Browse Source

Various UBL cleanups and bug fixes

Scott Lahteine 7 years ago
parent
commit
9217e4b8ec

+ 107
- 142
Marlin/G26_Mesh_Validation_Tool.cpp View File

@@ -35,7 +35,6 @@
35 35
   #include "temperature.h"
36 36
   #include "UBL.h"
37 37
   #include "ultralcd.h"
38
-//#include <avr/pgmspace.h>
39 38
 
40 39
   #define EXTRUSION_MULTIPLIER 1.0    // This is too much clutter for the main Configuration.h file  But
41 40
   #define RETRACTION_MULTIPLIER 1.0   // some user have expressed an interest in being able to customize
@@ -177,7 +176,7 @@
177 176
 
178 177
   /**
179 178
    * G26: Mesh Validation Pattern generation.
180
-   * 
179
+   *
181 180
    * Used to interactively edit UBL's Mesh by placing the
182 181
    * nozzle in a problem area and doing a G29 P4 R command.
183 182
    */
@@ -234,7 +233,7 @@
234 233
     move_to(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], ooze_amount);
235 234
 
236 235
     ubl_has_control_of_lcd_panel = true; // Take control of the LCD Panel!
237
-//  debug_current_and_destination((char*)"Starting G26 Mesh Validation Pattern.");
236
+    //debug_current_and_destination((char*)"Starting G26 Mesh Validation Pattern.");
238 237
 
239 238
     /**
240 239
      * Declare and generate a sin() & cos() table to be used during the circle drawing.  This will lighten
@@ -250,16 +249,17 @@
250 249
 
251 250
       if (ubl_lcd_clicked()) {              // Check if the user wants to stop the Mesh Validation
252 251
         #if ENABLED(ULTRA_LCD)
253
-          lcd_setstatuspgm(PSTR("Mesh Validation Stopped."), (uint8_t) 99);
252
+          lcd_setstatuspgm(PSTR("Mesh Validation Stopped."), 99);
254 253
           lcd_quick_feedback();
255 254
         #endif
256 255
         while (!ubl_lcd_clicked()) {         // Wait until the user is done pressing the
257 256
           idle();                            // Encoder Wheel if that is why we are leaving
258
-          lcd_setstatuspgm(PSTR(" "), (uint8_t) 99);
257
+          lcd_reset_alert_level();
258
+          lcd_setstatuspgm(PSTR(""));
259 259
         }
260
-        while ( ubl_lcd_clicked()) {         // Wait until the user is done pressing the
260
+        while (ubl_lcd_clicked()) {          // Wait until the user is done pressing the
261 261
           idle();                            // Encoder Wheel if that is why we are leaving
262
-          lcd_setstatuspgm(PSTR("Unpress Wheel "), (uint8_t) 99);
262
+          lcd_setstatuspgm(PSTR("Unpress Wheel"), 99);
263 263
         }
264 264
         goto LEAVE;
265 265
       }
@@ -276,13 +276,16 @@
276 276
         // Let's do a couple of quick sanity checks.  We can pull this code out later if we never see it catch a problem
277 277
         #ifdef DELTA
278 278
           if (HYPOT2(circle_x, circle_y) > sq(DELTA_PRINTABLE_RADIUS)) {
279
-            SERIAL_PROTOCOLLNPGM("?Error: Attempt to print outside of DELTA_PRINTABLE_RADIUS.");
279
+            SERIAL_ERROR_START;
280
+            SERIAL_ERRORLNPGM("Attempt to print outside of DELTA_PRINTABLE_RADIUS.");
280 281
             goto LEAVE;
281 282
           }
282 283
         #endif
283 284
 
284
-        if (circle_x < X_MIN_POS || circle_x > X_MAX_POS || circle_y < Y_MIN_POS || circle_y > Y_MAX_POS) {
285
-          SERIAL_PROTOCOLLNPGM("?Error: Attempt to print off the bed.");
285
+        // TODO: Change this to use `position_is_reachable`
286
+        if (circle_x < (X_MIN_POS) || circle_x > (X_MAX_POS) || circle_y < (Y_MIN_POS) || circle_y > (Y_MAX_POS)) {
287
+          SERIAL_ERROR_START;
288
+          SERIAL_ERRORLNPGM("Attempt to print off the bed.");
286 289
           goto LEAVE;
287 290
         }
288 291
 
