Browse Source

Apply maths macros and type changes ahead of HAL

Scott Lahteine 7 years ago
parent
commit
6c45d0fd81

+ 1
- 1
Marlin/G26_Mesh_Validation_Tool.cpp View File

@@ -600,7 +600,7 @@
600 600
 
601 601
     // If the end point of the line is closer to the nozzle, flip the direction,
602 602
     // moving from the end to the start. On very small lines the optimization isn't worth it.
603
-    if (dist_end < dist_start && (SIZE_OF_INTERSECTION_CIRCLES) < abs(line_length)) {
603
+    if (dist_end < dist_start && (SIZE_OF_INTERSECTION_CIRCLES) < FABS(line_length)) {
604 604
       return print_line_from_here_to_there(ex, ey, ez, sx, sy, sz);
605 605
     }
606 606
 

+ 22
- 19
Marlin/I2CPositionEncoder.cpp View File

@@ -126,16 +126,16 @@
126 126
     }
127 127
 
128 128
     lastPosition = position;
129
-    unsigned long positionTime = millis();
129
+    millis_t positionTime = millis();
130 130
 
131 131
     //only do error correction if setup and enabled
132 132
     if (ec && ecMethod != I2CPE_ECM_NONE) {
133 133
 
134 134
       #if defined(I2CPE_EC_THRESH_PROPORTIONAL)
135
+        millis_t deltaTime = positionTime - lastPositionTime;
135 136
         unsigned long distance = abs(position - lastPosition);
136
-        unsigned long deltaTime = positionTime - lastPositionTime;
137 137
         unsigned long speed = distance / deltaTime;
138
-        float threshold = constrain((speed / 50), 1, 50) * ecThreshold;
138
+        float threshold = constrain(speed / 50, 1, 50) * ecThreshold;
139 139
       #else
140 140
         float threshold = get_error_correct_threshold();
141 141
       #endif
@@ -162,7 +162,7 @@
162 162
       //SERIAL_ECHOLN(error);
163 163
 
164 164
       #if defined(I2CPE_ERR_THRESH_ABORT)
165
-        if (abs(error) > I2CPE_ERR_THRESH_ABORT * planner.axis_steps_per_mm[encoderAxis]) {
165
+        if (labs(error) > I2CPE_ERR_THRESH_ABORT * planner.axis_steps_per_mm[encoderAxis]) {
166 166
           //kill("Significant Error");
167 167
           SERIAL_ECHOPGM("Axis error greater than set threshold, aborting!");
168 168
           SERIAL_ECHOLN(error);
@@ -174,29 +174,32 @@
174 174
         if (errIdx == 0) {
175 175
           // in order to correct for "error" but avoid correcting for noise and non skips
176 176
           // it must be > threshold and have a difference average of < 10 and be < 2000 steps
177
-          if (abs(error) > threshold * planner.axis_steps_per_mm[encoderAxis] &&
178
-              diffSum < 10*(I2CPE_ERR_ARRAY_SIZE-1) && abs(error) < 2000) { //Check for persistent error (skip)
177
+          if (labs(error) > threshold * planner.axis_steps_per_mm[encoderAxis] &&
178
+              diffSum < 10 * (I2CPE_ERR_ARRAY_SIZE - 1) && labs(error) < 2000) { //Check for persistent error (skip)
179 179
             SERIAL_ECHO(axis_codes[encoderAxis]);
180
-            SERIAL_ECHOPAIR(" diffSum: ", diffSum/(I2CPE_ERR_ARRAY_SIZE-1));
180
+            SERIAL_ECHOPAIR(" diffSum: ", diffSum / (I2CPE_ERR_ARRAY_SIZE - 1));
181 181
             SERIAL_ECHOPAIR(" - err detected: ", error / planner.axis_steps_per_mm[encoderAxis]);
182 182
             SERIAL_ECHOLNPGM("mm; correcting!");
183
-            thermalManager.babystepsTodo[encoderAxis] = -lround(error);
183
+            thermalManager.babystepsTodo[encoderAxis] = -LROUND(error);
184 184
           }
185 185
         }
186 186
       #else
187
-        if (abs(error) > threshold * planner.axis_steps_per_mm[encoderAxis]) {
187
+        if (labs(error) > threshold * planner.axis_steps_per_mm[encoderAxis]) {
188 188
           //SERIAL_ECHOLN(error);
189 189
           //SERIAL_ECHOLN(position);
190
-          thermalManager.babystepsTodo[encoderAxis] = -lround(error/2);
190
+          thermalManager.babystepsTodo[encoderAxis] = -LROUND(error/2);
191 191
         }
192 192
       #endif
193 193
 
194
-      if (abs(error) > (I2CPE_ERR_CNT_THRESH * planner.axis_steps_per_mm[encoderAxis]) && millis() - lastErrorCountTime > I2CPE_ERR_CNT_DEBOUNCE_MS) {
195
-        SERIAL_ECHOPAIR("Large error on ", axis_codes[encoderAxis]);
196
-        SERIAL_ECHOPAIR(" axis. error: ", (int)error);
197
-        SERIAL_ECHOLNPAIR("; diffSum: ", diffSum);
198
-        errorCount++;
199
-        lastErrorCountTime = millis();
194
+      if (labs(error) > I2CPE_ERR_CNT_THRESH * planner.axis_steps_per_mm[encoderAxis]) {
195
+        const millis_t ms = millis();
196
+        if (ELAPSED(ms, nextErrorCountTime)) {
197
+          SERIAL_ECHOPAIR("Large error on ", axis_codes[encoderAxis]);
198
+          SERIAL_ECHOPAIR(" axis. error: ", (int)error);
199
+          SERIAL_ECHOLNPAIR("; diffSum: ", diffSum);
200
+          errorCount++;
201
+          nextErrorCountTime = ms + I2CPE_ERR_CNT_DEBOUNCE_MS;
202
+        }
200 203
       }
201 204
     }
202 205
 
@@ -255,7 +258,7 @@
255 258
     actual = mm_from_count(position);
256 259
     error = actual - target;
257 260
 
258
-    if (abs(error) > 10000) error = 0; // ?
261
+    if (labs(error) > 10000) error = 0; // ?
259 262
 
260 263
     if (report) {
261 264
       SERIAL_ECHO(axis_codes[encoderAxis]);
@@ -284,13 +287,13 @@
284 287
     stepperTicksPerUnit = (type == I2CPE_ENC_TYPE_ROTARY) ? stepperTicks : planner.axis_steps_per_mm[encoderAxis];
285 288
 
286 289
     //convert both 'ticks' into same units / base
287
-    encoderCountInStepperTicksScaled = lround((stepperTicksPerUnit * encoderTicks) / encoderTicksPerUnit);
290
+    encoderCountInStepperTicksScaled = LROUND((stepperTicksPerUnit * encoderTicks) / encoderTicksPerUnit);
288 291
 
289 292
     long target = stepper.position(encoderAxis),
290 293
          error = (encoderCountInStepperTicksScaled - target);
291 294
 
292 295
     //suppress discontinuities (might be caused by bad I2C readings...?)
293
-    bool suppressOutput = (abs(error - errorPrev) > 100);
296
+    bool suppressOutput = (labs(error - errorPrev) > 100);
294 297
 
295 298
     if (report) {
296 299
       SERIAL_ECHO(axis_codes[encoderAxis]);

+ 1
- 1
Marlin/I2CPositionEncoder.h View File

@@ -136,7 +136,7 @@
136 136
                     position;
137 137
 
138 138
     unsigned long   lastPositionTime        = 0,
139
-                    lastErrorCountTime      = 0,
139
+                    nextErrorCountTime      = 0,
140 140
                     lastErrorTime;
141 141
 
142 142
     //double        positionMm; //calculate

+ 2
- 2
Marlin/Marlin.h View File

@@ -210,7 +210,7 @@ inline void refresh_cmd_timeout() { previous_cmd_ms = millis(); }
210 210
 /**
211 211
  * Feedrate scaling and conversion
212 212
  */
213
-extern int feedrate_percentage;
213
+extern int16_t feedrate_percentage;
214 214
 
215 215
 #define MMM_TO_MMS(MM_M) ((MM_M)/60.0)
216 216
 #define MMS_TO_MMM(MM_S) ((MM_S)*60.0)
@@ -218,7 +218,7 @@ extern int feedrate_percentage;
218 218
 
219 219
 extern bool axis_relative_modes[];
220 220
 extern bool volumetric_enabled;
221
-extern int flow_percentage[EXTRUDERS]; // Extrusion factor for each extruder
221
+extern int16_t flow_percentage[EXTRUDERS]; // Extrusion factor for each extruder
222 222
 extern float filament_size[EXTRUDERS]; // cross-sectional area of filament (in millimeters), typically around 1.75 or 2.85, 0 disables the volumetric calculations for the extruder.
223 223
 extern float volumetric_multiplier[EXTRUDERS]; // reciprocal of cross-sectional area of filament (in square millimeters), stored this way to reduce computational burden in planner
224 224
 extern bool axis_known_position[XYZ];

+ 31
- 31
Marlin/Marlin_main.cpp View File

@@ -421,7 +421,7 @@ FORCE_INLINE float homing_feedrate(const AxisEnum a) { return pgm_read_float(&ho
421 421
 
422 422
 float feedrate_mm_s = MMM_TO_MMS(1500.0);
423 423
 static float saved_feedrate_mm_s;
424
-int feedrate_percentage = 100, saved_feedrate_percentage,
424
+int16_t feedrate_percentage = 100, saved_feedrate_percentage,
425 425
     flow_percentage[EXTRUDERS] = ARRAY_BY_EXTRUDERS1(100);
426 426
 
427 427
 bool axis_relative_modes[] = AXIS_RELATIVE_MODES,
@@ -2968,7 +2968,7 @@ static void homeaxis(const AxisEnum axis) {
2968 2968
 
