Browse Source

G33 evolutionary changes

Scott Lahteine 7 years ago
parent
commit
6ce2b1ff4a

+ 131
- 93
Marlin/Marlin_main.cpp View File

3019
     // so here it re-homes each tower in turn.
3019
     // so here it re-homes each tower in turn.
3020
     // Delta homing treats the axes as normal linear axes.
3020
     // Delta homing treats the axes as normal linear axes.
3021
 
3021
 
3022
-    // retrace by the amount specified in endstop_adj
3023
-    if (endstop_adj[axis] * Z_HOME_DIR < 0) {
3022
+    // retrace by the amount specified in endstop_adj + additional 0.1mm in order to have minimum steps
3023
+    if (endstop_adj[axis] * Z_HOME_DIR <= 0) {
3024
       #if ENABLED(DEBUG_LEVELING_FEATURE)
3024
       #if ENABLED(DEBUG_LEVELING_FEATURE)
3025
         if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("endstop_adj:");
3025
         if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("endstop_adj:");
3026
       #endif
3026
       #endif
3027
-      do_homing_move(axis, endstop_adj[axis]);
3027
+      do_homing_move(axis, endstop_adj[axis] - 0.1);
3028
     }
3028
     }
3029
 
3029
 
3030
   #else
3030
   #else
5098
      *
5098
      *
5099
      * Parameters:
5099
      * Parameters:
5100
      *
5100
      *
5101
-     *   P  Number of probe points:
5101
+     *   Pn  Number of probe points:
5102
      *
5102
      *
5103
      *      P1     Probe center and set height only.
5103
      *      P1     Probe center and set height only.
5104
      *      P2     Probe center and towers. Set height, endstops, and delta radius.
5104
      *      P2     Probe center and towers. Set height, endstops, and delta radius.
5105
      *      P3     Probe all positions: center, towers and opposite towers. Set all.
5105
      *      P3     Probe all positions: center, towers and opposite towers. Set all.
5106
      *      P4-P7  Probe all positions at different locations and average them.
5106
      *      P4-P7  Probe all positions at different locations and average them.
5107
      *
5107
      *
5108
-     *   A  Abort delta height calibration after 1 probe (only P1)
5109
-     *
5110
-     *   O  Use opposite tower points instead of tower points (only P2)
5111
-     *
5112
-     *   T  Don't calibrate tower angle corrections (P3-P7)
5113
-     *
5114
-     *   V  Verbose level:
5108
+     *   T   Don't calibrate tower angle corrections
5109
+     *   
5110
+     *   Cn.nn Calibration precision; when omitted calibrates to maximum precision
5111
+     *   
5112
+     *   Vn  Verbose level:
5115
      *
5113
      *
5116
      *      V0  Dry-run mode. Report settings and probe results. No calibration.
5114
      *      V0  Dry-run mode. Report settings and probe results. No calibration.
5117
      *      V1  Report settings
5115
      *      V1  Report settings
5131
         return;
5129
         return;
5132
       }
5130
       }
5133
 
5131
 
5134
-      const bool do_height_only       = probe_points == 1,
5135
-                 do_center_and_towers = probe_points == 2,
5136
-                 do_all_positions     = probe_points == 3,
5137
-                 do_circle_x2         = probe_points == 5,
5138
-                 do_circle_x3         = probe_points == 6,
5139
-                 do_circle_x4         = probe_points == 7,
5140
-                 probe_center_plus_3  = probe_points >= 3,
5141
-                 point_averaging      = probe_points >= 4,
5142
-                 probe_center_plus_6  = probe_points >= 5;
5132
+      const float calibration_precision = code_seen('C') ? code_value_float() : 0.0;
5133
+      if (calibration_precision < 0) {
5134
+        SERIAL_PROTOCOLLNPGM("?(C)alibration precision is implausible (>0).");
5135
+        return;
5136
+      }
5143
 
5137
 
5144
-      const char negating_parameter = do_height_only ? 'A' : do_center_and_towers ? 'O' : 'T';
5145
-      int8_t probe_mode = code_seen(negating_parameter) && code_value_bool() ? -probe_points : probe_points;
5138
+      const bool towers_set = !code_seen('T'),
5139
+      
5140
+                 _1p_calibration      = probe_points == 1,
5141
+                 _4p_calibration      = probe_points == 2,
5142
+                 _4p_towers_points    = _4p_calibration && towers_set,
5143
+                 _4p_opposite_points  = _4p_calibration && !towers_set,
5144
+                 _7p_calibration      = probe_points >= 3,
5145
+                 _7p_half_circle      = probe_points == 3,
5146
+                 _7p_double_circle    = probe_points == 5,
5147
+                 _7p_triple_circle    = probe_points == 6,
5148
+                 _7p_quadruple_circle = probe_points == 7,
5149
+                 _7p_multi_circle     = _7p_double_circle || _7p_triple_circle || _7p_quadruple_circle,
5150
+                 _7p_intermed_points  = _7p_calibration && !_7p_half_circle;
5151
+
5152
+      if (!_1p_calibration) {  // test if the outer radius is reachable
5153
+        for (uint8_t axis = 1; axis < 13; ++axis) {
5154
+          float circles = (_7p_quadruple_circle ? 1.5 :
5155
+                          _7p_triple_circle ? 1.0 :
5156
+                          _7p_double_circle ? 0.5 : 0);
5157
+          if (!position_is_reachable_by_probe_xy(cos(RADIANS(180 + 30 * axis)) * 
5158
+                                                 delta_calibration_radius * (1 + circles * 0.1),
5159
+                                                 sin(RADIANS(180 + 30 * axis)) * 
5160
+                                                 delta_calibration_radius * (1 + circles * 0.1))) {
5161
+            SERIAL_PROTOCOLLNPGM("?(M665 B)ed radius is implausible.");
5162
+            return;
5163
+          }
5164
+        }
5165
+      }
5146
 
5166
 
5147
       SERIAL_PROTOCOLLNPGM("G33 Auto Calibrate");
5167
       SERIAL_PROTOCOLLNPGM("G33 Auto Calibrate");
5148
 
5168
 
5169
+      stepper.synchronize();
5149
       #if HAS_LEVELING
5170
       #if HAS_LEVELING
5150
-        set_bed_leveling_enabled(false);
5171
+        reset_bed_level(); // After calibration bed-level data is no longer valid
5151
       #endif
5172
       #endif
5173
+      #if HOTENDS > 1
5174
+        const uint8_t old_tool_index = active_extruder;
5175
+        tool_change(0, 0, true);
5176
+      #endif
5177
+      setup_for_endstop_or_probe_move();
5152
 