@@ -290,11 +293,10 @@
290 293
         yi = location.y_index;
291 294
 
292 295
         if (g26_debug_flag) {
293
-          SERIAL_ECHOPGM("   Doing circle at: (xi=");
294
-          SERIAL_ECHO(xi);
295
-          SERIAL_ECHOPGM(", yi=");
296
-          SERIAL_ECHO(yi);
297
-          SERIAL_ECHOLNPGM(")");
296
+          SERIAL_ECHOPAIR("   Doing circle at: (xi=", xi);
297
+          SERIAL_ECHOPAIR(", yi=", yi);
298
+          SERIAL_CHAR(')');
299
+          SERIAL_EOL;
298 300
         }
299 301
 
300 302
         start_angle = 0.0;    // assume it is going to be a full circle
@@ -344,56 +346,53 @@
344 346
             ye = constrain(ye, Y_MIN_POS + 1, Y_MAX_POS - 1);
345 347
           #endif
346 348
 
347
-//          if (g26_debug_flag) {
348
-//            char ccc, *cptr, seg_msg[50], seg_num[10];
349
-//            strcpy(seg_msg, "   segment: ");
350
-//            strcpy(seg_num, "    \n");
351
-//            cptr = (char*) "01234567890ABCDEF????????";
352
-//            ccc = cptr[tmp_div_30];
353
-//            seg_num[1] = ccc;
354
-//            strcat(seg_msg, seg_num);
355
-//            debug_current_and_destination(seg_msg);
356
-//          }
349
+          //if (g26_debug_flag) {
350
+          //  char ccc, *cptr, seg_msg[50], seg_num[10];
351
+          //  strcpy(seg_msg, "   segment: ");
352
+          //  strcpy(seg_num, "    \n");
353
+          //  cptr = (char*) "01234567890ABCDEF????????";
354
+          //  ccc = cptr[tmp_div_30];
355
+          //  seg_num[1] = ccc;
356
+          //  strcat(seg_msg, seg_num);
357
+          //  debug_current_and_destination(seg_msg);
358
+          //}
357 359
 
358 360
           print_line_from_here_to_there(x, y, layer_height, xe, ye, layer_height);
359 361
 
360 362
         }
361
-//      lcd_init_counter++;
362
-//      if (lcd_init_counter > 10) {
363
-//        lcd_init_counter = 0;
364
-//        lcd_init(); // Some people's LCD Displays are locking up.  This might help them
365
-//        ubl_has_control_of_lcd_panel = true;     // Make sure UBL still is controlling the LCD Panel
366
-//      }
367
-
368
-    // If the end point of the line is closer to the nozzle, we are going to
369
-//      debug_current_and_destination((char*)"Looking for lines to connect.");
363
+        //lcd_init_counter++;
364
+        //if (lcd_init_counter > 10) {
365
+        //  lcd_init_counter = 0;
366
+        //  lcd_init(); // Some people's LCD Displays are locking up.  This might help them
367
+        //  ubl_has_control_of_lcd_panel = true;     // Make sure UBL still is controlling the LCD Panel
368
+        //}
369
+
370
+        //debug_current_and_destination((char*)"Looking for lines to connect.");
370 371
         look_for_lines_to_connect();
371
-//      debug_current_and_destination((char*)"Done with line connect.");
372
+        //debug_current_and_destination((char*)"Done with line connect.");
372 373
       }
373 374
 
374
-//    debug_current_and_destination((char*)"Done with current circle.");
375
-
376
-    // If the end point of the line is closer to the nozzle, we are going to
377
-
375
+      //debug_current_and_destination((char*)"Done with current circle.");
378 376
     }
379 377
     while (location.x_index >= 0 && location.y_index >= 0);
380 378
 