2969 2969
   #if ENABLED(Z_DUAL_ENDSTOPS)
2970 2970
     if (axis == Z_AXIS) {
2971
-      float adj = fabs(z_endstop_adj);
2971
+      float adj = FABS(z_endstop_adj);
2972 2972
       bool lockZ1;
2973 2973
       if (axis_home_dir > 0) {
2974 2974
         adj = -adj;
@@ -3293,7 +3293,7 @@ inline void gcode_G0_G1(
3293 3293
           const float e = clockwise ^ (r < 0) ? -1 : 1,           // clockwise -1/1, counterclockwise 1/-1
3294 3294
                       dx = x2 - x1, dy = y2 - y1,                 // X and Y differences
3295 3295
                       d = HYPOT(dx, dy),                          // Linear distance between the points
3296
-                      h = sqrt(sq(r) - sq(d * 0.5)),              // Distance to the arc pivot-point
3296
+                      h = SQRT(sq(r) - sq(d * 0.5)),              // Distance to the arc pivot-point
3297 3297
                       mx = (x1 + x2) * 0.5, my = (y1 + y2) * 0.5, // Point between the two points
3298 3298
                       sx = -dy / d, sy = dx / d,                  // Slope of the perpendicular bisector
3299 3299
                       cx = mx + e * h * sx, cy = my + e * h * sy; // Pivot-point of the arc
@@ -3448,7 +3448,7 @@ inline void gcode_G4() {
3448 3448
     const float mlx = max_length(X_AXIS),
3449 3449
                 mly = max_length(Y_AXIS),
3450 3450
                 mlratio = mlx > mly ? mly / mlx : mlx / mly,
3451
-                fr_mm_s = min(homing_feedrate(X_AXIS), homing_feedrate(Y_AXIS)) * sqrt(sq(mlratio) + 1.0);
3451
+                fr_mm_s = min(homing_feedrate(X_AXIS), homing_feedrate(Y_AXIS)) * SQRT(sq(mlratio) + 1.0);
3452 3452
 
3453 3453
     do_blocking_move_to_xy(1.5 * mlx * x_axis_home_dir, 1.5 * mly * home_dir(Y_AXIS), fr_mm_s);
3454 3454
     endstops.hit_on_purpose(); // clear endstop hit flags
@@ -4605,8 +4605,8 @@ void home_all_axes() { gcode_G28(true); }
4605 4605
           const float xBase = xCount * xGridSpacing + left_probe_bed_position,
4606 4606
                       yBase = yCount * yGridSpacing + front_probe_bed_position;
4607 4607
 
4608
-          xProbe = floor(xBase + (xBase < 0 ? 0 : 0.5));
4609
-          yProbe = floor(yBase + (yBase < 0 ? 0 : 0.5));
4608
+          xProbe = FLOOR(xBase + (xBase < 0 ? 0 : 0.5));
4609
+          yProbe = FLOOR(yBase + (yBase < 0 ? 0 : 0.5));
4610 4610
 
4611 4611
           #if ENABLED(AUTO_BED_LEVELING_LINEAR)
4612 4612
             indexIntoAB[xCount][yCount] = abl_probe_index;
@@ -4710,8 +4710,8 @@ void home_all_axes() { gcode_G28(true); }
4710 4710
             float xBase = left_probe_bed_position + xGridSpacing * xCount,
4711 4711
                   yBase = front_probe_bed_position + yGridSpacing * yCount;
4712 4712
 
4713
-            xProbe = floor(xBase + (xBase < 0 ? 0 : 0.5));
4714
-            yProbe = floor(yBase + (yBase < 0 ? 0 : 0.5));
4713
+            xProbe = FLOOR(xBase + (xBase < 0 ? 0 : 0.5));
4714
+            yProbe = FLOOR(yBase + (yBase < 0 ? 0 : 0.5));
4715 4715
 
4716 4716
             #if ENABLED(AUTO_BED_LEVELING_LINEAR)
4717 4717
               indexIntoAB[xCount][yCount] = ++abl_probe_index; // 0...
@@ -5263,7 +5263,7 @@ void home_all_axes() { gcode_G28(true); }
5263 5263
             N++;
5264 5264
           }
5265 5265
         zero_std_dev_old = zero_std_dev;
5266
-        zero_std_dev = round(sqrt(S2 / N) * 1000.0) / 1000.0 + 0.00001;
5266
+        zero_std_dev = round(SQRT(S2 / N) * 1000.0) / 1000.0 + 0.00001;
5267 5267
 
5268 5268
         if (iterations == 1) home_offset[Z_AXIS] = zh_old; // reset height after 1st probe change
5269 5269
 
@@ -5464,7 +5464,7 @@ void home_all_axes() { gcode_G28(true); }
5464 5464
     float retract_mm[XYZ];
5465 5465
     LOOP_XYZ(i) {
5466 5466
       float dist = destination[i] - current_position[i];
5467
-      retract_mm[i] = fabs(dist) < G38_MINIMUM_MOVE ? 0 : home_bump_mm((AxisEnum)i) * (dist > 0 ? -1 : 1);
5467
+      retract_mm[i] = FABS(dist) < G38_MINIMUM_MOVE ? 0 : home_bump_mm((AxisEnum)i) * (dist > 0 ? -1 : 1);
5468 5468
     }
5469 5469
 
5470 5470
     stepper.synchronize();  // wait until the machine is idle
@@ -5528,7 +5528,7 @@ void home_all_axes() { gcode_G28(true); }
5528 5528
 
5529 5529
     // If any axis has enough movement, do the move
5530 5530
     LOOP_XYZ(i)
5531
-      if (fabs(destination[i] - current_position[i]) >= G38_MINIMUM_MOVE) {
5531
+      if (FABS(destination[i] - current_position[i]) >= G38_MINIMUM_MOVE) {
5532 5532
         if (!parser.seen('F')) feedrate_mm_s = homing_feedrate(i);
5533 5533
         // If G38.2 fails throw an error
5534 5534
         if (!G38_run_probe() && is_38_2) {
@@ -6851,7 +6851,7 @@ inline void gcode_M42() {
6851 6851
       for (uint8_t j = 0; j <= n; j++)
6852 6852
         sum += sq(sample_set[j] - mean);
6853 6853
 
6854
-      sigma = sqrt(sum / (n + 1));
6854
+      sigma = SQRT(sum / (n + 1));
6855 6855
       if (verbose_level > 0) {
6856 6856
         if (verbose_level > 1) {
6857 6857
           SERIAL_PROTOCOL(n + 1);
@@ -7266,7 +7266,7 @@ inline void gcode_M109() {
7266 7266
 
7267 7267
     #if TEMP_RESIDENCY_TIME > 0
7268 7268
 
7269
-      const float temp_diff = fabs(target_temp - temp);
7269
+      const float temp_diff = FABS(target_temp - temp);
7270 7270
 
7271 7271
       if (!residency_start_ms) {
7272 7272
         // Start the TEMP_RESIDENCY_TIME timer when we reach target temp for the first time.
@@ -7395,7 +7395,7 @@ inline void gcode_M109() {
7395 7395
 
7396 7396
       #if TEMP_BED_RESIDENCY_TIME > 0
7397 7397
 
7398
-        const float temp_diff = fabs(target_temp - temp);
7398
+        const float temp_diff = FABS(target_temp - temp);
7399 7399
 
7400 7400
         if (!residency_start_ms) {
7401 7401
           // Start the TEMP_BED_RESIDENCY_TIME timer when we reach target temp for the first time.
@@ -9252,7 +9252,7 @@ inline void gcode_M503() {
9252 9252
 
9253 9253
       #if ENABLED(BABYSTEP_ZPROBE_OFFSET)
9254 9254
         if (!no_babystep && leveling_is_active())
9255
-          thermalManager.babystep_axis(Z_AXIS, -lround(diff * planner.axis_steps_per_mm[Z_AXIS]));
9255
+          thermalManager.babystep_axis(Z_AXIS, -LROUND(diff * planner.axis_steps_per_mm[Z_AXIS]));
9256 9256
       #else
9257 9257
         UNUSED(no_babystep);
9258 9258
       #endif
@@ -11171,7 +11171,7 @@ void ok_to_send() {
11171 11171
     if (last_x != x) {
11172 11172
       last_x = x;
11173 11173
       ratio_x = x * ABL_BG_FACTOR(X_AXIS);
11174
-      const float gx = constrain(floor(ratio_x), 0, ABL_BG_POINTS_X - FAR_EDGE_OR_BOX);
11174
+      const float gx = constrain(FLOOR(ratio_x), 0, ABL_BG_POINTS_X - FAR_EDGE_OR_BOX);
11175 11175
       ratio_x -= gx;      // Subtract whole to get the ratio within the grid box
11176 11176
 
11177 11177
       #if DISABLED(EXTRAPOLATE_BEYOND_GRID)
@@ -11188,7 +11188,7 @@ void ok_to_send() {
11188 11188
       if (last_y != y) {
11189 11189
         last_y = y;
11190 11190
         ratio_y = y * ABL_BG_FACTOR(Y_AXIS);
11191
-        const float gy = constrain(floor(ratio_y), 0, ABL_BG_POINTS_Y - FAR_EDGE_OR_BOX);
11191
+        const float gy = constrain(FLOOR(ratio_y), 0, ABL_BG_POINTS_Y - FAR_EDGE_OR_BOX);
11192 11192
         ratio_y -= gy;
11193 11193
 
11194 11194
         #if DISABLED(EXTRAPOLATE_BEYOND_GRID)
@@ -11221,7 +11221,7 @@ void ok_to_send() {
11221 11221
 
11222 11222
     /*
11223 11223
     static float last_offset = 0;
11224
-    if (fabs(last_offset - offset) > 0.2) {
11224
+    if (FABS(last_offset - offset) > 0.2) {
11225 11225
       SERIAL_ECHOPGM("Sudden Shift at ");
11226 11226
       SERIAL_ECHOPAIR("x=", x);
11227 11227
       SERIAL_ECHOPAIR(" / ", bilinear_grid_spacing[X_AXIS]);
@@ -11290,7 +11290,7 @@ void ok_to_send() {
11290 11290
 
11291 11291
   #else
11292 11292
 
11293
-    #define _SQRT(n) sqrt(n)
11293
+    #define _SQRT(n) SQRT(n)
11294 11294
 
11295 11295
   #endif
11296 11296
 
@@ -11364,7 +11364,7 @@ void ok_to_send() {
11364 11364
     float distance = delta[A_AXIS];
11365 11365
     cartesian[Y_AXIS] = LOGICAL_Y_POSITION(DELTA_PRINTABLE_RADIUS);
11366 11366
     inverse_kinematics(cartesian);
11367
-    return abs(distance - delta[A_AXIS]);
11367
+    return FABS(distance - delta[A_AXIS]);
11368 11368
   }
11369 11369
 
11370 11370
   /**
@@ -11397,7 +11397,7 @@ void ok_to_send() {
11397 11397
     float p12[3] = { delta_tower[B_AXIS][X_AXIS] - delta_tower[A_AXIS][X_AXIS], delta_tower[B_AXIS][Y_AXIS] - delta_tower[A_AXIS][Y_AXIS], z2 - z1 };
11398 11398
 
11399 11399
     // Get the Magnitude of vector.
11400
-    float d = sqrt( sq(p12[0]) + sq(p12[1]) + sq(p12[2]) );
11400
+    float d = SQRT( sq(p12[0]) + sq(p12[1]) + sq(p12[2]) );
11401 11401
 