5178
 
5153
-      home_all_axes();
5179
+      endstops.enable(true);
5180
+      home_delta();
5181
+      endstops.not_homing();
5154
 
5182
 
5155
       const static char save_message[] PROGMEM = "Save with M500 and/or copy to Configuration.h";
5183
       const static char save_message[] PROGMEM = "Save with M500 and/or copy to Configuration.h";
5156
       float test_precision,
5184
       float test_precision,
5157
             zero_std_dev = (verbose_level ? 999.0 : 0.0), // 0.0 in dry-run mode : forced end
5185
             zero_std_dev = (verbose_level ? 999.0 : 0.0), // 0.0 in dry-run mode : forced end
5186
+            zero_std_dev_old = zero_std_dev,
5158
             e_old[XYZ] = {
5187
             e_old[XYZ] = {
5159
               endstop_adj[A_AXIS],
5188
               endstop_adj[A_AXIS],
5160
               endstop_adj[B_AXIS],
5189
               endstop_adj[B_AXIS],
5173
       LCD_MESSAGEPGM("Checking... AC"); // TODO: Make translatable string
5202
       LCD_MESSAGEPGM("Checking... AC"); // TODO: Make translatable string
5174
 
5203
 
5175
       SERIAL_PROTOCOLPAIR(".Height:", DELTA_HEIGHT + home_offset[Z_AXIS]);
5204
       SERIAL_PROTOCOLPAIR(".Height:", DELTA_HEIGHT + home_offset[Z_AXIS]);
5176
-      if (!do_height_only) {
5205
+      if (!_1p_calibration) {
5177
         SERIAL_PROTOCOLPGM("    Ex:");
5206
         SERIAL_PROTOCOLPGM("    Ex:");
5178
         if (endstop_adj[A_AXIS] >= 0) SERIAL_CHAR('+');
5207
         if (endstop_adj[A_AXIS] >= 0) SERIAL_CHAR('+');
5179
         SERIAL_PROTOCOL_F(endstop_adj[A_AXIS], 2);
5208
         SERIAL_PROTOCOL_F(endstop_adj[A_AXIS], 2);
5186
         SERIAL_PROTOCOLPAIR("    Radius:", delta_radius);
5215
         SERIAL_PROTOCOLPAIR("    Radius:", delta_radius);
5187
       }
5216
       }
5188
       SERIAL_EOL;
5217
       SERIAL_EOL;
5189
-      if (probe_mode > 2) { // negative disables tower angles
5218
+      if (_7p_calibration && towers_set) {
5190
         SERIAL_PROTOCOLPGM(".Tower angle :    Tx:");
5219
         SERIAL_PROTOCOLPGM(".Tower angle :    Tx:");
5191
         if (delta_tower_angle_trim[A_AXIS] >= 0) SERIAL_CHAR('+');
5220
         if (delta_tower_angle_trim[A_AXIS] >= 0) SERIAL_CHAR('+');
5192
         SERIAL_PROTOCOL_F(delta_tower_angle_trim[A_AXIS], 2);
5221
         SERIAL_PROTOCOL_F(delta_tower_angle_trim[A_AXIS], 2);
5202
       #endif
5231
       #endif
5203
 
5232
 
5204
       int8_t iterations = 0;
5233
       int8_t iterations = 0;
5234
+      
5235
+      home_offset[Z_AXIS] -= probe_pt(0.0, 0.0 , true, 1); // 1st probe to set height
5236
+      do_probe_raise(Z_CLEARANCE_BETWEEN_PROBES);
5205
 
5237
 
5206
       do {
5238
       do {
5207
 
5239
 
5208
-        float z_at_pt[13] = { 0 },
5209
-              S1 = 0.0,
5210
-              S2 = 0.0;
5240
+        float z_at_pt[13] = { 0.0 }, S1 = 0.0, S2 = 0.0;
5211
         int16_t N = 0;
5241
         int16_t N = 0;
5212
 
5242
 
5213
-        test_precision = zero_std_dev;
5243
+        test_precision = zero_std_dev_old != 999.0 ? (zero_std_dev + zero_std_dev_old) / 2 : zero_std_dev;
5244
+        
5214
         iterations++;
5245
         iterations++;
5215
 