381 379
     LEAVE:
382
-    lcd_setstatuspgm(PSTR("Leaving G26 "), (uint8_t) 99);
380
+    lcd_reset_alert_level();
381
+    lcd_setstatuspgm(PSTR("Leaving G26"));
383 382
 
384 383
     retract_filament();
385
-    destination[Z_AXIS] = Z_CLEARANCE_BETWEEN_PROBES;                             // Raise the nozzle
384
+    destination[Z_AXIS] = Z_CLEARANCE_BETWEEN_PROBES;
386 385
 
387
-//  debug_current_and_destination((char*)"ready to do Z-Raise.");
388
-    move_to( destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], 0);   // Raise the nozzle
389
-//  debug_current_and_destination((char*)"done doing Z-Raise.");
386
+    //debug_current_and_destination((char*)"ready to do Z-Raise.");
387
+    move_to(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], 0); // Raise the nozzle
388
+    //debug_current_and_destination((char*)"done doing Z-Raise.");
390 389
 
391
-    destination[X_AXIS] = x_pos;                                                  // Move back to the starting position
390
+    destination[X_AXIS] = x_pos;                                               // Move back to the starting position
392 391
     destination[Y_AXIS] = y_pos;
393
-    destination[Z_AXIS] = Z_CLEARANCE_BETWEEN_PROBES;                             // Keep the nozzle where it is
392
+    //destination[Z_AXIS] = Z_CLEARANCE_BETWEEN_PROBES;                        // Keep the nozzle where it is
394 393
 
395 394
     move_to(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], 0); // Move back to the starting position
396
-//  debug_current_and_destination((char*)"done doing X/Y move.");
395
+    //debug_current_and_destination((char*)"done doing X/Y move.");
397 396
 
398 397
     ubl_has_control_of_lcd_panel = false;     // Give back control of the LCD Panel!
399 398
 
@@ -481,16 +480,13 @@
481 480
               ey = constrain(ey, Y_MIN_POS + 1, Y_MAX_POS - 1);
482 481
 
483 482
               if (g26_debug_flag) {
484
-                SERIAL_ECHOPGM(" Connecting with horizontal line (sx=");
485
-                SERIAL_ECHO(sx);
486
-                SERIAL_ECHOPGM(", sy=");
487
-                SERIAL_ECHO(sy);
488
-                SERIAL_ECHOPGM(") -> (ex=");
489
-                SERIAL_ECHO(ex);
490
-                SERIAL_ECHOPGM(", ey=");
491
-                SERIAL_ECHO(ey);
492
-                SERIAL_ECHOLNPGM(")");
493
-//              debug_current_and_destination((char*)"Connecting horizontal line.");
483
+                SERIAL_ECHOPAIR(" Connecting with horizontal line (sx=", sx);
484
+                SERIAL_ECHOPAIR(", sy=", sy);
485
+                SERIAL_ECHOPAIR(") -> (ex=", ex);
486
+                SERIAL_ECHOPAIR(", ey=", ey);
487
+                SERIAL_CHAR(')');
488
+                SERIAL_EOL;
489
+                //debug_current_and_destination((char*)"Connecting horizontal line.");
494 490
               }
495 491
 
496 492
               print_line_from_here_to_there(sx, sy, layer_height, ex, ey, layer_height);
@@ -521,15 +517,12 @@
521 517
                 ey = constrain(ey, Y_MIN_POS + 1, Y_MAX_POS - 1);
522 518
 
523 519
                 if (g26_debug_flag) {
524
-                  SERIAL_ECHOPGM(" Connecting with vertical line (sx=");
525
-                  SERIAL_ECHO(sx);
526
-                  SERIAL_ECHOPGM(", sy=");
527
-                  SERIAL_ECHO(sy);
528
-                  SERIAL_ECHOPGM(") -> (ex=");
529
-                  SERIAL_ECHO(ex);
530
-                  SERIAL_ECHOPGM(", ey=");
531
-                  SERIAL_ECHO(ey);
532
-                  SERIAL_ECHOLNPGM(")");
520
+                  SERIAL_ECHOPAIR(" Connecting with vertical line (sx=", sx);
521
+                  SERIAL_ECHOPAIR(", sy=", sy);
522
+                  SERIAL_ECHOPAIR(") -> (ex=", ex);
523
+                  SERIAL_ECHOPAIR(", ey=", ey);
524
+                  SERIAL_CHAR(')');
525
+                  SERIAL_EOL;
533 526
                   debug_current_and_destination((char*)"Connecting vertical line.");
534 527
                 }
535 528
                 print_line_from_here_to_there(sx, sy, layer_height, ex, ey, layer_height);
@@ -548,16 +541,10 @@
548 541
 
