|
|
|
|
264
|
* fr_mm_s - (target) speed of the move (mm/s)
|
264
|
* fr_mm_s - (target) speed of the move (mm/s)
|
265
|
* extruder - target extruder
|
265
|
* extruder - target extruder
|
266
|
*/
|
266
|
*/
|
267
|
- static FORCE_INLINE void buffer_line(ARG_X, ARG_Y, ARG_Z, const float &e, float fr_mm_s, const uint8_t extruder) {
|
|
|
|
|
267
|
+ static FORCE_INLINE void buffer_line(ARG_X, ARG_Y, ARG_Z, const float &e, const float &fr_mm_s, const uint8_t extruder) {
|
268
|
#if PLANNER_LEVELING && IS_CARTESIAN
|
268
|
#if PLANNER_LEVELING && IS_CARTESIAN
|
269
|
apply_leveling(lx, ly, lz);
|
269
|
apply_leveling(lx, ly, lz);
|
270
|
#endif
|
270
|
#endif
|
|
|
|
|
280
|
* fr_mm_s - (target) speed of the move (mm/s)
|
280
|
* fr_mm_s - (target) speed of the move (mm/s)
|
281
|
* extruder - target extruder
|
281
|
* extruder - target extruder
|
282
|
*/
|
282
|
*/
|
283
|
- static FORCE_INLINE void buffer_line_kinematic(const float target[XYZE], float fr_mm_s, const uint8_t extruder) {
|
|
|
|
|
283
|
+ static FORCE_INLINE void buffer_line_kinematic(const float target[XYZE], const float &fr_mm_s, const uint8_t extruder) {
|
284
|
#if PLANNER_LEVELING
|
284
|
#if PLANNER_LEVELING
|
285
|
float pos[XYZ] = { target[X_AXIS], target[Y_AXIS], target[Z_AXIS] };
|
285
|
float pos[XYZ] = { target[X_AXIS], target[Y_AXIS], target[Z_AXIS] };
|
286
|
apply_leveling(pos);
|
286
|
apply_leveling(pos);
|
|
|
|
|
311
|
_set_position_mm(lx, ly, lz, e);
|
311
|
_set_position_mm(lx, ly, lz, e);
|
312
|
}
|
312
|
}
|
313
|
static void set_position_mm_kinematic(const float position[NUM_AXIS]);
|
313
|
static void set_position_mm_kinematic(const float position[NUM_AXIS]);
|
314
|
- static void set_position_mm(const AxisEnum axis, const float& v);
|
|
|
315
|
- static FORCE_INLINE void set_z_position_mm(const float& z) { set_position_mm(Z_AXIS, z); }
|
|
|
316
|
- static FORCE_INLINE void set_e_position_mm(const float& e) { set_position_mm(E_AXIS, e); }
|
|
|
|
|
314
|
+ static void set_position_mm(const AxisEnum axis, const float &v);
|
|
|
315
|
+ static FORCE_INLINE void set_z_position_mm(const float &z) { set_position_mm(Z_AXIS, z); }
|
|
|
316
|
+ static FORCE_INLINE void set_e_position_mm(const float &e) { set_position_mm(E_AXIS, e); }
|
317
|
|
317
|
|
318
|
/**
|
318
|
/**
|
319
|
* Sync from the stepper positions. (e.g., after an interrupted move)
|
319
|
* Sync from the stepper positions. (e.g., after an interrupted move)
|
|
|
|
|
369
|
* Calculate the distance (not time) it takes to accelerate
|
369
|
* Calculate the distance (not time) it takes to accelerate
|
370
|
* from initial_rate to target_rate using the given acceleration:
|
370
|
* from initial_rate to target_rate using the given acceleration:
|
371
|
*/
|
371
|
*/
|
372
|
- static float estimate_acceleration_distance(float initial_rate, float target_rate, float accel) {
|
|
|
|
|
372
|
+ static float estimate_acceleration_distance(const float &initial_rate, const float &target_rate, const float &accel) {
|
373
|
if (accel == 0) return 0; // accel was 0, set acceleration distance to 0
|
373
|
if (accel == 0) return 0; // accel was 0, set acceleration distance to 0
|
374
|
return (sq(target_rate) - sq(initial_rate)) / (accel * 2);
|
374
|
return (sq(target_rate) - sq(initial_rate)) / (accel * 2);
|
375
|
}
|
375
|
}
|
|
|
|
|
382
|
* This is used to compute the intersection point between acceleration and deceleration
|
382
|
* This is used to compute the intersection point between acceleration and deceleration
|
383
|
* in cases where the "trapezoid" has no plateau (i.e., never reaches maximum speed)
|
383
|
* in cases where the "trapezoid" has no plateau (i.e., never reaches maximum speed)
|
384
|
*/
|
384
|
*/
|
385
|
- static float intersection_distance(float initial_rate, float final_rate, float accel, float distance) {
|
|
|
|
|
385
|
+ static float intersection_distance(const float &initial_rate, const float &final_rate, const float &accel, const float &distance) {
|
386
|
if (accel == 0) return 0; // accel was 0, set intersection distance to 0
|
386
|
if (accel == 0) return 0; // accel was 0, set intersection distance to 0
|
387
|
return (accel * 2 * distance - sq(initial_rate) + sq(final_rate)) / (accel * 4);
|
387
|
return (accel * 2 * distance - sq(initial_rate) + sq(final_rate)) / (accel * 4);
|
388
|
}
|
388
|
}
|
|
|
|
|
392
|
* to reach 'target_velocity' using 'acceleration' within a given
|
392
|
* to reach 'target_velocity' using 'acceleration' within a given
|
393
|
* 'distance'.
|
393
|
* 'distance'.
|
394
|
*/
|
394
|
*/
|
395
|
- static float max_allowable_speed(float accel, float target_velocity, float distance) {
|
|
|
|
|
395
|
+ static float max_allowable_speed(const float &accel, const float &target_velocity, const float &distance) {
|
396
|
return sqrt(sq(target_velocity) - 2 * accel * distance);
|
396
|
return sqrt(sq(target_velocity) - 2 * accel * distance);
|
397
|
}
|
397
|
}
|
398
|
|
398
|
|