11402 11402
     // Create unit vector by dividing by magnitude.
11403 11403
     float ex[3] = { p12[0] / d, p12[1] / d, p12[2] / d };
@@ -11416,7 +11416,7 @@ void ok_to_send() {
11416 11416
     float ey[3] = { p13[0] - iex[0], p13[1] - iex[1], p13[2] - iex[2] };
11417 11417
 
11418 11418
     // The magnitude of Y component
11419
-    float j = sqrt( sq(ey[0]) + sq(ey[1]) + sq(ey[2]) );
11419
+    float j = SQRT( sq(ey[0]) + sq(ey[1]) + sq(ey[2]) );
11420 11420
 
11421 11421
     // Convert to a unit vector
11422 11422
     ey[0] /= j; ey[1] /= j;  ey[2] /= j;
@@ -11433,7 +11433,7 @@ void ok_to_send() {
11433 11433
     // Plug them into the equations defined in Wikipedia for Xnew, Ynew and Znew
11434 11434
     float Xnew = (delta_diagonal_rod_2_tower[A_AXIS] - delta_diagonal_rod_2_tower[B_AXIS] + sq(d)) / (d * 2),
11435 11435
           Ynew = ((delta_diagonal_rod_2_tower[A_AXIS] - delta_diagonal_rod_2_tower[C_AXIS] + HYPOT2(i, j)) / 2 - i * Xnew) / j,
11436
-          Znew = sqrt(delta_diagonal_rod_2_tower[A_AXIS] - HYPOT2(Xnew, Ynew));
11436
+          Znew = SQRT(delta_diagonal_rod_2_tower[A_AXIS] - HYPOT2(Xnew, Ynew));
11437 11437
 
11438 11438
     // Start from the origin of the old coordinates and add vectors in the
11439 11439
     // old coords that represent the Xnew, Ynew and Znew to find the point
@@ -11656,10 +11656,10 @@ void set_current_from_steppers_for_axis(const AxisEnum axis) {
11656 11656
     };
11657 11657
 
11658 11658
     // Get the linear distance in XYZ
11659
-    float cartesian_mm = sqrt(sq(difference[X_AXIS]) + sq(difference[Y_AXIS]) + sq(difference[Z_AXIS]));
11659
+    float cartesian_mm = SQRT(sq(difference[X_AXIS]) + sq(difference[Y_AXIS]) + sq(difference[Z_AXIS]));
11660 11660
 
11661 11661
     // If the move is very short, check the E move distance
11662
-    if (UNEAR_ZERO(cartesian_mm)) cartesian_mm = abs(difference[E_AXIS]);
11662
+    if (UNEAR_ZERO(cartesian_mm)) cartesian_mm = FABS(difference[E_AXIS]);
11663 11663
 
11664 11664
     // No E move either? Game over.
11665 11665
     if (UNEAR_ZERO(cartesian_mm)) return true;
@@ -11947,7 +11947,7 @@ void prepare_move_to_destination() {
11947 11947
                 extruder_travel = logical[E_AXIS] - current_position[E_AXIS];
11948 11948
 
11949 11949
     // CCW angle of rotation between position and target from the circle center. Only one atan2() trig computation required.
11950
-    float angular_travel = atan2(r_X * rt_Y - r_Y * rt_X, r_X * rt_X + r_Y * rt_Y);
11950
+    float angular_travel = ATAN2(r_X * rt_Y - r_Y * rt_X, r_X * rt_X + r_Y * rt_Y);
11951 11951
     if (angular_travel < 0) angular_travel += RADIANS(360);
11952 11952
     if (clockwise) angular_travel -= RADIANS(360);
11953 11953
 
@@ -11955,10 +11955,10 @@ void prepare_move_to_destination() {
11955 11955
     if (angular_travel == 0 && current_position[X_AXIS] == logical[X_AXIS] && current_position[Y_AXIS] == logical[Y_AXIS])
11956 11956
       angular_travel += RADIANS(360);
11957 11957
 
11958
-    const float mm_of_travel = HYPOT(angular_travel * radius, fabs(linear_travel));
11958
+    const float mm_of_travel = HYPOT(angular_travel * radius, FABS(linear_travel));
11959 11959
     if (mm_of_travel < 0.001) return;
11960 11960
 
11961
-    uint16_t segments = floor(mm_of_travel / (MM_PER_ARC_SEGMENT));
11961
+    uint16_t segments = FLOOR(mm_of_travel / (MM_PER_ARC_SEGMENT));
11962 11962
     if (segments == 0) segments = 1;
11963 11963
 
11964 11964
     /**
@@ -12155,7 +12155,7 @@ void prepare_move_to_destination() {
12155 12155
     else
12156 12156
       C2 = (HYPOT2(sx, sy) - (L1_2 + L2_2)) / (2.0 * L1 * L2);
12157 12157
 
12158
-    S2 = sqrt(1 - sq(C2));
12158
+    S2 = SQRT(1 - sq(C2));
12159 12159
 
12160 12160
     // Unrotated Arm1 plus rotated Arm2 gives the distance from Center to End
12161 12161
     SK1 = L1 + L2 * C2;
@@ -12164,10 +12164,10 @@ void prepare_move_to_destination() {
12164 12164
     SK2 = L2 * S2;
12165 12165
 
12166 12166
     // Angle of Arm1 is the difference between Center-to-End angle and the Center-to-Elbow
12167
-    THETA = atan2(SK1, SK2) - atan2(sx, sy);
12167
+    THETA = ATAN2(SK1, SK2) - ATAN2(sx, sy);
12168 12168
 
12169 12169
     // Angle of Arm2
12170
-    PSI = atan2(S2, C2);
12170
+    PSI = ATAN2(S2, C2);
12171 12171
 
12172 12172
     delta[A_AXIS] = DEGREES(THETA);        // theta is support arm angle
12173 12173
     delta[B_AXIS] = DEGREES(THETA + PSI);  // equal to sub arm angle (inverted motor)

+ 1
- 1
Marlin/digipot_mcp4018.cpp View File

@@ -44,7 +44,7 @@
44 44
 #define DIGIPOT_A4988_MAX_CURRENT       (DIGIPOT_A4988_Itripmax(DIGIPOT_A4988_Vrefmax) - 0.5)
45 45
 
46 46
 static byte current_to_wiper(const float current) {
47
-  return byte(ceil(float(DIGIPOT_A4988_FACTOR) * current));
47
+  return byte(CEIL(float(DIGIPOT_A4988_FACTOR) * current));
48 48
 }
49 49
 
50 50
 const uint8_t sda_pins[DIGIPOT_I2C_NUM_CHANNELS] = {

+ 1
- 1
Marlin/digipot_mcp4451.cpp View File

@@ -38,7 +38,7 @@
38 38
 #endif
39 39
 
40 40
 static byte current_to_wiper(const float current) {
41
-  return byte(ceil(float((DIGIPOT_I2C_FACTOR * current))));
41
+  return byte(CEIL(float((DIGIPOT_I2C_FACTOR * current))));
42 42
 }
43 43
 
44 44
 static void i2c_send(const byte addr, const byte a, const byte b) {

+ 1
- 1
Marlin/gcode.h View File

@@ -213,7 +213,7 @@ public:
213 213
           linear_unit_factor = 1.0;
214 214
           break;
215 215
       }
216
-      volumetric_unit_factor = pow(linear_unit_factor, 3.0);
216
+      volumetric_unit_factor = POW(linear_unit_factor, 3.0);
217 217
     }
218 218
 
219 219
     inline static float axis_unit_factor(const AxisEnum axis) {

+ 1
- 1
Marlin/least_squares_fit.cpp View File

@@ -59,7 +59,7 @@ int finish_incremental_LSF(struct linear_fit_data *lsf) {
59 59
   lsf->xzbar = lsf->xzbar / N - lsf->xbar * lsf->zbar;
60 60
   const float DD = lsf->x2bar * lsf->y2bar - sq(lsf->xybar);
61 61
 
62
-  if (fabs(DD) <= 1e-10 * (lsf->max_absx + lsf->max_absy))
62
+  if (FABS(DD) <= 1e-10 * (lsf->max_absx + lsf->max_absy))
63 63
     return 1;
64 64
 
65 65
   lsf->A = (lsf->yzbar * lsf->xybar - lsf->xzbar * lsf->y2bar) / DD;

+ 4
- 4
Marlin/least_squares_fit.h View File

@@ -65,8 +65,8 @@ void inline incremental_WLSF(struct linear_fit_data *lsf, const float &x, const
65 65
   lsf->xzbar += w * x * z;
66 66
   lsf->yzbar += w * y * z;
67 67
   lsf->N     += w;
68
-  lsf->max_absx = max(fabs(w * x), lsf->max_absx);
69
-  lsf->max_absy = max(fabs(w * y), lsf->max_absy);
68
+  lsf->max_absx = max(FABS(w * x), lsf->max_absx);
69
+  lsf->max_absy = max(FABS(w * y), lsf->max_absy);
70 70
 }
71 71
 
72 72
 void inline incremental_LSF(struct linear_fit_data *lsf, const float &x, const float &y, const float &z) {
@@ -79,8 +79,8 @@ void inline incremental_LSF(struct linear_fit_data *lsf, const float &x, const f
79 79
   lsf->xybar += x * y;
80 80
   lsf->xzbar += x * z;
81 81
   lsf->yzbar += y * z;
82
-  lsf->max_absx = max(fabs(x), lsf->max_absx);
83
-  lsf->max_absy = max(fabs(y), lsf->max_absy);
82
+  lsf->max_absx = max(FABS(x), lsf->max_absx);
83
+  lsf->max_absy = max(FABS(y), lsf->max_absy);
84 84
   lsf->N += 1.0;
85 85
 }
86 86
 

+ 14
- 2
Marlin/macros.h View File

@@ -106,7 +106,6 @@
106 106
 #define RADIANS(d) ((d)*M_PI/180.0)
107 107
 #define DEGREES(r) ((r)*180.0/M_PI)
108 108
 #define HYPOT2(x,y) (sq(x)+sq(y))
109
-#define HYPOT(x,y) sqrt(HYPOT2(x,y))
110 109
 
111 110
 #define SIGN(a) ((a>0)-(a<0))
112 111
 
@@ -193,4 +192,17 @@
193 192
 #define RECIPROCAL(x) (NEAR_ZERO(x) ? 0.0 : 1.0 / (x))
194 193
 #define FIXFLOAT(f) (f + 0.00001)
195 194
 
196
-#endif // __MACROS_H
195
+//
196
+// Maths macros that can be overridden by HAL
197
+//
198
+#define ATAN2(y, x) atan2(y, x)
199
+#define FABS(x)     fabs(x)
200
+#define POW(x, y)   pow(x, y)
201
+#define SQRT(x)     sqrt(x)
202
+#define CEIL(x)     ceil(x)
203
+#define FLOOR(x)    floor(x)
204
+#define LROUND(x)   lround(x)
205
+#define FMOD(x, y)  fmod(x, y)
206
+#define HYPOT(x,y)  SQRT(HYPOT2(x,y))
207
+
208
+#endif //__MACROS_H