549 542
     bool has_xy_component = (x != current_position[X_AXIS] || y != current_position[Y_AXIS]); // Check if X or Y is involved in the movement.
550 543
 
551
-//  if (g26_debug_flag) {
552
-//    SERIAL_ECHOPAIR("in move_to()  has_xy_component:", (int)has_xy_component);
553
-//    SERIAL_EOL;
554
-//  }
544
+    //if (g26_debug_flag) SERIAL_ECHOLNPAIR("in move_to()  has_xy_component:", (int)has_xy_component);
555 545
 
556 546
     if (z != last_z) {
557
-//    if (g26_debug_flag) {
558
-//      SERIAL_ECHOPAIR("in move_to()  changing Z to ", (int)z);
559
-//      SERIAL_EOL;
560
-//    }
547
+      //if (g26_debug_flag) SERIAL_ECHOLNPAIR("in move_to()  changing Z to ", (int)z);
561 548
 
562 549
       last_z = z;
563 550
       feed_value = planner.max_feedrate_mm_s[Z_AXIS]/(3.0);  // Base the feed rate off of the configured Z_AXIS feed rate
@@ -572,30 +559,24 @@
572 559
       stepper.synchronize();
573 560
       set_destination_to_current();
574 561
 
575
-//    if (g26_debug_flag)
576
-//      debug_current_and_destination((char*)" in move_to() done with Z move");
562
+      //if (g26_debug_flag) debug_current_and_destination((char*)" in move_to() done with Z move");
577 563
     }
578 564
 
579 565
     // Check if X or Y is involved in the movement.
580 566
     // Yes: a 'normal' movement. No: a retract() or un_retract()
581 567
     feed_value = has_xy_component ? PLANNER_XY_FEEDRATE() / 10.0 : planner.max_feedrate_mm_s[E_AXIS] / 1.5;
582 568
 
583
-    if (g26_debug_flag) {
584
-      SERIAL_ECHOPAIR("in move_to() feed_value for XY:", feed_value);
585
-      SERIAL_EOL;
586
-    }
569
+    if (g26_debug_flag) SERIAL_ECHOLNPAIR("in move_to() feed_value for XY:", feed_value);
587 570
 
588 571
     destination[X_AXIS] = x;
589 572
     destination[Y_AXIS] = y;
590 573
     destination[E_AXIS] += e_delta;
591 574
 
592
-//  if (g26_debug_flag)
593
-//    debug_current_and_destination((char*)" in move_to() doing last move");
575
+    //if (g26_debug_flag) debug_current_and_destination((char*)" in move_to() doing last move");
594 576
 
595 577
     ubl_line_to_destination(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feed_value, 0);
596 578
 
597
-//  if (g26_debug_flag)
598
-//    debug_current_and_destination((char*)" in move_to() after last move");
579
+    //if (g26_debug_flag) debug_current_and_destination((char*)" in move_to() after last move");
599 580
 
600 581
     stepper.synchronize();
601 582
     set_destination_to_current();
@@ -605,9 +586,9 @@
605 586
   void retract_filament() {
606 587
     if (!g26_retracted) { // Only retract if we are not already retracted!
607 588
       g26_retracted = true;
608
-//    if (g26_debug_flag) SERIAL_ECHOLNPGM(" Decided to do retract.");
589
+      //if (g26_debug_flag) SERIAL_ECHOLNPGM(" Decided to do retract.");
609 590
       move_to(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], -1.0 * retraction_multiplier);
610
-//    if (g26_debug_flag) SERIAL_ECHOLNPGM(" Retraction done.");
591
+      //if (g26_debug_flag) SERIAL_ECHOLNPGM(" Retraction done.");
611 592
     }
612 593
   }
613 594
 
