|
@@ -1042,9 +1042,6 @@ void Planner::_buffer_steps(const int32_t (&target)[XYZE], float fr_mm_s, const
|
1042
|
1042
|
CRITICAL_SECTION_END
|
1043
|
1043
|
#endif
|
1044
|
1044
|
|
1045
|
|
- block->nominal_speed = block->millimeters * inverse_secs; // (mm/sec) Always > 0
|
1046
|
|
- block->nominal_rate = CEIL(block->step_event_count * inverse_secs); // (step/sec) Always > 0
|
1047
|
|
-
|
1048
|
1045
|
#if ENABLED(FILAMENT_WIDTH_SENSOR)
|
1049
|
1046
|
static float filwidth_e_count = 0, filwidth_delay_dist = 0;
|
1050
|
1047
|
|
|
@@ -1079,10 +1076,13 @@ void Planner::_buffer_steps(const int32_t (&target)[XYZE], float fr_mm_s, const
|
1079
|
1076
|
}
|
1080
|
1077
|
#endif
|
1081
|
1078
|
|
1082
|
|
- // Calculate and limit speed in mm/sec for each axis
|
|
1079
|
+ // Calculate and limit speed in mm/sec for each axis, calculate minimum acceleration ratio
|
1083
|
1080
|
float current_speed[NUM_AXIS], speed_factor = 1.0; // factor <1 decreases speed
|
|
1081
|
+ float max_stepper_speed = 0, min_axis_accel_ratio = 1; // ratio < 1 means acceleration ramp needed
|
1084
|
1082
|
LOOP_XYZE(i) {
|
1085
|
1083
|
const float cs = FABS((current_speed[i] = delta_mm[i] * inverse_secs));
|
|
1084
|
+ NOMORE(min_axis_accel_ratio, max_jerk[i] / cs);
|
|
1085
|
+ NOLESS(max_stepper_speed, cs);
|
1086
|
1086
|
#if ENABLED(DISTINCT_E_FACTORS)
|
1087
|
1087
|
if (i == E_AXIS) i += extruder;
|
1088
|
1088
|
#endif
|
|
@@ -1127,6 +1127,9 @@ void Planner::_buffer_steps(const int32_t (&target)[XYZE], float fr_mm_s, const
|
1127
|
1127
|
}
|
1128
|
1128
|
#endif // XY_FREQUENCY_LIMIT
|
1129
|
1129
|
|
|
1130
|
+ block->nominal_speed = max_stepper_speed; // (mm/sec) Always > 0
|
|
1131
|
+ block->nominal_rate = CEIL(block->step_event_count * inverse_secs); // (step/sec) Always > 0
|
|
1132
|
+
|
1130
|
1133
|
// Correct the speed
|
1131
|
1134
|
if (speed_factor < 1.0) {
|
1132
|
1135
|
LOOP_XYZE(i) current_speed[i] *= speed_factor;
|
|
@@ -1134,6 +1137,8 @@ void Planner::_buffer_steps(const int32_t (&target)[XYZE], float fr_mm_s, const
|
1134
|
1137
|
block->nominal_rate *= speed_factor;
|
1135
|
1138
|
}
|
1136
|
1139
|
|
|
1140
|
+ float safe_speed = block->nominal_speed * min_axis_accel_ratio;
|
|
1141
|
+ static float previous_safe_speed;
|
1137
|
1142
|
// Compute and limit the acceleration rate for the trapezoid generator.
|
1138
|
1143
|
const float steps_per_mm = block->step_event_count * inverse_millimeters;
|
1139
|
1144
|
uint32_t accel;
|
|
@@ -1235,32 +1240,6 @@ void Planner::_buffer_steps(const int32_t (&target)[XYZE], float fr_mm_s, const
|
1235
|
1240
|
}
|
1236
|
1241
|
#endif
|
1237
|
1242
|
|
1238
|
|
- /**
|
1239
|
|
- * Adapted from Průša MKS firmware
|
1240
|
|
- * https://github.com/prusa3d/Prusa-Firmware
|
1241
|
|
- *
|
1242
|
|
- * Start with a safe speed (from which the machine may halt to stop immediately).
|
1243
|
|
- */
|
1244
|
|
-
|
1245
|
|
- // Exit speed limited by a jerk to full halt of a previous last segment
|
1246
|
|
- static float previous_safe_speed;
|
1247
|
|
-
|
1248
|
|
- float safe_speed = block->nominal_speed;
|
1249
|
|
- uint8_t limited = 0;
|
1250
|
|
- LOOP_XYZE(i) {
|
1251
|
|
- const float jerk = FABS(current_speed[i]), maxj = max_jerk[i];
|
1252
|
|
- if (jerk > maxj) {
|
1253
|
|
- if (limited) {
|
1254
|
|
- const float mjerk = maxj * block->nominal_speed;
|
1255
|
|
- if (jerk * safe_speed > mjerk) safe_speed = mjerk / jerk;
|
1256
|
|
- }
|
1257
|
|
- else {
|
1258
|
|
- ++limited;
|
1259
|
|
- safe_speed = maxj;
|
1260
|
|
- }
|
1261
|
|
- }
|
1262
|
|
- }
|
1263
|
|
-
|
1264
|
1243
|
if (moves_queued && !UNEAR_ZERO(previous_nominal_speed)) {
|
1265
|
1244
|
// Estimate a maximum velocity allowed at a joint of two successive segments.
|
1266
|
1245
|
// If this maximum velocity allowed is lower than the minimum of the entry / exit safe velocities,
|
|
@@ -1272,7 +1251,7 @@ void Planner::_buffer_steps(const int32_t (&target)[XYZE], float fr_mm_s, const
|
1272
|
1251
|
|
1273
|
1252
|
// Factor to multiply the previous / current nominal velocities to get componentwise limited velocities.
|
1274
|
1253
|
float v_factor = 1;
|
1275
|
|
- limited = 0;
|
|
1254
|
+ uint8_t limited = 0;
|
1276
|
1255
|
|
1277
|
1256
|
// Now limit the jerk in all axes.
|
1278
|
1257
|
const float smaller_speed_factor = vmax_junction / previous_nominal_speed;
|