5246
 
5216
         // Probe the points
5247
         // Probe the points
5217
 
5248
 
5218
-        if (!do_all_positions && !do_circle_x3) { // probe the center
5219
-          setup_for_endstop_or_probe_move();
5220
-          z_at_pt[0] += probe_pt(0.0, 0.0 , true, 1);   // TODO: Needs error handling
5221
-          clean_up_after_endstop_or_probe_move();
5249
+        if (!_7p_half_circle && !_7p_triple_circle) { // probe the center
5250
+          z_at_pt[0] += probe_pt(0.0, 0.0 , true, 1);
5222
         }
5251
         }
5223
-        if (probe_center_plus_3) { // probe extra center points
5224
-          for (int8_t axis = probe_center_plus_6 ? 11 : 9; axis > 0; axis -= probe_center_plus_6 ? 2 : 4) {
5225
-            setup_for_endstop_or_probe_move();
5226
-            z_at_pt[0] += probe_pt(                     // TODO: Needs error handling
5227
-              cos(RADIANS(180 + 30 * axis)) * (0.1 * delta_calibration_radius),
5228
-              sin(RADIANS(180 + 30 * axis)) * (0.1 * delta_calibration_radius), true, 1);
5229
-            clean_up_after_endstop_or_probe_move();
5252
+        if (_7p_calibration) { // probe extra center points
5253
+          for (int8_t axis = _7p_multi_circle ? 11 : 9; axis > 0; axis -= _7p_multi_circle ? 2 : 4) {
5254
+            const float a = RADIANS(180 + 30 * axis), r = delta_calibration_radius * 0.1;
5255
+            z_at_pt[0] += probe_pt(cos(a) * r, sin(a) * r, true, 1); // TODO: Needs error handling
5230
           }
5256
           }
5231
-          z_at_pt[0] /= float(do_circle_x2 ? 7 : probe_points);
5257
+          z_at_pt[0] /= float(_7p_double_circle ? 7 : probe_points);
5232
         }
5258
         }
5233
-        if (!do_height_only) {  // probe the radius
5259
+        if (!_1p_calibration) {  // probe the radius
5234
           bool zig_zag = true;
5260
           bool zig_zag = true;
5235
-          for (uint8_t axis = (probe_mode == -2 ? 3 : 1); axis < 13;
5236
-                       axis += (do_center_and_towers ? 4 : do_all_positions ? 2 : 1)) {
5237
-            float offset_circles = (do_circle_x4 ? (zig_zag ? 1.5 : 1.0) :
5238
-                                    do_circle_x3 ? (zig_zag ? 1.0 : 0.5) :
5239
-                                    do_circle_x2 ? (zig_zag ? 0.5 : 0.0) : 0);
5261
+          const uint8_t start = _4p_opposite_points ? 3 : 1,
5262
+                         step = _4p_calibration ? 4 : _7p_half_circle ? 2 : 1;
5263
+          for (uint8_t axis = start; axis < 13; axis += step) {
5264
+            const float offset_circles = _7p_quadruple_circle ? (zig_zag ? 1.5 : 1.0) :
5265
+                                         _7p_triple_circle    ? (zig_zag ? 1.0 : 0.5) :
5266
+                                         _7p_double_circle    ? (zig_zag ? 0.5 : 0.0) : 0;
5240
             for (float circles = -offset_circles ; circles <= offset_circles; circles++) {
5267
             for (float circles = -offset_circles ; circles <= offset_circles; circles++) {
5241
-              setup_for_endstop_or_probe_move();
5242
-              z_at_pt[axis] += probe_pt(                // TODO: Needs error handling
5243
-                cos(RADIANS(180 + 30 * axis)) * delta_calibration_radius *
5244
-                (1 + circles * 0.1 * (zig_zag ? 1 : -1)),
5245
-                sin(RADIANS(180 + 30 * axis)) * delta_calibration_radius *
5246
-                (1 + circles * 0.1 * (zig_zag ? 1 : -1)), true, 1);
5247
-              clean_up_after_endstop_or_probe_move();
5268
+              const float a = RADIANS(180 + 30 * axis),
5269
+                          r = delta_calibration_radius * (1 + circles * (zig_zag ? 0.1 : -0.1));
5270
+              z_at_pt[axis] += probe_pt(cos(a) * r, sin(a) * r, true, 1); // TODO: Needs error handling
5248
             }
5271
             }
5249
             zig_zag = !zig_zag;
5272
             zig_zag = !zig_zag;
5250
             z_at_pt[axis] /= (2 * offset_circles + 1);
5273
             z_at_pt[axis] /= (2 * offset_circles + 1);
5251
           }
5274
           }
5252
         }
5275
         }
5253
-        if (point_averaging) // average intermediates to tower and opposites
5276
+        if (_7p_intermed_points) // average intermediates to tower and opposites
5254
           for (uint8_t axis = 1; axis <= 11; axis += 2)
5277
           for (uint8_t axis = 1; axis <= 11; axis += 2)
5255
             z_at_pt[axis] = (z_at_pt[axis] + (z_at_pt[axis + 1] + z_at_pt[(axis + 10) % 12 + 1]) / 2.0) / 2.0;
5278
             z_at_pt[axis] = (z_at_pt[axis] + (z_at_pt[axis + 1] + z_at_pt[(axis + 10) % 12 + 1]) / 2.0) / 2.0;
5256
 
5279
 
5257
         S1 += z_at_pt[0];
5280
         S1 += z_at_pt[0];
5258
         S2 += sq(z_at_pt[0]);
5281
         S2 += sq(z_at_pt[0]);
5259
         N++;
5282
         N++;
5260
-        if (!do_height_only) // std dev from zero plane
5261
-          for (uint8_t axis = (probe_mode == -2 ? 3 : 1); axis < 13; axis += (do_center_and_towers ? 4 : 2)) {
5283
+        if (!_1p_calibration) // std dev from zero plane
5284
+          for (uint8_t axis = (_4p_opposite_points ? 3 : 1); axis < 13; axis += (_4p_calibration ? 4 : 2)) {
5262
             S1 += z_at_pt[axis];
5285
             S1 += z_at_pt[axis];
5263
             S2 += sq(z_at_pt[axis]);
5286
             S2 += sq(z_at_pt[axis]);
5264
             N++;
5287
             N++;
5265
           }
5288
           }
5289
+        zero_std_dev_old = zero_std_dev;
5266
         zero_std_dev = round(sqrt(S2 / N) * 1000.0) / 1000.0 + 0.00001;
5290
         zero_std_dev = round(sqrt(S2 / N) * 1000.0) / 1000.0 + 0.00001;
5291
+        
5292
+        if (iterations == 1) home_offset[Z_AXIS] = zh_old; // reset height after 1st probe change
5267
 
5293
 
5268
         // Solve matrices
5294
         // Solve matrices
5269
 
5295
 
5270
-        if (zero_std_dev < test_precision) {
5296
+        if (zero_std_dev < test_precision && zero_std_dev > calibration_precision) {
5271
           COPY(e_old, endstop_adj);
5297
           COPY(e_old, endstop_adj);
5272
           dr_old = delta_radius;
5298
           dr_old = delta_radius;
5273
           zh_old = home_offset[Z_AXIS];
5299
           zh_old = home_offset[Z_AXIS];
5274
           alpha_old = delta_tower_angle_trim[A_AXIS];
5300
           alpha_old = delta_tower_angle_trim[A_AXIS];
5275
           beta_old = delta_tower_angle_trim[B_AXIS];
5301
           beta_old = delta_tower_angle_trim[B_AXIS];
5276
 
5302
 
5277
-          float e_delta[XYZ] = { 0.0 }, r_delta = 0.0,
5278
-                t_alpha = 0.0, t_beta = 0.0;
5303
+          float e_delta[XYZ] = { 0.0 }, r_delta = 0.0, t_alpha = 0.0, t_beta = 0.0;
5279
           const float r_diff = delta_radius - delta_calibration_radius,
5304
           const float r_diff = delta_radius - delta_calibration_radius,
5280
                       h_factor = 1.00 + r_diff * 0.001,                          //1.02 for r_diff = 20mm
5305
                       h_factor = 1.00 + r_diff * 0.001,                          //1.02 for r_diff = 20mm
5281
                       r_factor = -(1.75 + 0.005 * r_diff + 0.001 * sq(r_diff)),  //2.25 for r_diff = 20mm
5306
                       r_factor = -(1.75 + 0.005 * r_diff + 0.001 * sq(r_diff)),  //2.25 for r_diff = 20mm
5293
           #define Z0444(I) ZP(a_factor * 4.0 / 9.0, I)
5318
           #define Z0444(I) ZP(a_factor * 4.0 / 9.0, I)
5294
           #define Z0888(I) ZP(a_factor * 8.0 / 9.0, I)
5319
           #define Z0888(I) ZP(a_factor * 8.0 / 9.0, I)
5295
 