+ 4
- 4
Marlin/nozzle.cpp View File

@@ -80,16 +80,16 @@ void Nozzle::zigzag(
80 80
 
81 81
     for (uint8_t j = 0; j < strokes; j++) {
82 82
       for (uint8_t i = 0; i < (objects << 1); i++) {
83
-        float const x = start.x + ( nozzle_clean_horizontal ? i * P : (A/P) * (P - fabs(fmod((i*P), (2*P)) - P)) );
84
-        float const y = start.y + (!nozzle_clean_horizontal ? i * P : (A/P) * (P - fabs(fmod((i*P), (2*P)) - P)) );
83
+        float const x = start.x + ( nozzle_clean_horizontal ? i * P : (A/P) * (P - FABS(FMOD((i*P), (2*P)) - P)) );
84
+        float const y = start.y + (!nozzle_clean_horizontal ? i * P : (A/P) * (P - FABS(FMOD((i*P), (2*P)) - P)) );
85 85
 
86 86
         do_blocking_move_to_xy(x, y);
87 87
         if (i == 0) do_blocking_move_to_z(start.z);
88 88
       }
89 89
 
90 90
       for (int i = (objects << 1); i > -1; i--) {
91
-        float const x = start.x + ( nozzle_clean_horizontal ? i * P : (A/P) * (P - fabs(fmod((i*P), (2*P)) - P)) );
92
-        float const y = start.y + (!nozzle_clean_horizontal ? i * P : (A/P) * (P - fabs(fmod((i*P), (2*P)) - P)) );
91
+        float const x = start.x + ( nozzle_clean_horizontal ? i * P : (A/P) * (P - FABS(FMOD((i*P), (2*P)) - P)) );
92
+        float const y = start.y + (!nozzle_clean_horizontal ? i * P : (A/P) * (P - FABS(FMOD((i*P), (2*P)) - P)) );
93 93
 
94 94
         do_blocking_move_to_xy(x, y);
95 95
       }

+ 2
- 2
Marlin/nozzle.h View File

@@ -29,8 +29,8 @@
29 29
 #if ENABLED(NOZZLE_CLEAN_FEATURE)
30 30
   constexpr float nozzle_clean_start_point[4] = NOZZLE_CLEAN_START_POINT,
31 31
                   nozzle_clean_end_point[4] = NOZZLE_CLEAN_END_POINT,
32
-                  nozzle_clean_length = fabs(nozzle_clean_start_point[X_AXIS] - nozzle_clean_end_point[X_AXIS]), //abs x size of wipe pad
33
-                  nozzle_clean_height = fabs(nozzle_clean_start_point[Y_AXIS] - nozzle_clean_end_point[Y_AXIS]); //abs y size of wipe pad
32
+                  nozzle_clean_length = FABS(nozzle_clean_start_point[X_AXIS] - nozzle_clean_end_point[X_AXIS]), //abs x size of wipe pad
33
+                  nozzle_clean_height = FABS(nozzle_clean_start_point[Y_AXIS] - nozzle_clean_end_point[Y_AXIS]); //abs y size of wipe pad
34 34
   constexpr bool nozzle_clean_horizontal = nozzle_clean_length >= nozzle_clean_height; //whether to zig-zag horizontally or vertically
35 35
 #endif // NOZZLE_CLEAN_FEATURE
36 36
 

+ 32
- 32
Marlin/planner.cpp View File

@@ -178,23 +178,23 @@ void Planner::init() {
178 178
  * by the provided factors.
179 179
  */
180 180
 void Planner::calculate_trapezoid_for_block(block_t* const block, const float &entry_factor, const float &exit_factor) {
181
-  uint32_t initial_rate = ceil(block->nominal_rate * entry_factor),
182
-           final_rate = ceil(block->nominal_rate * exit_factor); // (steps per second)
181
+  uint32_t initial_rate = CEIL(block->nominal_rate * entry_factor),
182
+           final_rate = CEIL(block->nominal_rate * exit_factor); // (steps per second)
183 183
 
184 184
   // Limit minimal step rate (Otherwise the timer will overflow.)
185 185
   NOLESS(initial_rate, MINIMAL_STEP_RATE);
186 186
   NOLESS(final_rate, MINIMAL_STEP_RATE);
187 187
 
188 188
   int32_t accel = block->acceleration_steps_per_s2,
189
-          accelerate_steps = ceil(estimate_acceleration_distance(initial_rate, block->nominal_rate, accel)),
190
-          decelerate_steps = floor(estimate_acceleration_distance(block->nominal_rate, final_rate, -accel)),
189
+          accelerate_steps = CEIL(estimate_acceleration_distance(initial_rate, block->nominal_rate, accel)),
190
+          decelerate_steps = FLOOR(estimate_acceleration_distance(block->nominal_rate, final_rate, -accel)),
191 191
           plateau_steps = block->step_event_count - accelerate_steps - decelerate_steps;
192 192
 
193 193
   // Is the Plateau of Nominal Rate smaller than nothing? That means no cruising, and we will
194 194
   // have to use intersection_distance() to calculate when to abort accel and start braking
195 195
   // in order to reach the final_rate exactly at the end of this block.
196 196
   if (plateau_steps < 0) {
197
-    accelerate_steps = ceil(intersection_distance(initial_rate, final_rate, accel, block->step_event_count));
197
+    accelerate_steps = CEIL(intersection_distance(initial_rate, final_rate, accel, block->step_event_count));
198 198
     NOLESS(accelerate_steps, 0); // Check limits due to numerical round-off
199 199
     accelerate_steps = min((uint32_t)accelerate_steps, block->step_event_count);//(We can cast here to unsigned, because the above line ensures that we are above zero)
200 200
     plateau_steps = 0;
@@ -221,8 +221,8 @@ void Planner::calculate_trapezoid_for_block(block_t* const block, const float &e
221 221
 // This method will calculate the junction jerk as the euclidean distance between the nominal
222 222
 // velocities of the respective blocks.
223 223
 //inline float junction_jerk(block_t *before, block_t *after) {
224
-//  return sqrt(
225
-//    pow((before->speed_x-after->speed_x), 2)+pow((before->speed_y-after->speed_y), 2));
224
+//  return SQRT(
225
+//    POW((before->speed_x-after->speed_x), 2)+POW((before->speed_y-after->speed_y), 2));
226 226
 //}
227 227
 
228 228
 
@@ -693,22 +693,22 @@ void Planner::_buffer_line(const float &a, const float &b, const float &c, const
693 693
   // Calculate target position in absolute steps
694 694
   //this should be done after the wait, because otherwise a M92 code within the gcode disrupts this calculation somehow
695 695
   const long target[XYZE] = {
696
-    lround(a * axis_steps_per_mm[X_AXIS]),
697
-    lround(b * axis_steps_per_mm[Y_AXIS]),
698
-    lround(c * axis_steps_per_mm[Z_AXIS]),
699
-    lround(e * axis_steps_per_mm[E_AXIS_N])
696
+    LROUND(a * axis_steps_per_mm[X_AXIS]),
697
+    LROUND(b * axis_steps_per_mm[Y_AXIS]),
698
+    LROUND(c * axis_steps_per_mm[Z_AXIS]),
699
+    LROUND(e * axis_steps_per_mm[E_AXIS_N])
700 700
   };
701 701
 
702 702
   // When changing extruders recalculate steps corresponding to the E position
703 703
   #if ENABLED(DISTINCT_E_FACTORS)
704 704
     if (last_extruder != extruder && axis_steps_per_mm[E_AXIS_N] != axis_steps_per_mm[E_AXIS + last_extruder]) {
705
-      position[E_AXIS] = lround(position[E_AXIS] * axis_steps_per_mm[E_AXIS_N] * steps_to_mm[E_AXIS + last_extruder]);
705
+      position[E_AXIS] = LROUND(position[E_AXIS] * axis_steps_per_mm[E_AXIS_N] * steps_to_mm[E_AXIS + last_extruder]);
706 706
       last_extruder = extruder;
707 707
     }
708 708
   #endif
709 709
 
710 710
   #if ENABLED(LIN_ADVANCE)
711
-    const float mm_D_float = sqrt(sq(a - position_float[X_AXIS]) + sq(b - position_float[Y_AXIS]));
711
+    const float mm_D_float = SQRT(sq(a - position_float[X_AXIS]) + sq(b - position_float[Y_AXIS]));
712 712
   #endif
713 713
 
714 714
   const long da = target[X_AXIS] - position[X_AXIS],
@@ -1036,10 +1036,10 @@ void Planner::_buffer_line(const float &a, const float &b, const float &c, const
1036 1036
   delta_mm[E_AXIS] = esteps_float * steps_to_mm[E_AXIS_N];
1037 1037
 
1038 1038
   if (block->steps[X_AXIS] < MIN_STEPS_PER_SEGMENT && block->steps[Y_AXIS] < MIN_STEPS_PER_SEGMENT && block->steps[Z_AXIS] < MIN_STEPS_PER_SEGMENT) {
1039
-    block->millimeters = fabs(delta_mm[E_AXIS]);
1039
+    block->millimeters = FABS(delta_mm[E_AXIS]);
1040 1040
   }
1041 1041
   else {
1042
-    block->millimeters = sqrt(
1042
+    block->millimeters = SQRT(
1043 1043
       #if CORE_IS_XY
1044 1044
         sq(delta_mm[X_HEAD]) + sq(delta_mm[Y_HEAD]) + sq(delta_mm[Z_AXIS])
1045 1045
       #elif CORE_IS_XZ
@@ -1061,15 +1061,15 @@ void Planner::_buffer_line(const float &a, const float &b, const float &c, const
1061 1061
   // Slow down when the buffer starts to empty, rather than wait at the corner for a buffer refill
1062 1062
   #if ENABLED(SLOWDOWN) || ENABLED(ULTRA_LCD) || defined(XY_FREQUENCY_LIMIT)
1063 1063
     // Segment time im micro seconds
1064
-    unsigned long segment_time = lround(1000000.0 / inverse_mm_s);
1064
+    unsigned long segment_time = LROUND(1000000.0 / inverse_mm_s);
1065 1065
   #endif
1066 1066
   #if ENABLED(SLOWDOWN)
1067 1067
     if (WITHIN(moves_queued, 2, (BLOCK_BUFFER_SIZE) / 2 - 1)) {
1068 1068
       if (segment_time < min_segment_time) {
1069 1069
         // buffer is draining, add extra time.  The amount of time added increases if the buffer is still emptied more.
1070
-        inverse_mm_s = 1000000.0 / (segment_time + lround(2 * (min_segment_time - segment_time) / moves_queued));
1070
+        inverse_mm_s = 1000000.0 / (segment_time + LROUND(2 * (min_segment_time - segment_time) / moves_queued));
1071 1071
         #if defined(XY_FREQUENCY_LIMIT) || ENABLED(ULTRA_LCD)
1072
-          segment_time = lround(1000000.0 / inverse_mm_s);
1072
+          segment_time = LROUND(1000000.0 / inverse_mm_s);
1073 1073
         #endif
1074 1074
       }
1075 1075
     }
@@ -1082,7 +1082,7 @@ void Planner::_buffer_line(const float &a, const float &b, const float &c, const
1082 1082
   #endif
1083 1083
 