@@ -615,7 +596,7 @@
615 596
     if (g26_retracted) { // Only un-retract if we are retracted.
616 597
       move_to(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], 1.2 * retraction_multiplier);
617 598
       g26_retracted = false;
618
-//    if (g26_debug_flag) SERIAL_ECHOLNPGM(" unretract done.");
599
+      //if (g26_debug_flag) SERIAL_ECHOLNPGM(" unretract done.");
619 600
     }
620 601
   }
621 602
 
@@ -635,27 +616,24 @@
635 616
    * cases where the optimization comes into play.
636 617
    */
637 618
   void print_line_from_here_to_there( float sx, float sy, float sz, float ex, float ey, float ez) {
638
-    float dx, dy, dx_s, dy_s, dx_e, dy_e, dist_start, dist_end, Line_Length;
639
-
640
-    dx_s = current_position[X_AXIS] - sx;   // find our distance from the start of the actual line segment
641
-    dy_s = current_position[Y_AXIS] - sy;
642
-    dist_start = HYPOT2(dx_s, dy_s);        // We don't need to do a sqrt(), we can compare the distance^2
643
-                                            // to save computation time
644
-    dx_e = current_position[X_AXIS] - ex;   // find our distance from the end of the actual line segment
645
-    dy_e = current_position[Y_AXIS] - ey;
646
-    dist_end = HYPOT2(dx_e, dy_e);
647
-
648
-    dx = ex - sx;
649
-    dy = ey - sy;
650
-    Line_Length = HYPOT(dx, dy);
619
+    const float dx_s = current_position[X_AXIS] - sx,   // find our distance from the start of the actual line segment
620
+                dy_s = current_position[Y_AXIS] - sy,
621
+                dist_start = HYPOT2(dx_s, dy_s),        // We don't need to do a sqrt(), we can compare the distance^2
622
+                                                        // to save computation time
623
+                dx_e = current_position[X_AXIS] - ex,   // find our distance from the end of the actual line segment
624
+                dy_e = current_position[Y_AXIS] - ey,
625
+                dist_end = HYPOT2(dx_e, dy_e),
626
+
627
+                dx = ex - sx,
628
+                dy = ey - sy,
629
+                line_length = HYPOT(dx, dy);
651 630
 
652 631
     // If the end point of the line is closer to the nozzle, we are going to
653 632
     // flip the direction of this line.   We will print it from the end to the start.
654 633
     // On very small lines we don't do the optimization because it just isn't worth it.
655 634
     //
656
-    if (dist_end < dist_start && (SIZE_OF_INTERSECTION_CIRCLES) < abs(Line_Length)) {
657
-//    if (g26_debug_flag)
658
-//      SERIAL_ECHOLNPGM("  Reversing start and end of print_line_from_here_to_there()");
635
+    if (dist_end < dist_start && (SIZE_OF_INTERSECTION_CIRCLES) < abs(line_length)) {
636
+      //if (g26_debug_flag) SERIAL_ECHOLNPGM("  Reversing start and end of print_line_from_here_to_there()");
659 637
       print_line_from_here_to_there(ex, ey, ez, sx, sy, sz);
660 638
       return;
661 639
     }
@@ -664,26 +642,19 @@
664 642
 
665 643
     if (dist_start > 2.0) {
666 644
       retract_filament();
667
-//    if (g26_debug_flag)
668
-//      SERIAL_ECHOLNPGM("  filament retracted.");
645
+      //if (g26_debug_flag) SERIAL_ECHOLNPGM("  filament retracted.");
669 646
     }
670
-    // If the end point of the line is closer to the nozzle, we are going to
671 647
     move_to(sx, sy, sz, 0.0); // Get to the starting point with no extrusion
672 648
 
673
-    // If the end point of the line is closer to the nozzle, we are going to
674
-
675
-    float e_pos_delta = Line_Length * g26_e_axis_feedrate * extrusion_multiplier;
649
+    const float e_pos_delta = line_length * g26_e_axis_feedrate * extrusion_multiplier;
676 650
 