5320
 
5296
-          switch (probe_mode) {
5297
-            case -1:
5298
-              test_precision = 0.00;
5321
+          switch (probe_points) {
5299
             case 1:
5322
             case 1:
5323
+              test_precision = 0.00;
5300
               LOOP_XYZ(i) e_delta[i] = Z1000(0);
5324
               LOOP_XYZ(i) e_delta[i] = Z1000(0);
5301
               break;
5325
               break;
5302
 
5326
 
5303
             case 2:
5327
             case 2:
5304
-              e_delta[X_AXIS] = Z1050(0) + Z0700(1) - Z0350(5) - Z0350(9);
5305
-              e_delta[Y_AXIS] = Z1050(0) - Z0350(1) + Z0700(5) - Z0350(9);
5306
-              e_delta[Z_AXIS] = Z1050(0) - Z0350(1) - Z0350(5) + Z0700(9);
5307
-              r_delta         = Z2250(0) - Z0750(1) - Z0750(5) - Z0750(9);
5308
-              break;
5309
-
5310
-            case -2:
5311
-              e_delta[X_AXIS] = Z1050(0) - Z0700(7) + Z0350(11) + Z0350(3);
5312
-              e_delta[Y_AXIS] = Z1050(0) + Z0350(7) - Z0700(11) + Z0350(3);
5313
-              e_delta[Z_AXIS] = Z1050(0) + Z0350(7) + Z0350(11) - Z0700(3);
5314
-              r_delta         = Z2250(0) - Z0750(7) - Z0750(11) - Z0750(3);
5328
+              if (towers_set) {
5329
+                e_delta[X_AXIS] = Z1050(0) + Z0700(1) - Z0350(5) - Z0350(9);
5330
+                e_delta[Y_AXIS] = Z1050(0) - Z0350(1) + Z0700(5) - Z0350(9);
5331
+                e_delta[Z_AXIS] = Z1050(0) - Z0350(1) - Z0350(5) + Z0700(9);
5332
+                r_delta         = Z2250(0) - Z0750(1) - Z0750(5) - Z0750(9);
5333
+              }
5334
+              else {
5335
+                e_delta[X_AXIS] = Z1050(0) - Z0700(7) + Z0350(11) + Z0350(3);
5336
+                e_delta[Y_AXIS] = Z1050(0) + Z0350(7) - Z0700(11) + Z0350(3);
5337
+                e_delta[Z_AXIS] = Z1050(0) + Z0350(7) + Z0350(11) - Z0700(3);
5338
+                r_delta         = Z2250(0) - Z0750(7) - Z0750(11) - Z0750(3);
5339
+              }
5315
               break;
5340
               break;
5316
 
5341
 
5317
             default:
5342
             default:
5320
               e_delta[Z_AXIS] = Z1050(0) - Z0175(1) - Z0175(5) + Z0350(9) + Z0175(7) + Z0175(11) - Z0350(3);
5345
               e_delta[Z_AXIS] = Z1050(0) - Z0175(1) - Z0175(5) + Z0350(9) + Z0175(7) + Z0175(11) - Z0350(3);
5321
               r_delta         = Z2250(0) - Z0375(1) - Z0375(5) - Z0375(9) - Z0375(7) - Z0375(11) - Z0375(3);
5346
               r_delta         = Z2250(0) - Z0375(1) - Z0375(5) - Z0375(9) - Z0375(7) - Z0375(11) - Z0375(3);
5322
 
5347
 
5323
-              if (probe_mode > 0) {  // negative disables tower angles
5324
-                t_alpha = + Z0444(1) - Z0888(5) + Z0444(9) + Z0444(7) - Z0888(11) + Z0444(3);
5325
-                t_beta  = - Z0888(1) + Z0444(5) + Z0444(9) - Z0888(7) + Z0444(11) + Z0444(3);
5348
+              if (towers_set) {
5349
+                t_alpha = Z0444(1) - Z0888(5) + Z0444(9) + Z0444(7) - Z0888(11) + Z0444(3);
5350
+                t_beta  = Z0888(1) - Z0444(5) - Z0444(9) + Z0888(7) - Z0444(11) - Z0444(3);
5326
               }
5351
               }
5327
               break;
5352
               break;
5328
           }
5353
           }
5330
           LOOP_XYZ(axis) endstop_adj[axis] += e_delta[axis];
5355
           LOOP_XYZ(axis) endstop_adj[axis] += e_delta[axis];
5331
           delta_radius += r_delta;
5356
           delta_radius += r_delta;
5332
           delta_tower_angle_trim[A_AXIS] += t_alpha;
5357
           delta_tower_angle_trim[A_AXIS] += t_alpha;
5333
-          delta_tower_angle_trim[B_AXIS] -= t_beta;
5358
+          delta_tower_angle_trim[B_AXIS] += t_beta;
5334
 
5359
 
5335
           // adjust delta_height and endstops by the max amount
5360
           // adjust delta_height and endstops by the max amount
5336
           const float z_temp = MAX3(endstop_adj[A_AXIS], endstop_adj[B_AXIS], endstop_adj[C_AXIS]);
5361
           const float z_temp = MAX3(endstop_adj[A_AXIS], endstop_adj[B_AXIS], endstop_adj[C_AXIS]);
5339
 