1084 1084
   block->nominal_speed = block->millimeters * inverse_mm_s; // (mm/sec) Always > 0
1085
-  block->nominal_rate = ceil(block->step_event_count * inverse_mm_s); // (step/sec) Always > 0
1085
+  block->nominal_rate = CEIL(block->step_event_count * inverse_mm_s); // (step/sec) Always > 0
1086 1086
 
1087 1087
   #if ENABLED(FILAMENT_WIDTH_SENSOR)
1088 1088
     static float filwidth_e_count = 0, filwidth_delay_dist = 0;
@@ -1121,7 +1121,7 @@ void Planner::_buffer_line(const float &a, const float &b, const float &c, const
1121 1121
   // Calculate and limit speed in mm/sec for each axis
1122 1122
   float current_speed[NUM_AXIS], speed_factor = 1.0; // factor <1 decreases speed
1123 1123
   LOOP_XYZE(i) {
1124
-    const float cs = fabs(current_speed[i] = delta_mm[i] * inverse_mm_s);
1124
+    const float cs = FABS(current_speed[i] = delta_mm[i] * inverse_mm_s);
1125 1125
     #if ENABLED(DISTINCT_E_FACTORS)
1126 1126
       if (i == E_AXIS) i += extruder;
1127 1127
     #endif
@@ -1134,7 +1134,7 @@ void Planner::_buffer_line(const float &a, const float &b, const float &c, const
1134 1134
     // Check and limit the xy direction change frequency
1135 1135
     const unsigned char direction_change = block->direction_bits ^ old_direction_bits;
1136 1136
     old_direction_bits = block->direction_bits;
1137
-    segment_time = lround((float)segment_time / speed_factor);
1137
+    segment_time = LROUND((float)segment_time / speed_factor);
1138 1138
 
1139 1139
     long xs0 = axis_segment_time[X_AXIS][0],
1140 1140
          xs1 = axis_segment_time[X_AXIS][1],
@@ -1178,7 +1178,7 @@ void Planner::_buffer_line(const float &a, const float &b, const float &c, const
1178 1178
   uint32_t accel;
1179 1179
   if (!block->steps[X_AXIS] && !block->steps[Y_AXIS] && !block->steps[Z_AXIS]) {
1180 1180
     // convert to: acceleration steps/sec^2
1181
-    accel = ceil(retract_acceleration * steps_per_mm);
1181
+    accel = CEIL(retract_acceleration * steps_per_mm);
1182 1182
   }
1183 1183
   else {
1184 1184
     #define LIMIT_ACCEL_LONG(AXIS,INDX) do{ \
@@ -1196,7 +1196,7 @@ void Planner::_buffer_line(const float &a, const float &b, const float &c, const
1196 1196
     }while(0)
1197 1197
 
1198 1198
     // Start with print or travel acceleration
1199
-    accel = ceil((esteps ? acceleration : travel_acceleration) * steps_per_mm);
1199
+    accel = CEIL((esteps ? acceleration : travel_acceleration) * steps_per_mm);
1200 1200
 
1201 1201
     #if ENABLED(DISTINCT_E_FACTORS)
1202 1202
       #define ACCEL_IDX extruder
@@ -1267,8 +1267,8 @@ void Planner::_buffer_line(const float &a, const float &b, const float &c, const
1267 1267
         // Skip and avoid divide by zero for straight junctions at 180 degrees. Limit to min() of nominal speeds.
1268 1268
         if (cos_theta > -0.95) {
1269 1269
           // Compute maximum junction velocity based on maximum acceleration and junction deviation
1270
-          float sin_theta_d2 = sqrt(0.5 * (1.0 - cos_theta)); // Trig half angle identity. Always positive.
1271
-          NOMORE(vmax_junction, sqrt(block->acceleration * junction_deviation * sin_theta_d2 / (1.0 - sin_theta_d2)));
1270
+          float sin_theta_d2 = SQRT(0.5 * (1.0 - cos_theta)); // Trig half angle identity. Always positive.
1271
+          NOMORE(vmax_junction, SQRT(block->acceleration * junction_deviation * sin_theta_d2 / (1.0 - sin_theta_d2)));
1272 1272
         }
1273 1273
       }
1274 1274
     }
@@ -1286,7 +1286,7 @@ void Planner::_buffer_line(const float &a, const float &b, const float &c, const
1286 1286
   float safe_speed = block->nominal_speed;
1287 1287
   uint8_t limited = 0;
1288 1288
   LOOP_XYZE(i) {
1289
-    const float jerk = fabs(current_speed[i]), maxj = max_jerk[i];
1289
+    const float jerk = FABS(current_speed[i]), maxj = max_jerk[i];
1290 1290
     if (jerk > maxj) {
1291 1291
       if (limited) {
1292 1292
         const float mjerk = maxj * block->nominal_speed;
@@ -1395,7 +1395,7 @@ void Planner::_buffer_line(const float &a, const float &b, const float &c, const
1395 1395
                             && (uint32_t)esteps != block->step_event_count
1396 1396
                             && de_float > 0.0;
1397 1397
     if (block->use_advance_lead)
1398
-      block->abs_adv_steps_multiplier8 = lround(
1398
+      block->abs_adv_steps_multiplier8 = LROUND(
1399 1399
         extruder_advance_k
1400 1400
         * (UNEAR_ZERO(advance_ed_ratio) ? de_float / mm_D_float : advance_ed_ratio) // Use the fixed ratio, if set
1401 1401
         * (block->nominal_speed / (float)block->nominal_rate)
@@ -1458,10 +1458,10 @@ void Planner::_set_position_mm(const float &a, const float &b, const float &c, c
1458 1458
   #else
1459 1459
     #define _EINDEX E_AXIS
1460 1460
   #endif
1461
-  long na = position[X_AXIS] = lround(a * axis_steps_per_mm[X_AXIS]),
1462
-       nb = position[Y_AXIS] = lround(b * axis_steps_per_mm[Y_AXIS]),
1463
-       nc = position[Z_AXIS] = lround(c * axis_steps_per_mm[Z_AXIS]),
1464
-       ne = position[E_AXIS] = lround(e * axis_steps_per_mm[_EINDEX]);
1461
+  long na = position[X_AXIS] = LROUND(a * axis_steps_per_mm[X_AXIS]),
1462
+       nb = position[Y_AXIS] = LROUND(b * axis_steps_per_mm[Y_AXIS]),
1463
+       nc = position[Z_AXIS] = LROUND(c * axis_steps_per_mm[Z_AXIS]),
1464
+       ne = position[E_AXIS] = LROUND(e * axis_steps_per_mm[_EINDEX]);
1465 1465
   #if ENABLED(LIN_ADVANCE)
1466 1466
     position_float[X_AXIS] = a;
1467 1467
     position_float[Y_AXIS] = b;
@@ -1514,7 +1514,7 @@ void Planner::set_position_mm(const AxisEnum axis, const float &v) {
1514 1514
   #else
1515 1515
     const uint8_t axis_index = axis;
1516 1516
   #endif
1517
-  position[axis] = lround(v * axis_steps_per_mm[axis_index]);
1517
+  position[axis] = LROUND(v * axis_steps_per_mm[axis_index]);
1518 1518
   #if ENABLED(LIN_ADVANCE)
1519 1519
     position_float[axis] = v;
1520 1520
   #endif

+ 1
- 1
Marlin/planner.h View File

@@ -454,7 +454,7 @@ class Planner {
454 454
      * 'distance'.
455 455
      */
456 456
     static float max_allowable_speed(const float &accel, const float &target_velocity, const float &distance) {
457
-      return sqrt(sq(target_velocity) - 2 * accel * distance);
457
+      return SQRT(sq(target_velocity) - 2 * accel * distance);
458 458
     }
459 459
 
460 460
     static void calculate_trapezoid_for_block(block_t* const block, const float &entry_factor, const float &exit_factor);

+ 1
- 1
Marlin/planner_bezier.cpp View File

@@ -64,7 +64,7 @@ inline static float eval_bezier(float a, float b, float c, float d, float t) {
64 64
  * We approximate Euclidean distance with the sum of the coordinates
65 65
  * offset (so-called "norm 1"), which is quicker to compute.
66 66
  */
67
-inline static float dist1(float x1, float y1, float x2, float y2) { return fabs(x1 - x2) + fabs(y1 - y2); }
67
+inline static float dist1(float x1, float y1, float x2, float y2) { return FABS(x1 - x2) + FABS(y1 - y2); }
68 68
 
69 69
 /**
70 70
  * The algorithm for computing the step is loosely based on the one in Kig

+ 4
- 4
Marlin/qr_solve.cpp View File

@@ -521,7 +521,7 @@ float dnrm2(int n, float x[], int incx)
521 521
       }
522 522
       ix += incx;
523 523
     }
524
-    norm = scale * sqrt(ssq);
524
+    norm = scale * SQRT(ssq);
525 525
   }
526 526
   return norm;
527 527
 }
@@ -791,12 +791,12 @@ void dqrdc(float a[], int lda, int n, int p, float qraux[], int jpvt[],
791 791
           daxpy(n - l + 1, t, a + l - 1 + (l - 1)*lda, 1, a + l - 1 + (j - 1)*lda, 1);
792 792
           if (pl <= j && j <= pu) {
793 793
             if (qraux[j - 1] != 0.0) {
794
-              tt = 1.0 - pow(r8_abs(a[l - 1 + (j - 1) * lda]) / qraux[j - 1], 2);
794
+              tt = 1.0 - POW(r8_abs(a[l - 1 + (j - 1) * lda]) / qraux[j - 1], 2);
795 795
               tt = r8_max(tt, 0.0);
796 796
               t = tt;
797
-              tt = 1.0 + 0.05 * tt * pow(qraux[j - 1] / work[j - 1], 2);
797
+              tt = 1.0 + 0.05 * tt * POW(qraux[j - 1] / work[j - 1], 2);
798 798
               if (tt != 1.0)
799
-                qraux[j - 1] = qraux[j - 1] * sqrt(t);
799
+                qraux[j - 1] = qraux[j - 1] * SQRT(t);
800 800
               else {
801 801
                 qraux[j - 1] = dnrm2(n - l, a + l + (j - 1) * lda, 1);
802 802
                 work[j - 1] = qraux[j - 1];