677 651
     un_retract_filament();
678 652
 
679
-    // If the end point of the line is closer to the nozzle, we are going to
680
-//  if (g26_debug_flag) {
681
-//    SERIAL_ECHOLNPGM("  doing printing move.");
682
-//    debug_current_and_destination((char*)"doing final move_to() inside print_line_from_here_to_there()");
683
-//  }
653
+    //if (g26_debug_flag) {
654
+    //  SERIAL_ECHOLNPGM("  doing printing move.");
655
+    //  debug_current_and_destination((char*)"doing final move_to() inside print_line_from_here_to_there()");
656
+    //}
684 657
     move_to(ex, ey, ez, e_pos_delta);  // Get to the ending point with an appropriate amount of extrusion
685
-
686
-    // If the end point of the line is closer to the nozzle, we are going to
687 658
   }
688 659
 
689 660
   /**
@@ -820,6 +791,14 @@
820 791
     return UBL_OK;
821 792
   }
822 793
 
794
+  bool exit_from_g26() {
795
+    //strcpy(lcd_status_message, "Leaving G26"); // We can't do lcd_setstatus() without having it continue;
796
+    lcd_reset_alert_level();
797
+    lcd_setstatuspgm(PSTR("Leaving G26"));
798
+    while (ubl_lcd_clicked()) idle();
799
+    return UBL_ERR;
800
+  }
801
+
823 802
   /**
824 803
    * Turn on the bed and nozzle heat and
825 804
    * wait for them to get up to temperature.
@@ -828,24 +807,18 @@
828 807
     #if HAS_TEMP_BED
829 808
       #if ENABLED(ULTRA_LCD)
830 809
         if (bed_temp > 25) {
831
-          lcd_setstatuspgm(PSTR("G26 Heating Bed."), (uint8_t) 99);
810
+          lcd_setstatuspgm(PSTR("G26 Heating Bed."), 99);
832 811
           lcd_quick_feedback();
833 812
       #endif
834 813
           ubl_has_control_of_lcd_panel = true;
835 814
           thermalManager.setTargetBed(bed_temp);
836 815
           while (abs(thermalManager.degBed() - bed_temp) > 3) {
837
-            if (ubl_lcd_clicked()) {
838
-              strcpy(lcd_status_message, "Leaving G26");      // We can't do lcd_setstatus() without having it continue;
839
-              lcd_setstatuspgm(PSTR("Leaving G26"), (uint8_t) 99);      // Now we do it right.
840
-              while (ubl_lcd_clicked())                       // Debounce Encoder Wheel 
841
-                idle();
842
-              return UBL_ERR;
843
-            }
816
+            if (ubl_lcd_clicked()) return exit_from_g26();
844 817
             idle();
845 818
           }
846 819
       #if ENABLED(ULTRA_LCD)
847 820
         }
848
-        lcd_setstatuspgm(PSTR("G26 Heating Nozzle."), (uint8_t) 99);
821
+        lcd_setstatuspgm(PSTR("G26 Heating Nozzle."), 99);
849 822
         lcd_quick_feedback();
850 823
       #endif
851 824
     #endif
@@ -853,18 +826,13 @@
853 826
     // Start heating the nozzle and wait for it to reach temperature.
854 827
     thermalManager.setTargetHotend(hotend_temp, 0);
855 828
     while (abs(thermalManager.degHotend(0) - hotend_temp) > 3) {
856
-      if (ubl_lcd_clicked()) {
857
-        strcpy(lcd_status_message, "Leaving G26");          // We can't do lcd_setstatuspgm() without having it continue;
858
-        lcd_setstatuspgm(PSTR("Leaving G26"), (uint8_t) 99);          // Now we do it right.
859
-        while (ubl_lcd_clicked())                           // Debounce Encoder Wheel 
860
-          idle();
861
-        return UBL_ERR;
862
-      }
829
+      if (ubl_lcd_clicked()) return exit_from_g26();
863 830
       idle();
864 831
     }
865 832
 