5364
 
5340
           recalc_delta_settings(delta_radius, delta_diagonal_rod);
5365
           recalc_delta_settings(delta_radius, delta_diagonal_rod);
5341
         }
5366
         }
5342
-        else {   // step one back
5367
+        else if(zero_std_dev >= test_precision) {   // step one back
5343
           COPY(endstop_adj, e_old);
5368
           COPY(endstop_adj, e_old);
5344
           delta_radius = dr_old;
5369
           delta_radius = dr_old;
5345
           home_offset[Z_AXIS] = zh_old;
5370
           home_offset[Z_AXIS] = zh_old;
5355
           SERIAL_PROTOCOLPGM(".      c:");
5380
           SERIAL_PROTOCOLPGM(".      c:");
5356
           if (z_at_pt[0] > 0) SERIAL_CHAR('+');
5381
           if (z_at_pt[0] > 0) SERIAL_CHAR('+');
5357
           SERIAL_PROTOCOL_F(z_at_pt[0], 2);
5382
           SERIAL_PROTOCOL_F(z_at_pt[0], 2);
5358
-          if (probe_mode == 2 || probe_center_plus_3) {
5383
+          if (_4p_towers_points || _7p_calibration) {
5359
             SERIAL_PROTOCOLPGM("     x:");
5384
             SERIAL_PROTOCOLPGM("     x:");
5360
             if (z_at_pt[1] >= 0) SERIAL_CHAR('+');
5385
             if (z_at_pt[1] >= 0) SERIAL_CHAR('+');
5361
             SERIAL_PROTOCOL_F(z_at_pt[1], 2);
5386
             SERIAL_PROTOCOL_F(z_at_pt[1], 2);
5366
             if (z_at_pt[9] >= 0) SERIAL_CHAR('+');
5391
             if (z_at_pt[9] >= 0) SERIAL_CHAR('+');
5367
             SERIAL_PROTOCOL_F(z_at_pt[9], 2);
5392
             SERIAL_PROTOCOL_F(z_at_pt[9], 2);
5368
           }
5393
           }
5369
-          if (probe_mode != -2) SERIAL_EOL;
5370
-          if (probe_mode == -2 || probe_center_plus_3) {
5371
-            if (probe_center_plus_3) {
5394
+          if (!_4p_opposite_points) SERIAL_EOL;
5395
+          if ((_4p_opposite_points) || _7p_calibration) {
5396
+            if (_7p_calibration) {
5372
               SERIAL_CHAR('.');
5397
               SERIAL_CHAR('.');
5373
               SERIAL_PROTOCOL_SP(13);
5398
               SERIAL_PROTOCOL_SP(13);
5374
             }
5399
             }
5385
           }
5410
           }
5386
         }
5411
         }
5387
         if (test_precision != 0.0) {                                 // !forced end
5412
         if (test_precision != 0.0) {                                 // !forced end
5388
-          if (zero_std_dev >= test_precision) {                      // end iterations
5413
+          if (zero_std_dev >= test_precision || zero_std_dev <= calibration_precision) {  // end iterations
5389
             SERIAL_PROTOCOLPGM("Calibration OK");
5414
             SERIAL_PROTOCOLPGM("Calibration OK");
5390
             SERIAL_PROTOCOL_SP(36);
5415
             SERIAL_PROTOCOL_SP(36);
5391
-            SERIAL_PROTOCOLPGM("rolling back.");
5416
+            if (zero_std_dev >= test_precision)
5417
+              SERIAL_PROTOCOLPGM("rolling back.");
5418
+            else {
5419
+              SERIAL_PROTOCOLPGM("std dev:");
5420
+              SERIAL_PROTOCOL_F(zero_std_dev, 3);
5421
+            }            
5392
             SERIAL_EOL;
5422
             SERIAL_EOL;
5393
             LCD_MESSAGEPGM("Calibration OK"); // TODO: Make translatable string
5423
             LCD_MESSAGEPGM("Calibration OK"); // TODO: Make translatable string
5394
           }
5424
           }
5404
             lcd_setstatus(mess);
5434
             lcd_setstatus(mess);
5405
           }
5435
           }
5406
           SERIAL_PROTOCOLPAIR(".Height:", DELTA_HEIGHT + home_offset[Z_AXIS]);
5436
           SERIAL_PROTOCOLPAIR(".Height:", DELTA_HEIGHT + home_offset[Z_AXIS]);
5407
-          if (!do_height_only) {
5437
+          if (!_1p_calibration) {
5408
             SERIAL_PROTOCOLPGM("    Ex:");
5438
             SERIAL_PROTOCOLPGM("    Ex:");
5409
             if (endstop_adj[A_AXIS] >= 0) SERIAL_CHAR('+');
5439
             if (endstop_adj[A_AXIS] >= 0) SERIAL_CHAR('+');
5410
             SERIAL_PROTOCOL_F(endstop_adj[A_AXIS], 2);
5440
             SERIAL_PROTOCOL_F(endstop_adj[A_AXIS], 2);
5417
             SERIAL_PROTOCOLPAIR("    Radius:", delta_radius);
5447
             SERIAL_PROTOCOLPAIR("    Radius:", delta_radius);
5418
           }
5448
           }
5419
           SERIAL_EOL;
5449
           SERIAL_EOL;
5420
-          if (probe_mode > 2) { // negative disables tower angles
5450
+          if (_7p_calibration && towers_set) {
5421
             SERIAL_PROTOCOLPGM(".Tower angle :    Tx:");
5451
             SERIAL_PROTOCOLPGM(".Tower angle :    Tx:");
5422
             if (delta_tower_angle_trim[A_AXIS] >= 0) SERIAL_CHAR('+');
5452
             if (delta_tower_angle_trim[A_AXIS] >= 0) SERIAL_CHAR('+');
5423
             SERIAL_PROTOCOL_F(delta_tower_angle_trim[A_AXIS], 2);
5453
             SERIAL_PROTOCOL_F(delta_tower_angle_trim[A_AXIS], 2);
5427
             SERIAL_PROTOCOLPGM("  Tz:+0.00");
5457
             SERIAL_PROTOCOLPGM("  Tz:+0.00");
5428
             SERIAL_EOL;
5458
             SERIAL_EOL;
5429
           }
5459
           }
5430
-          if (zero_std_dev >= test_precision)
5460
+          if (zero_std_dev >= test_precision || zero_std_dev <= calibration_precision)
5431
             serialprintPGM(save_message);
5461
             serialprintPGM(save_message);
5432
             SERIAL_EOL;
5462
             SERIAL_EOL;
5433
         }
5463
         }
5449
           }
5479
           }
5450
         }
5480
         }
5451
 
5481
 
5452
-        stepper.synchronize();
5453
-
5454
-        home_all_axes();
5482
+        endstops.enable(true);
5483
+        home_delta();
5484
+        endstops.not_homing();
5455
 
5485
 
5456
-      } while (zero_std_dev < test_precision && iterations < 31);
5486
+      } 
5487
+      while (zero_std_dev < test_precision && zero_std_dev > calibration_precision && iterations < 31);
5457
 
5488
 
5489
+      #if ENABLED(DELTA_HOME_TO_SAFE_ZONE)
5490
+        do_blocking_move_to_z(delta_clip_start_height);
5491
+      #endif
5492
+      clean_up_after_endstop_or_probe_move();
5493
+      #if HOTENDS > 1
5494
+        tool_change(old_tool_index, 0, true);
5495
+      #endif
5458
       #if ENABLED(Z_PROBE_SLED)
5496
       #if ENABLED(Z_PROBE_SLED)
5459
         RETRACT_PROBE();
5497
         RETRACT_PROBE();
5460
       #endif
5498
       #endif

+ 4
- 4
Marlin/example_configurations/delta/FLSUN/auto_calibrate/Configuration.h View File