+ 1
- 1
Marlin/serial.h View File

@@ -40,7 +40,7 @@
40 40
 extern const char echomagic[] PROGMEM;
41 41
 extern const char errormagic[] PROGMEM;
42 42
 
43
-#define SERIAL_CHAR(x) (MYSERIAL.write(x))
43
+#define SERIAL_CHAR(x) ((void)MYSERIAL.write(x))
44 44
 #define SERIAL_EOL() SERIAL_CHAR('\n')
45 45
 
46 46
 #define SERIAL_PROTOCOLCHAR(x)              SERIAL_CHAR(x)

+ 1
- 1
Marlin/temperature.cpp View File

@@ -749,7 +749,7 @@ void Temperature::manage_heater() {
749 749
 
750 750
     #if ENABLED(TEMP_SENSOR_1_AS_REDUNDANT)
751 751
       // Make sure measured temperatures are close together
752
-      if (fabs(current_temperature[0] - redundant_temperature) > MAX_REDUNDANT_TEMP_SENSOR_DIFF)
752
+      if (FABS(current_temperature[0] - redundant_temperature) > MAX_REDUNDANT_TEMP_SENSOR_DIFF)
753 753
         _temp_error(0, PSTR(MSG_REDUNDANCY), PSTR(MSG_ERR_REDUNDANT_TEMP));
754 754
     #endif
755 755
 

+ 4
- 4
Marlin/ubl_G29.cpp View File

@@ -498,7 +498,7 @@
498 498
 
499 499
             if (parser.seen('B')) {
500 500
               g29_card_thickness = parser.has_value() ? parser.value_float() : measure_business_card_thickness(height);
501
-              if (fabs(g29_card_thickness) > 1.5) {
501
+              if (FABS(g29_card_thickness) > 1.5) {
502 502
                 SERIAL_PROTOCOLLNPGM("?Error in Business Card measurement.");
503 503
                 return;
504 504
               }
@@ -562,7 +562,7 @@
562 562
                   // P3.13 1000X distance weighting, approaches simple average of nearest points
563 563
 
564 564
                   const float weight_power  = (cvf - 3.10) * 100.0,  // 3.12345 -> 2.345
565
-                              weight_factor = weight_power ? pow(10.0, weight_power) : 0;
565
+                              weight_factor = weight_power ? POW(10.0, weight_power) : 0;
566 566
                   smart_fill_wlsf(weight_factor);
567 567
                 }
568 568
                 break;
@@ -774,7 +774,7 @@
774 774
     SERIAL_ECHO_F(mean, 6);
775 775
     SERIAL_EOL();
776 776
 
777
-    const float sigma = sqrt(sum_of_diff_squared / (n + 1));
777
+    const float sigma = SQRT(sum_of_diff_squared / (n + 1));
778 778
     SERIAL_ECHOPGM("Standard Deviation: ");
779 779
     SERIAL_ECHO_F(sigma, 6);
780 780
     SERIAL_EOL();
@@ -1508,7 +1508,7 @@
1508 1508
         do_blocking_move_to_z(Z_CLEARANCE_BETWEEN_PROBES);    // Move the nozzle to where we are going to edit
1509 1509
         do_blocking_move_to_xy(LOGICAL_X_POSITION(rawx), LOGICAL_Y_POSITION(rawy));
1510 1510
 
1511
-        new_z = floor(new_z * 1000.0) * 0.001; // Chop off digits after the 1000ths place
1511
+        new_z = FLOOR(new_z * 1000.0) * 0.001; // Chop off digits after the 1000ths place
1512 1512
 
1513 1513
         KEEPALIVE_STATE(PAUSED_FOR_USER);
1514 1514
         has_control_of_lcd_panel = true;

+ 5
- 5
Marlin/ubl_motion.cpp View File

@@ -492,15 +492,15 @@
492 492
 
493 493
       #if ENABLED(DELTA)  // apply delta inverse_kinematics
494 494
 
495
-        const float delta_A = rz + sqrt( delta_diagonal_rod_2_tower[A_AXIS]
495
+        const float delta_A = rz + SQRT( delta_diagonal_rod_2_tower[A_AXIS]
496 496
                                          - HYPOT2( delta_tower[A_AXIS][X_AXIS] - rx,
497 497
                                                    delta_tower[A_AXIS][Y_AXIS] - ry ));
498 498
 
499
-        const float delta_B = rz + sqrt( delta_diagonal_rod_2_tower[B_AXIS]
499
+        const float delta_B = rz + SQRT( delta_diagonal_rod_2_tower[B_AXIS]
500 500
                                          - HYPOT2( delta_tower[B_AXIS][X_AXIS] - rx,
501 501
                                                    delta_tower[B_AXIS][Y_AXIS] - ry ));
502 502
 
503
-        const float delta_C = rz + sqrt( delta_diagonal_rod_2_tower[C_AXIS]
503
+        const float delta_C = rz + SQRT( delta_diagonal_rod_2_tower[C_AXIS]
504 504
                                          - HYPOT2( delta_tower[C_AXIS][X_AXIS] - rx,
505 505
                                                    delta_tower[C_AXIS][Y_AXIS] - ry ));
506 506
 
@@ -516,8 +516,8 @@
516 516
         inverse_kinematics(lseg); // this writes delta[ABC] from lseg[XYZ]
517 517
                                   // should move the feedrate scaling to scara inverse_kinematics
518 518
 
519
-        float adiff = abs(delta[A_AXIS] - scara_oldA),
520
-              bdiff = abs(delta[B_AXIS] - scara_oldB);
519
+        const float adiff = FABS(delta[A_AXIS] - scara_oldA),
520
+                    bdiff = FABS(delta[B_AXIS] - scara_oldB);
521 521
         scara_oldA = delta[A_AXIS];
522 522
         scara_oldB = delta[B_AXIS];
523 523
         float s_feedrate = max(adiff, bdiff) * scara_feed_factor;

+ 29
- 29
Marlin/ultralcd.cpp View File

@@ -49,7 +49,7 @@
49 49
   bool ubl_lcd_map_control = false;
50 50
 #endif
51 51
 
52
-int lcd_preheat_hotend_temp[2], lcd_preheat_bed_temp[2], lcd_preheat_fan_speed[2];
52
+int16_t lcd_preheat_hotend_temp[2], lcd_preheat_bed_temp[2], lcd_preheat_fan_speed[2];
53 53
 
54 54
 #if ENABLED(FILAMENT_LCD_DISPLAY) && ENABLED(SDSUPPORT)
55 55
   millis_t previous_lcd_status_ms = 0;
@@ -184,7 +184,7 @@ uint16_t max_display_update_time = 0;
184 184
     void menu_action_setting_edit_callback_ ## _name(const char * const pstr, _type * const ptr, const _type minValue, const _type maxValue, const screenFunc_t callback, const bool live=false); \
185 185
     typedef void _name##_void
186 186
 
187
-  DECLARE_MENU_EDIT_TYPE(int, int3);
187
+  DECLARE_MENU_EDIT_TYPE(int16_t, int3);
188 188
   DECLARE_MENU_EDIT_TYPE(uint8_t, int8);
189 189
   DECLARE_MENU_EDIT_TYPE(float, float3);
190 190
   DECLARE_MENU_EDIT_TYPE(float, float32);
@@ -193,7 +193,7 @@ uint16_t max_display_update_time = 0;
193 193
   DECLARE_MENU_EDIT_TYPE(float, float51);
194 194
   DECLARE_MENU_EDIT_TYPE(float, float52);
195 195
   DECLARE_MENU_EDIT_TYPE(float, float62);
196
-  DECLARE_MENU_EDIT_TYPE(unsigned long, long5);
196
+  DECLARE_MENU_EDIT_TYPE(uint32_t, long5);
197 197
 
198 198
   void menu_action_setting_edit_bool(const char* pstr, bool* ptr);
199 199
   void menu_action_setting_edit_callback_bool(const char* pstr, bool* ptr, screenFunc_t callbackFunc);
@@ -602,7 +602,7 @@ void lcd_status_screen() {
602 602
     }
603 603
 
604 604
     #if ENABLED(ULTIPANEL_FEEDMULTIPLY)
605
-      const int new_frm = feedrate_percentage + (int32_t)encoderPosition;
605
+      const int16_t new_frm = feedrate_percentage + (int32_t)encoderPosition;
606 606
       // Dead zone at 100% feedrate
607 607
       if ((feedrate_percentage < 100 && new_frm > 100) || (feedrate_percentage > 100 && new_frm < 100)) {
608 608
         feedrate_percentage = 100;
@@ -966,7 +966,7 @@ void kill_screen(const char* lcd_msg) {
966 966
       if (lcd_clicked) { defer_return_to_status = false; return lcd_goto_previous_menu(); }
967 967
       ENCODER_DIRECTION_NORMAL();
968 968
       if (encoderPosition) {
969
-        const int babystep_increment = (int32_t)encoderPosition * (BABYSTEP_MULTIPLICATOR);
969
+        const int16_t babystep_increment = (int32_t)encoderPosition * (BABYSTEP_MULTIPLICATOR);
970 970
         encoderPosition = 0;
971 971
         lcdDrawUpdate = LCDVIEW_REDRAW_NOW;
972 972
         thermalManager.babystep_axis(axis, babystep_increment);
@@ -990,7 +990,7 @@ void kill_screen(const char* lcd_msg) {
990 990
         defer_return_to_status = true;
991 991
         ENCODER_DIRECTION_NORMAL();
992 992
         if (encoderPosition) {
993
-          const int babystep_increment = (int32_t)encoderPosition * (BABYSTEP_MULTIPLICATOR);
993
+          const int16_t babystep_increment = (int32_t)encoderPosition * (BABYSTEP_MULTIPLICATOR);
994 994
           encoderPosition = 0;
995 995
 
996 996
           const float new_zoffset = zprobe_zoffset + planner.steps_to_mm[Z_AXIS] * babystep_increment;
@@ -1021,7 +1021,7 @@ void kill_screen(const char* lcd_msg) {
1021 1021
 
1022 1022
     float mesh_edit_value, mesh_edit_accumulator; // We round mesh_edit_value to 2.5 decimal places. So we keep a
1023 1023
                                                   // separate value that doesn't lose precision.
1024
-    static int ubl_encoderPosition = 0;
1024
+    static int16_t ubl_encoderPosition = 0;
1025 1025
 
