_per_segment;
125
+    arc_target[E_AXIS] += extruder_per_segment;
125 126
     plan_buffer_line(arc_target[X_AXIS], arc_target[Y_AXIS], arc_target[Z_AXIS], target[E_AXIS], feed_rate);
126 127
     
127 128
   }

正在加载...
取消
保存