447
   #define DELTA_DIAGONAL_ROD 218.0 // mm
447
   #define DELTA_DIAGONAL_ROD 218.0 // mm
448
 
448
 
449
   // Horizontal distance bridged by diagonal push rods when effector is centered.
449
   // Horizontal distance bridged by diagonal push rods when effector is centered.
450
-  #define DELTA_RADIUS 100.00 //mm // get this value from auto calibrate
450
+  #define DELTA_RADIUS 100.00 //mm  Get this value from auto calibrate
451
 
451
 
452
   // height from z=0 to home position
452
   // height from z=0 to home position
453
-  #define DELTA_HEIGHT 295.00 // get this value from auto calibrate - use G33 P1 A at 1st time calibration
453
+  #define DELTA_HEIGHT 295.00 // get this value from auto calibrate - use G33 P1 at 1st time calibration
454
 
454
 
455
   // Print surface diameter/2 minus unreachable space (avoid collisions with vertical towers).
455
   // Print surface diameter/2 minus unreachable space (avoid collisions with vertical towers).
456
   #define DELTA_PRINTABLE_RADIUS 85.0
456
   #define DELTA_PRINTABLE_RADIUS 85.0
460
   // See http://minow.blogspot.com/index.html#4918805519571907051
460
   // See http://minow.blogspot.com/index.html#4918805519571907051
461
   #define DELTA_CALIBRATION_MENU
461
   #define DELTA_CALIBRATION_MENU
462
 
462
 
463
-  // set the radius for the calibration probe points - max 0.8 * DELTA_PRINTABLE_RADIUS if DELTA_AUTO_CALIBRATION enabled
464
-  #define DELTA_CALIBRATION_RADIUS (DELTA_PRINTABLE_RADIUS - 17) // mm
463
+  // set the radius for the calibration probe points - max DELTA_PRINTABLE_RADIUS*0.869 if DELTA_AUTO_CALIBRATION enabled
464
+  #define DELTA_CALIBRATION_RADIUS ((DELTA_PRINTABLE_RADIUS) * 0.869) // mm
465
 
465
 
466
   // G33 Delta Auto-Calibration (Enable EEPROM_SETTINGS to store results)
466
   // G33 Delta Auto-Calibration (Enable EEPROM_SETTINGS to store results)
467
   #define DELTA_AUTO_CALIBRATION
467
   #define DELTA_AUTO_CALIBRATION

+ 4
- 4
Marlin/example_configurations/delta/FLSUN/kossel_mini/Configuration.h View File

454
   #define DELTA_CARRIAGE_OFFSET 22.0 // mm
454
   #define DELTA_CARRIAGE_OFFSET 22.0 // mm
455
 
455
 
456
   // Horizontal distance bridged by diagonal push rods when effector is centered.
456
   // Horizontal distance bridged by diagonal push rods when effector is centered.
457
-  #define DELTA_RADIUS (DELTA_SMOOTH_ROD_OFFSET - DELTA_EFFECTOR_OFFSET - DELTA_CARRIAGE_OFFSET) //mm // get this value from auto calibrate
457
+  #define DELTA_RADIUS (DELTA_SMOOTH_ROD_OFFSET - DELTA_EFFECTOR_OFFSET - DELTA_CARRIAGE_OFFSET) //mm  Get this value from auto calibrate
458
 
458
 
459
   // height from z=0.00 to home position
459
   // height from z=0.00 to home position
460
-  #define DELTA_HEIGHT 280 // get this value from auto calibrate - use G33 C-1 at 1st time calibration
460
+  #define DELTA_HEIGHT 280 // get this value from auto calibrate - use G33 P1 at 1st time calibration
461
 
461
 
462
   // Print surface diameter/2 minus unreachable space (avoid collisions with vertical towers).
462
   // Print surface diameter/2 minus unreachable space (avoid collisions with vertical towers).
463
   #define DELTA_PRINTABLE_RADIUS 85.0
463
   #define DELTA_PRINTABLE_RADIUS 85.0
467
   // See http://minow.blogspot.com/index.html#4918805519571907051
467
   // See http://minow.blogspot.com/index.html#4918805519571907051
468
   //#define DELTA_CALIBRATION_MENU
468
   //#define DELTA_CALIBRATION_MENU
469
 
469
 
470
-  // set the radius for the calibration probe points - max 0.8 * DELTA_PRINTABLE_RADIUS if DELTA_AUTO_CALIBRATION enabled
471
-  #define DELTA_CALIBRATION_RADIUS (DELTA_PRINTABLE_RADIUS - 17) // mm
470
+  // set the radius for the calibration probe points - max DELTA_PRINTABLE_RADIUS*0.869 if DELTA_AUTO_CALIBRATION enabled
471
+  #define DELTA_CALIBRATION_RADIUS ((DELTA_PRINTABLE_RADIUS) * 0.869) // mm
472
 
472
 
473
   // G33 Delta Auto-Calibration (Enable EEPROM_SETTINGS to store results)
473
   // G33 Delta Auto-Calibration (Enable EEPROM_SETTINGS to store results)
474
   //#define DELTA_AUTO_CALIBRATION
474
   //#define DELTA_AUTO_CALIBRATION

+ 4
- 4
Marlin/example_configurations/delta/generic/Configuration.h View File

444
   #define DELTA_CARRIAGE_OFFSET 18.0 // mm
444
   #define DELTA_CARRIAGE_OFFSET 18.0 // mm
445
 
445
 
446
   // Horizontal distance bridged by diagonal push rods when effector is centered.
446
   // Horizontal distance bridged by diagonal push rods when effector is centered.
447
-  #define DELTA_RADIUS (DELTA_SMOOTH_ROD_OFFSET - DELTA_EFFECTOR_OFFSET - DELTA_CARRIAGE_OFFSET) //mm // get this value from auto calibrate  // height from z=0.00 to home position
447
+  #define DELTA_RADIUS (DELTA_SMOOTH_ROD_OFFSET - DELTA_EFFECTOR_OFFSET - DELTA_CARRIAGE_OFFSET) //mm  Get this value from auto calibrate
448
 
448
 
449
   // height from z=0.00 to home position
449
   // height from z=0.00 to home position
450
-  #define DELTA_HEIGHT 250 // get this value from auto calibrate - use G33 C-1 at 1st time calibration
450
+  #define DELTA_HEIGHT 250 // get this value from auto calibrate - use G33 P1 at 1st time calibration
451
 