1026 1026
     static void _lcd_mesh_fine_tune(const char* msg) {
1027 1027
       defer_return_to_status = true;
@@ -1275,7 +1275,7 @@ void kill_screen(const char* lcd_msg) {
1275 1275
    * "Prepare" submenu items
1276 1276
    *
1277 1277
    */
1278
-  void _lcd_preheat(const int endnum, const int16_t temph, const int16_t tempb, const int16_t fan) {
1278
+  void _lcd_preheat(const int16_t endnum, const int16_t temph, const int16_t tempb, const int16_t fan) {
1279 1279
     if (temph > 0) thermalManager.setTargetHotend(min(heater_maxtemp[endnum], temph), endnum);
1280 1280
     #if TEMP_SENSOR_BED != 0
1281 1281
       if (tempb >= 0) thermalManager.setTargetBed(tempb);
@@ -1806,7 +1806,7 @@ void kill_screen(const char* lcd_msg) {
1806 1806
 
1807 1807
     void _lcd_ubl_level_bed();
1808 1808
 
1809
-    static int ubl_storage_slot = 0,
1809
+    static int16_t ubl_storage_slot = 0,
1810 1810
                custom_bed_temp = 50,
1811 1811
                custom_hotend_temp = 190,
1812 1812
                side_points = 3,
@@ -2624,7 +2624,7 @@ void kill_screen(const char* lcd_msg) {
2624 2624
       // This assumes the center is 0,0
2625 2625
       #if ENABLED(DELTA)
2626 2626
         if (axis != Z_AXIS) {
2627
-          max = sqrt(sq((float)(DELTA_PRINTABLE_RADIUS)) - sq(current_position[Y_AXIS - axis]));
2627
+          max = SQRT(sq((float)(DELTA_PRINTABLE_RADIUS)) - sq(current_position[Y_AXIS - axis]));
2628 2628
           min = -max;
2629 2629
         }
2630 2630
       #endif
@@ -2872,14 +2872,14 @@ void kill_screen(const char* lcd_msg) {
2872 2872
   #if ENABLED(PID_AUTOTUNE_MENU)
2873 2873
 
2874 2874
     #if ENABLED(PIDTEMP)
2875
-      int autotune_temp[HOTENDS] = ARRAY_BY_HOTENDS1(150);
2875
+      int16_t autotune_temp[HOTENDS] = ARRAY_BY_HOTENDS1(150);
2876 2876
     #endif
2877 2877
 
2878 2878
     #if ENABLED(PIDTEMPBED)
2879
-      int autotune_temp_bed = 70;
2879
+      int16_t autotune_temp_bed = 70;
2880 2880
     #endif
2881 2881
 
2882
-    void _lcd_autotune(int e) {
2882
+    void _lcd_autotune(int16_t e) {
2883 2883
       char cmd[30];
2884 2884
       sprintf_P(cmd, PSTR("M303 U1 E%i S%i"), e,
2885 2885
         #if HAS_PID_FOR_BOTH
@@ -2899,14 +2899,14 @@ void kill_screen(const char* lcd_msg) {
2899 2899
 
2900 2900
     // Helpers for editing PID Ki & Kd values
2901 2901
     // grab the PID value out of the temp variable; scale it; then update the PID driver
2902
-    void copy_and_scalePID_i(int e) {
2902
+    void copy_and_scalePID_i(int16_t e) {
2903 2903
       #if DISABLED(PID_PARAMS_PER_HOTEND) || HOTENDS == 1
2904 2904
         UNUSED(e);
2905 2905
       #endif
2906 2906
       PID_PARAM(Ki, e) = scalePID_i(raw_Ki);
2907 2907
       thermalManager.updatePID();
2908 2908
     }
2909
-    void copy_and_scalePID_d(int e) {
2909
+    void copy_and_scalePID_d(int16_t e) {
2910 2910
       #if DISABLED(PID_PARAMS_PER_HOTEND) || HOTENDS == 1
2911 2911
         UNUSED(e);
2912 2912
       #endif
@@ -3475,7 +3475,7 @@ void kill_screen(const char* lcd_msg) {
3475 3475
         STATIC_ITEM(MSG_INFO_PRINT_LONGEST ": ", false, false);                                        // Longest job time:
3476 3476
         STATIC_ITEM("", false, false, buffer);                                                         // 99y 364d 23h 59m 59s
3477 3477
 
3478
-        sprintf_P(buffer, PSTR("%ld.%im"), long(stats.filamentUsed / 1000), int(stats.filamentUsed / 100) % 10);
3478
+        sprintf_P(buffer, PSTR("%ld.%im"), long(stats.filamentUsed / 1000), int16_t(stats.filamentUsed / 100) % 10);
3479 3479
         STATIC_ITEM(MSG_INFO_PRINT_FILAMENT ": ", false, false);                                       // Extruded total:
3480 3480
         STATIC_ITEM("", false, false, buffer);                                                         // 125m
3481 3481
         END_SCREEN();
@@ -3878,14 +3878,14 @@ void kill_screen(const char* lcd_msg) {
3878 3878
    *
3879 3879
    * The "DEFINE_MENU_EDIT_TYPE" macro generates the functions needed to edit a numerical value.
3880 3880
    *
3881
-   * For example, DEFINE_MENU_EDIT_TYPE(int, int3, itostr3, 1) expands into these functions:
3881
+   * For example, DEFINE_MENU_EDIT_TYPE(int16_t, int3, itostr3, 1) expands into these functions:
3882 3882
    *
3883 3883
    *   bool _menu_edit_int3();
3884
-   *   void menu_edit_int3(); // edit int (interactively)
3885
-   *   void menu_edit_callback_int3(); // edit int (interactively) with callback on completion
3886
-   *   void _menu_action_setting_edit_int3(const char * const pstr, int * const ptr, const int minValue, const int maxValue);
3887
-   *   void menu_action_setting_edit_int3(const char * const pstr, int * const ptr, const int minValue, const int maxValue);
3888
-   *   void menu_action_setting_edit_callback_int3(const char * const pstr, int * const ptr, const int minValue, const int maxValue, const screenFunc_t callback, const bool live); // edit int with callback
3884
+   *   void menu_edit_int3(); // edit int16_t (interactively)
3885
+   *   void menu_edit_callback_int3(); // edit int16_t (interactively) with callback on completion
3886
+   *   void _menu_action_setting_edit_int3(const char * const pstr, int16_t * const ptr, const int16_t minValue, const int16_t maxValue);
3887
+   *   void menu_action_setting_edit_int3(const char * const pstr, int16_t * const ptr, const int16_t minValue, const int16_t maxValue);
3888
+   *   void menu_action_setting_edit_callback_int3(const char * const pstr, int16_t * const ptr, const int16_t minValue, const int16_t maxValue, const screenFunc_t callback, const bool live); // edit int16_t with callback
3889 3889
    *
3890 3890
    * You can then use one of the menu macros to present the edit interface:
3891 3891
    *   MENU_ITEM_EDIT(int3, MSG_SPEED, &feedrate_percentage, 10, 999)
@@ -3936,7 +3936,7 @@ void kill_screen(const char* lcd_msg) {
3936 3936
     } \
3937 3937
     typedef void _name
3938 3938
 
3939
-  DEFINE_MENU_EDIT_TYPE(int, int3, itostr3, 1);
3939
+  DEFINE_MENU_EDIT_TYPE(int16_t, int3, itostr3, 1);
3940 3940
   DEFINE_MENU_EDIT_TYPE(uint8_t, int8, i8tostr3, 1);
3941 3941
   DEFINE_MENU_EDIT_TYPE(float, float3, ftostr3, 1.0);
3942 3942
   DEFINE_MENU_EDIT_TYPE(float, float32, ftostr32, 100.0);
@@ -3945,7 +3945,7 @@ void kill_screen(const char* lcd_msg) {
3945 3945
   DEFINE_MENU_EDIT_TYPE(float, float51, ftostr51sign, 10.0);
3946 3946
   DEFINE_MENU_EDIT_TYPE(float, float52, ftostr52sign, 100.0);
3947 3947
   DEFINE_MENU_EDIT_TYPE(float, float62, ftostr62rj, 100.0);
3948
-  DEFINE_MENU_EDIT_TYPE(unsigned long, long5, ftostr5rj, 0.01);
3948
+  DEFINE_MENU_EDIT_TYPE(uint32_t, long5, ftostr5rj, 0.01);
3949 3949
 
3950 3950
   /**
3951 3951
    *
@@ -3953,7 +3953,7 @@ void kill_screen(const char* lcd_msg) {
3953 3953
    *
3954 3954
    */
3955 3955
   #if ENABLED(REPRAPWORLD_KEYPAD)
3956
-    void _reprapworld_keypad_move(AxisEnum axis, int dir) {
3956
+    void _reprapworld_keypad_move(AxisEnum axis, int16_t dir) {
3957 3957
       move_menu_scale = REPRAPWORLD_KEYPAD_MOVE_STEP;
3958 3958
       encoderPosition = dir;
3959 3959
       switch (axis) {
@@ -4112,8 +4112,8 @@ void lcd_init() {
4112 4112
   #endif
4113 4113
 }
4114 4114
 
4115
-int lcd_strlen(const char* s) {
4116
-  int i = 0, j = 0;
4115
+int16_t lcd_strlen(const char* s) {
4116
+  int16_t i = 0, j = 0;
4117 4117
   while (s[i]) {
4118 4118
     if (PRINTABLE(s[i])) j++;
4119 4119
     i++;
@@ -4121,8 +4121,8 @@ int lcd_strlen(const char* s) {
4121 4121
   return j;
4122 4122
 }
4123 4123
 
4124
-int lcd_strlen_P(const char* s) {
4125
-  int j = 0;
4124
+int16_t lcd_strlen_P(const char* s) {
4125
+  int16_t j = 0;
4126 4126
   while (pgm_read_byte(s)) {
4127 4127
     if (PRINTABLE(pgm_read_byte(s))) j++;
4128 4128
     s++;

+ 3
- 3
Marlin/ultralcd.h View File

@@ -30,10 +30,10 @@
30 30
   #define BUTTON_EXISTS(BN) (defined(BTN_## BN) && BTN_## BN >= 0)
31 31
   #define BUTTON_PRESSED(BN) !READ(BTN_## BN)
32 32
 
33
-  extern int lcd_preheat_hotend_temp[2], lcd_preheat_bed_temp[2], lcd_preheat_fan_speed[2];
33
+  extern int16_t lcd_preheat_hotend_temp[2], lcd_preheat_bed_temp[2], lcd_preheat_fan_speed[2];
34 34
 
35
-  int lcd_strlen(const char* s);
36
-  int lcd_strlen_P(const char* s);
35
+  int16_t lcd_strlen(const char* s);
36
+  int16_t lcd_strlen_P(const char* s);
37 37
   void lcd_update();
38 38
   void lcd_init();
39 39
   bool lcd_hasstatus();