866 833
     #if ENABLED(ULTRA_LCD)
867
-      lcd_setstatuspgm(PSTR(""), (uint8_t) 99);
834
+      lcd_reset_alert_level();
835
+      lcd_setstatuspgm(PSTR(""));
868 836
       lcd_quick_feedback();
869 837
     #endif
870 838
     return UBL_OK;
@@ -877,7 +845,7 @@
877 845
     float Total_Prime = 0.0;
878 846
 
879 847
     if (prime_flag == -1) {  // The user wants to control how much filament gets purged
880
-      lcd_setstatuspgm(PSTR("User-Controlled Prime"), (uint8_t) 99);
848
+      lcd_setstatuspgm(PSTR("User-Controlled Prime"), 99);
881 849
       chirp_at_user();
882 850
 
883 851
       set_destination_to_current();
@@ -894,7 +862,6 @@
894 862
         #endif
895 863
         ubl_line_to_destination(
896 864
           destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS],
897
-          //planner.max_feedrate_mm_s[E_AXIS] / 15.0, 0, 0xFFFF, 0xFFFF);
898 865
           planner.max_feedrate_mm_s[E_AXIS] / 15.0, 0
899 866
         );
900 867
 
@@ -906,26 +873,24 @@
906 873
         idle();
907 874
       }
908 875
 
909
-      strcpy(lcd_status_message, "Done Priming"); // We can't do lcd_setstatuspgm() without having it continue;
910
-                                                  // So...  We cheat to get a message up.
911
-      while (ubl_lcd_clicked())                   // Debounce Encoder Wheel 
912
-        idle();
876
+      while (ubl_lcd_clicked()) idle();           // Debounce Encoder Wheel
913 877
 
914 878
       #if ENABLED(ULTRA_LCD)
915
-        lcd_setstatuspgm(PSTR("Done Priming"), (uint8_t) 99); 
879
+        strcpy_P(lcd_status_message, PSTR("Done Priming")); // We can't do lcd_setstatuspgm() without having it continue;
880
+                                                            // So...  We cheat to get a message up.
881
+        lcd_setstatuspgm(PSTR("Done Priming"), 99);
916 882
         lcd_quick_feedback();
917 883
       #endif
918 884
     }
919 885
     else {
920 886
       #if ENABLED(ULTRA_LCD)
921
-        lcd_setstatuspgm(PSTR("Fixed Length Prime."), (uint8_t) 99);
887
+        lcd_setstatuspgm(PSTR("Fixed Length Prime."), 99);
922 888
         lcd_quick_feedback();
923 889
       #endif
924 890
       set_destination_to_current();
925 891
       destination[E_AXIS] += prime_length;
926 892
       ubl_line_to_destination(
927 893
         destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS],
928
-        //planner.max_feedrate_mm_s[E_AXIS] / 15.0, 0, 0xFFFF, 0xFFFF);
929 894
         planner.max_feedrate_mm_s[E_AXIS] / 15.0, 0
930 895
       );
931 896
       stepper.synchronize();