451
 
452
   // Print surface diameter/2 minus unreachable space (avoid collisions with vertical towers).
452
   // Print surface diameter/2 minus unreachable space (avoid collisions with vertical towers).
453
   #define DELTA_PRINTABLE_RADIUS 140.0
453
   #define DELTA_PRINTABLE_RADIUS 140.0
456
   // See http://minow.blogspot.com/index.html#4918805519571907051
456
   // See http://minow.blogspot.com/index.html#4918805519571907051
457
   //#define DELTA_CALIBRATION_MENU
457
   //#define DELTA_CALIBRATION_MENU
458
 
458
 
459
-  // set the radius for the calibration probe points - max 0.8 * DELTA_PRINTABLE_RADIUS if DELTA_AUTO_CALIBRATION enabled
460
-  #define DELTA_CALIBRATION_RADIUS (DELTA_PRINTABLE_RADIUS - 28) // mm
459
+  // set the radius for the calibration probe points - max DELTA_PRINTABLE_RADIUS*0.869 if DELTA_AUTO_CALIBRATION enabled
460
+  #define DELTA_CALIBRATION_RADIUS ((DELTA_PRINTABLE_RADIUS) * 0.869) // mm
461
 
461
 
462
   // G33 Delta Auto-Calibration (Enable EEPROM_SETTINGS to store results)
462
   // G33 Delta Auto-Calibration (Enable EEPROM_SETTINGS to store results)
463
   //#define DELTA_AUTO_CALIBRATION
463
   //#define DELTA_AUTO_CALIBRATION

+ 4
- 4
Marlin/example_configurations/delta/kossel_mini/Configuration.h View File

444
   #define DELTA_CARRIAGE_OFFSET 19.5 // mm
444
   #define DELTA_CARRIAGE_OFFSET 19.5 // mm
445
 
445
 
446
   // Horizontal distance bridged by diagonal push rods when effector is centered.
446
   // Horizontal distance bridged by diagonal push rods when effector is centered.
447
-  #define DELTA_RADIUS (DELTA_SMOOTH_ROD_OFFSET - DELTA_EFFECTOR_OFFSET - DELTA_CARRIAGE_OFFSET) //mm // get this value from auto calibrate
447
+  #define DELTA_RADIUS (DELTA_SMOOTH_ROD_OFFSET - DELTA_EFFECTOR_OFFSET - DELTA_CARRIAGE_OFFSET) //mm  Get this value from auto calibrate
448
 
448
 
449
   // height from z=0.00 to home position
449
   // height from z=0.00 to home position
450
-  #define DELTA_HEIGHT 250 // get this value from auto calibrate - use G33 C-1 at 1st time calibration
450
+  #define DELTA_HEIGHT 250 // get this value from auto calibrate - use G33 P1 at 1st time calibration
451
 
451
 
452
   // Print surface diameter/2 minus unreachable space (avoid collisions with vertical towers).
452
   // Print surface diameter/2 minus unreachable space (avoid collisions with vertical towers).
453
   #define DELTA_PRINTABLE_RADIUS 90.0
453
   #define DELTA_PRINTABLE_RADIUS 90.0
456
   // See http://minow.blogspot.com/index.html#4918805519571907051
456
   // See http://minow.blogspot.com/index.html#4918805519571907051
457
   //#define DELTA_CALIBRATION_MENU
457
   //#define DELTA_CALIBRATION_MENU
458
 
458
 
459
-  // set the radius for the calibration probe points - max 0.8 * DELTA_PRINTABLE_RADIUS if DELTA_AUTO_CALIBRATION enabled
460
-  #define DELTA_CALIBRATION_RADIUS (DELTA_PRINTABLE_RADIUS - 18) // mm
459
+  // set the radius for the calibration probe points - max DELTA_PRINTABLE_RADIUS*0.869 if DELTA_AUTO_CALIBRATION enabled
460
+  #define DELTA_CALIBRATION_RADIUS ((DELTA_PRINTABLE_RADIUS) * 0.869) // mm
461
 
461
 
462
   // G33 Delta Auto-Calibration (Enable EEPROM_SETTINGS to store results)
462
   // G33 Delta Auto-Calibration (Enable EEPROM_SETTINGS to store results)
463
   //#define DELTA_AUTO_CALIBRATION
463
   //#define DELTA_AUTO_CALIBRATION

+ 4
- 4
Marlin/example_configurations/delta/kossel_pro/Configuration.h View File

431
   #define DELTA_CARRIAGE_OFFSET 30.0 // mm
431
   #define DELTA_CARRIAGE_OFFSET 30.0 // mm
432
 
432
 
433
   // Horizontal distance bridged by diagonal push rods when effector is centered.
433
   // Horizontal distance bridged by diagonal push rods when effector is centered.
434
-  #define DELTA_RADIUS (DELTA_SMOOTH_ROD_OFFSET - DELTA_EFFECTOR_OFFSET - DELTA_CARRIAGE_OFFSET) //mm // get this value from auto calibrate
434
+  #define DELTA_RADIUS (DELTA_SMOOTH_ROD_OFFSET - DELTA_EFFECTOR_OFFSET - DELTA_CARRIAGE_OFFSET) //mm  Get this value from auto calibrate
435
 
435
 
436
   // height from z=0.00 to home position
436
   // height from z=0.00 to home position
437
-  #define DELTA_HEIGHT 277 // get this value from auto calibrate - use G33 C-1 at 1st time calibration
437
+  #define DELTA_HEIGHT 277 // get this value from auto calibrate - use G33 P1 at 1st time calibration
438
 
438
 
439
   // Print surface diameter/2 minus unreachable space (avoid collisions with vertical towers).
439
   // Print surface diameter/2 minus unreachable space (avoid collisions with vertical towers).
440
   #define DELTA_PRINTABLE_RADIUS 127.0
440
   #define DELTA_PRINTABLE_RADIUS 127.0
443
   // See http://minow.blogspot.com/index.html#4918805519571907051
443
   // See http://minow.blogspot.com/index.html#4918805519571907051
444
   //#define DELTA_CALIBRATION_MENU
444
   //#define DELTA_CALIBRATION_MENU
445
 
445
 
446
-  // set the radius for the calibration probe points - max 0.8 * DELTA_PRINTABLE_RADIUS if DELTA_AUTO_CALIBRATION enabled
447
-  #define DELTA_CALIBRATION_RADIUS (DELTA_PRINTABLE_RADIUS - 25.4) // mm
446
+  // set the radius for the calibration probe points - max DELTA_PRINTABLE_RADIUS*0.869 if DELTA_AUTO_CALIBRATION enabled
447
+  #define DELTA_CALIBRATION_RADIUS ((DELTA_PRINTABLE_RADIUS) * 0.869) // mm
448
 