+ 5
- 5
Marlin/ultralcd_impl_DOGM.h View File

@@ -346,7 +346,7 @@ void lcd_implementation_clear() { } // Automatically cleared by Picture Loop
346 346
 // Status Screen
347 347
 //
348 348
 
349
-FORCE_INLINE void _draw_centered_temp(const int temp, const uint8_t x, const uint8_t y) {
349
+FORCE_INLINE void _draw_centered_temp(const int16_t temp, const uint8_t x, const uint8_t y) {
350 350
   const uint8_t degsize = 6 * (temp >= 100 ? 3 : temp >= 10 ? 2 : 1); // number's pixel width
351 351
   u8g.setPrintPos(x - (18 - degsize) / 2, y); // move left if shorter
352 352
   lcd_print(itostr3(temp));
@@ -484,7 +484,7 @@ static void lcd_implementation_status_screen() {
484 484
     #if HAS_FAN0
485 485
       if (PAGE_CONTAINS(20, 27)) {
486 486
         // Fan
487
-        const int per = ((fanSpeeds[0] + 1) * 100) / 256;
487
+        const int16_t per = ((fanSpeeds[0] + 1) * 100) / 256;
488 488
         if (per) {
489 489
           u8g.setPrintPos(104, 27);
490 490
           lcd_print(itostr3(per));
@@ -533,7 +533,7 @@ static void lcd_implementation_status_screen() {
533 533
       if (PAGE_CONTAINS(50, 51 - (TALL_FONT_CORRECTION)))     // 50-51 (or just 50)
534 534
         u8g.drawBox(
535 535
           PROGRESS_BAR_X + 1, 50,
536
-          (unsigned int)((PROGRESS_BAR_WIDTH - 2) * card.percentDone() * 0.01), 2 - (TALL_FONT_CORRECTION)
536
+          (uint16_t)((PROGRESS_BAR_WIDTH - 2) * card.percentDone() * 0.01), 2 - (TALL_FONT_CORRECTION)
537 537
         );
538 538
 
539 539
       //
@@ -847,7 +847,7 @@ static void lcd_implementation_status_screen() {
847 847
     } \
848 848
     typedef void _name##_void
849 849
 
850
-  DEFINE_LCD_IMPLEMENTATION_DRAWMENU_SETTING_EDIT_TYPE(int, int3, itostr3);
850
+  DEFINE_LCD_IMPLEMENTATION_DRAWMENU_SETTING_EDIT_TYPE(int16_t, int3, itostr3);
851 851
   DEFINE_LCD_IMPLEMENTATION_DRAWMENU_SETTING_EDIT_TYPE(uint8_t, int8, i8tostr3);
852 852
   DEFINE_LCD_IMPLEMENTATION_DRAWMENU_SETTING_EDIT_TYPE(float, float3, ftostr3);
853 853
   DEFINE_LCD_IMPLEMENTATION_DRAWMENU_SETTING_EDIT_TYPE(float, float32, ftostr32);
@@ -856,7 +856,7 @@ static void lcd_implementation_status_screen() {
856 856
   DEFINE_LCD_IMPLEMENTATION_DRAWMENU_SETTING_EDIT_TYPE(float, float51, ftostr51sign);
857 857
   DEFINE_LCD_IMPLEMENTATION_DRAWMENU_SETTING_EDIT_TYPE(float, float52, ftostr52sign);
858 858
   DEFINE_LCD_IMPLEMENTATION_DRAWMENU_SETTING_EDIT_TYPE(float, float62, ftostr62rj);
859
-  DEFINE_LCD_IMPLEMENTATION_DRAWMENU_SETTING_EDIT_TYPE(unsigned long, long5, ftostr5rj);
859
+  DEFINE_LCD_IMPLEMENTATION_DRAWMENU_SETTING_EDIT_TYPE(uint32_t, long5, ftostr5rj);
860 860
 
861 861
   #define lcd_implementation_drawmenu_setting_edit_bool(sel, row, pstr, pstr2, data) lcd_implementation_drawmenu_setting_edit_generic_P(sel, row, pstr, (*(data))?PSTR(MSG_ON):PSTR(MSG_OFF))
862 862
   #define lcd_implementation_drawmenu_setting_edit_callback_bool(sel, row, pstr, pstr2, data, callback) lcd_implementation_drawmenu_setting_edit_generic_P(sel, row, pstr, (*(data))?PSTR(MSG_ON):PSTR(MSG_OFF))

+ 9
- 9
Marlin/ultralcd_impl_HD44780.h View File

@@ -337,7 +337,7 @@ static void lcd_set_custom_characters(
337 337
       if (info_screen_charset != char_mode) {
338 338
         char_mode = info_screen_charset;
339 339
         if (info_screen_charset) { // Progress bar characters for info screen
340
-          for (int i = 3; i--;) createChar_P(LCD_STR_PROGRESS[i], progress[i]);
340
+          for (int16_t i = 3; i--;) createChar_P(LCD_STR_PROGRESS[i], progress[i]);
341 341
         }
342 342
         else { // Custom characters for submenus
343 343
           createChar_P(LCD_UPLEVEL_CHAR, uplevel);
@@ -414,17 +414,17 @@ void lcd_printPGM_utf(const char *str, uint8_t n=LCD_WIDTH) {
414 414
 
415 415
 #if ENABLED(SHOW_BOOTSCREEN)
416 416
 
417
-  void lcd_erase_line(const int line) {
417
+  void lcd_erase_line(const int16_t line) {
418 418
     lcd.setCursor(0, line);
419 419
     for (uint8_t i = LCD_WIDTH + 1; --i;)
420 420
       lcd.print(' ');
421 421
   }
422 422
 
423 423
   // Scroll the PSTR 'text' in a 'len' wide field for 'time' milliseconds at position col,line
424
-  void lcd_scroll(const int col, const int line, const char* const text, const int len, const int time) {
424
+  void lcd_scroll(const int16_t col, const int16_t line, const char* const text, const int16_t len, const int16_t time) {
425 425
     char tmp[LCD_WIDTH + 1] = {0};
426
-    int n = max(lcd_strlen_P(text) - len, 0);
427
-    for (int i = 0; i <= n; i++) {
426
+    int16_t n = max(lcd_strlen_P(text) - len, 0);
427
+    for (int16_t i = 0; i <= n; i++) {
428 428
       strncpy_P(tmp, text + i, min(len, LCD_WIDTH));
429 429
       lcd.setCursor(col, line);
430 430
       lcd_print(tmp);
@@ -433,7 +433,7 @@ void lcd_printPGM_utf(const char *str, uint8_t n=LCD_WIDTH) {
433 433
   }
434 434
 
435 435
   static void logo_lines(const char* const extra) {
436
-    int indent = (LCD_WIDTH - 8 - lcd_strlen_P(extra)) / 2;
436
+    int16_t indent = (LCD_WIDTH - 8 - lcd_strlen_P(extra)) / 2;
437 437
     lcd.setCursor(indent, 0); lcd.print('\x00'); lcd_printPGM(PSTR( "------" ));  lcd.print('\x01');
438 438
     lcd.setCursor(indent, 1);                    lcd_printPGM(PSTR("|Marlin|"));  lcd_printPGM(extra);
439 439
     lcd.setCursor(indent, 2); lcd.print('\x02'); lcd_printPGM(PSTR( "------" ));  lcd.print('\x03');
@@ -628,7 +628,7 @@ FORCE_INLINE void _draw_heater_status(const int8_t heater, const char prefix, co
628 628
 #if ENABLED(LCD_PROGRESS_BAR)
629 629
 
630 630
   inline void lcd_draw_progress_bar(const uint8_t percent) {
631
-    const int tix = (int)(percent * (LCD_WIDTH) * 3) / 100,
631
+    const int16_t tix = (int16_t)(percent * (LCD_WIDTH) * 3) / 100,
632 632
               cel = tix / 3,
633 633
               rem = tix % 3;
634 634
     uint8_t i = LCD_WIDTH;
@@ -958,7 +958,7 @@ static void lcd_implementation_status_screen() {
958 958
     } \
959 959
     typedef void _name##_void
960 960
 
961
-  DEFINE_LCD_IMPLEMENTATION_DRAWMENU_SETTING_EDIT_TYPE(int, int3, itostr3);
961
+  DEFINE_LCD_IMPLEMENTATION_DRAWMENU_SETTING_EDIT_TYPE(int16_t, int3, itostr3);
962 962
   DEFINE_LCD_IMPLEMENTATION_DRAWMENU_SETTING_EDIT_TYPE(uint8_t, int8, i8tostr3);
963 963
   DEFINE_LCD_IMPLEMENTATION_DRAWMENU_SETTING_EDIT_TYPE(float, float3, ftostr3);
964 964
   DEFINE_LCD_IMPLEMENTATION_DRAWMENU_SETTING_EDIT_TYPE(float, float32, ftostr32);
@@ -967,7 +967,7 @@ static void lcd_implementation_status_screen() {
967 967
   DEFINE_LCD_IMPLEMENTATION_DRAWMENU_SETTING_EDIT_TYPE(float, float51, ftostr51sign);
968 968
   DEFINE_LCD_IMPLEMENTATION_DRAWMENU_SETTING_EDIT_TYPE(float, float52, ftostr52sign);
969 969
   DEFINE_LCD_IMPLEMENTATION_DRAWMENU_SETTING_EDIT_TYPE(float, float62, ftostr62rj);
970
-  DEFINE_LCD_IMPLEMENTATION_DRAWMENU_SETTING_EDIT_TYPE(unsigned long, long5, ftostr5rj);
970
+  DEFINE_LCD_IMPLEMENTATION_DRAWMENU_SETTING_EDIT_TYPE(uint32_t, long5, ftostr5rj);
971 971
 
972 972
   #define lcd_implementation_drawmenu_setting_edit_bool(sel, row, pstr, pstr2, data) lcd_implementation_drawmenu_setting_edit_generic_P(sel, row, pstr, '>', (*(data))?PSTR(MSG_ON):PSTR(MSG_OFF))
973 973
   #define lcd_implementation_drawmenu_setting_edit_callback_bool(sel, row, pstr, pstr2, data, callback) lcd_implementation_drawmenu_setting_edit_generic_P(sel, row, pstr, '>', (*(data))?PSTR(MSG_ON):PSTR(MSG_OFF))

+ 1
- 1
Marlin/vector_3.cpp View File

@@ -63,7 +63,7 @@ vector_3 vector_3::get_normal() {
63 63
   return normalized;
64 64
 }
65 65
 
66
-float vector_3::get_length() { return sqrt(sq(x) + sq(y) + sq(z)); }
66
+float vector_3::get_length() { return SQRT(sq(x) + sq(y) + sq(z)); }
67 67
 
68 68
 void vector_3::normalize() {
69 69
   const float inv_length = 1.0 / get_length();

Loading…
Cancel
Save