448
 
449
   // G33 Delta Auto-Calibration (Enable EEPROM_SETTINGS to store results)
449
   // G33 Delta Auto-Calibration (Enable EEPROM_SETTINGS to store results)
450
   //#define DELTA_AUTO_CALIBRATION
450
   //#define DELTA_AUTO_CALIBRATION

+ 4
- 4
Marlin/example_configurations/delta/kossel_xl/Configuration.h View File

449
   #define DELTA_CARRIAGE_OFFSET 22.0 // mm
449
   #define DELTA_CARRIAGE_OFFSET 22.0 // mm
450
 
450
 
451
   // Horizontal distance bridged by diagonal push rods when effector is centered.
451
   // Horizontal distance bridged by diagonal push rods when effector is centered.
452
-  #define DELTA_RADIUS (DELTA_SMOOTH_ROD_OFFSET - DELTA_EFFECTOR_OFFSET - DELTA_CARRIAGE_OFFSET) //mm // get this value from auto calibrate
452
+  #define DELTA_RADIUS (DELTA_SMOOTH_ROD_OFFSET - DELTA_EFFECTOR_OFFSET - DELTA_CARRIAGE_OFFSET) //mm  Get this value from auto calibrate
453
 
453
 
454
   // height from z=0.00 to home position
454
   // height from z=0.00 to home position
455
-  #define DELTA_HEIGHT 380 // get this value from auto calibrate - use G33 C-1 at 1st time calibration
455
+  #define DELTA_HEIGHT 380 // get this value from auto calibrate - use G33 P1 at 1st time calibration
456
 
456
 
457
   // Print surface diameter/2 minus unreachable space (avoid collisions with vertical towers).
457
   // Print surface diameter/2 minus unreachable space (avoid collisions with vertical towers).
458
   #define DELTA_PRINTABLE_RADIUS 140.0
458
   #define DELTA_PRINTABLE_RADIUS 140.0
461
   // See http://minow.blogspot.com/index.html#4918805519571907051
461
   // See http://minow.blogspot.com/index.html#4918805519571907051
462
   //#define DELTA_CALIBRATION_MENU
462
   //#define DELTA_CALIBRATION_MENU
463
 
463
 
464
-  // set the radius for the calibration probe points - max 0.8 * DELTA_PRINTABLE_RADIUS if DELTA_AUTO_CALIBRATION enabled
465
-  #define DELTA_CALIBRATION_RADIUS (DELTA_PRINTABLE_RADIUS - 28) // mm
464
+  // set the radius for the calibration probe points - max DELTA_PRINTABLE_RADIUS*0.869 if DELTA_AUTO_CALIBRATION enabled
465
+  #define DELTA_CALIBRATION_RADIUS ((DELTA_PRINTABLE_RADIUS) * 0.869) // mm
466
 
466
 
467
   // G33 Delta Auto-Calibration (Enable EEPROM_SETTINGS to store results)
467
   // G33 Delta Auto-Calibration (Enable EEPROM_SETTINGS to store results)
468
   //#define DELTA_AUTO_CALIBRATION
468
   //#define DELTA_AUTO_CALIBRATION

+ 4
- 2
Marlin/planner.h View File

160
                  min_travel_feedrate_mm_s;
160
                  min_travel_feedrate_mm_s;
161
 
161
 
162
     #if HAS_ABL
162
     #if HAS_ABL
163
-      static bool abl_enabled;            // Flag that bed leveling is enabled
164
-      static matrix_3x3 bed_level_matrix; // Transform to compensate for bed level
163
+      static bool abl_enabled;              // Flag that bed leveling is enabled
164
+      #if ABL_PLANAR
165
+        static matrix_3x3 bed_level_matrix; // Transform to compensate for bed level
166
+      #endif
165
     #endif
167
     #endif
166
 
168
 
167
     #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
169
     #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)

+ 8
- 0
Marlin/ultralcd.cpp View File

2151
     }
2151
     }
2152
 
2152
 
2153
     void _lcd_delta_calibrate_home() {
2153
     void _lcd_delta_calibrate_home() {
2154
+      #if HAS_LEVELING
2155
+        reset_bed_level(); // After calibration bed-level data is no longer valid
2156
+      #endif
2157
+
2154
       enqueue_and_echo_commands_P(PSTR("G28"));
2158
       enqueue_and_echo_commands_P(PSTR("G28"));
2155
       lcd_goto_screen(_lcd_calibrate_homing);
2159
       lcd_goto_screen(_lcd_calibrate_homing);
2156
     }
2160
     }
2158
     // Move directly to the tower position with uninterpolated moves
2162
     // Move directly to the tower position with uninterpolated moves
2159
     // If we used interpolated moves it would cause this to become re-entrant
2163
     // If we used interpolated moves it would cause this to become re-entrant
2160
     void _goto_tower_pos(const float &a) {
2164
     void _goto_tower_pos(const float &a) {
2165
+      #if HAS_LEVELING
2166
+        reset_bed_level(); // After calibration bed-level data is no longer valid
2167
+      #endif
2168
+
2161
       current_position[Z_AXIS] = max(Z_HOMING_HEIGHT, Z_CLEARANCE_BETWEEN_PROBES) + (DELTA_PRINTABLE_RADIUS) / 5;
2169
       current_position[Z_AXIS] = max(Z_HOMING_HEIGHT, Z_CLEARANCE_BETWEEN_PROBES) + (DELTA_PRINTABLE_RADIUS) / 5;
2162
       line_to_current(Z_AXIS);
2170
       line_to_current(Z_AXIS);
2163
 
2171
 

+ 1
- 1
README.md View File

69
  - [[@Tannoo](https://github.com/Tannoo)]
69
  - [[@Tannoo](https://github.com/Tannoo)]
70
  - [[@teemuatlut](https://github.com/teemuatlut)]
70
  - [[@teemuatlut](https://github.com/teemuatlut)]
71
  - [[@bgort](https://github.com/bgort)]
71
  - [[@bgort](https://github.com/bgort)]
72
- - [[@LVD-AC](https://github.com/LVD-AC)]
72
+ - Luc Van Daele[[@LVD-AC](https://github.com/LVD-AC)] - Dutch, French, English
73
  - [[@paulusjacobus](https://github.com/paulusjacobus)]
73
  - [[@paulusjacobus](https://github.com/paulusjacobus)]
74
  - ...and many others
74
  - ...and many others
75
 
75
 

Loading…
Cancel
Save