+ 10
- 20
Marlin/M100_Free_Mem_Chk.cpp View File

@@ -76,32 +76,25 @@ void gcode_M100() {
76 76
       // We want to start and end the dump on a nice 16 byte boundry even though
77 77
       // the values we are using are not 16 byte aligned.
78 78
       //
79
-      SERIAL_ECHOPGM("\nbss_end : ");
80
-      prt_hex_word((unsigned int) ptr);
81
-      ptr = (char*)((unsigned long) ptr & 0xfff0);
79
+      SERIAL_ECHOPAIR("\nbss_end : ", hex_word((uint16_t)ptr));
80
+      ptr = (char*)((uint32_t)ptr & 0xfff0);
82 81
       sp = top_of_stack();
83
-      SERIAL_ECHOPGM("\nStack Pointer : ");
84
-      prt_hex_word((unsigned int) sp);
85
-      SERIAL_EOL;
86
-      sp = (char*)((unsigned long) sp | 0x000f);
82
+      SERIAL_ECHOLNPAIR("\nStack Pointer : ", hex_word((uint16_t)sp));
83
+      sp = (char*)((uint32_t)sp | 0x000f);
87 84
       n = sp - ptr;
88 85
       //
89 86
       // This is the main loop of the Dump command.
90 87
       //
91 88
       while (ptr < sp) {
92
-        prt_hex_word((unsigned int) ptr); // Print the address
89
+        print_hex_word((uint16_t)ptr); // Print the address
93 90
         SERIAL_CHAR(':');
94 91
         for (i = 0; i < 16; i++) {      // and 16 data bytes
95
-          prt_hex_byte(*(ptr + i));
92
+          print_hex_byte(*(ptr + i));
96 93
           SERIAL_CHAR(' ');
97 94
         }
98 95
         SERIAL_CHAR('|');         // now show where non 0xE5's are
99
-        for (i = 0; i < 16; i++) {
100
-          if (*(ptr + i) == (char)0xe5)
101
-            SERIAL_CHAR(' ');
102
-          else
103
-            SERIAL_CHAR('?');
104
-        }
96
+        for (i = 0; i < 16; i++)
97
+          SERIAL_CHAR((*(ptr + i) == (char)0xe5) ? ' ' : '?');
105 98
         SERIAL_EOL;
106 99
         ptr += 16;
107 100
       }
@@ -127,9 +120,7 @@ void gcode_M100() {
127 120
         j = how_many_E5s_are_here(ptr + i);
128 121
         if (j > 8) {
129 122
           SERIAL_ECHOPAIR("Found ", j);
130
-          SERIAL_ECHOPGM(" bytes free at 0x");
131
-          prt_hex_word((int) ptr + i);
132
-          SERIAL_EOL;
123
+          SERIAL_ECHOLNPAIR(" bytes free at 0x", hex_word((uint16_t)(ptr + i)));
133 124
           i += j;
134 125
           block_cnt++;
135 126
         }
@@ -164,8 +155,7 @@ void gcode_M100() {
164 155
       j = n / (x + 1);
165 156
       for (i = 1; i <= x; i++) {
166 157
         *(ptr + (i * j)) = i;
167
-        SERIAL_ECHOPGM("\nCorrupting address: 0x");
168
-        prt_hex_word((unsigned int)(ptr + (i * j)));
158
+        SERIAL_ECHOPAIR("\nCorrupting address: 0x", hex_word((uint16_t)(ptr + i * j)));
169 159
       }
170 160
       SERIAL_ECHOLNPGM("\n");
171 161
       return;

+ 4
- 1
Marlin/Marlin.h View File

@@ -363,7 +363,10 @@ float code_value_temp_diff();
363 363
 #endif
364 364
 
365 365
 #if ENABLED(HOST_KEEPALIVE_FEATURE)
366
-  extern uint8_t host_keepalive_interval;
366
+  extern MarlinBusyState busy_state;
367
+  #define KEEPALIVE_STATE(n) do{ busy_state = n; }while(0)
368
+#else
369
+  #define KEEPALIVE_STATE(n) NOOP
367 370
 #endif
368 371
 
369 372
 #if FAN_COUNT > 0

+ 22
- 22
Marlin/Marlin_main.cpp View File

@@ -655,11 +655,9 @@ static bool send_ok[BUFSIZE];
655 655
   static MarlinBusyState busy_state = NOT_BUSY;
656 656
   static millis_t next_busy_signal_ms = 0;
657 657
   uint8_t host_keepalive_interval = DEFAULT_KEEPALIVE_INTERVAL;
658
-  #define KEEPALIVE_STATE(n) do{ busy_state = n; }while(0)
659 658
 #else
660
-  #define host_keepalive() ;
661
-  #define KEEPALIVE_STATE(n) ;
662
-#endif // HOST_KEEPALIVE_FEATURE
659
+  #define host_keepalive() NOOP
660
+#endif
663 661
 
664 662
 #define DEFINE_PGM_READ_ANY(type, reader)       \
665 663
   static inline type pgm_read_any(const type *p)  \
@@ -1031,7 +1029,7 @@ inline void get_serial_commands() {
1031 1029
   // send "wait" to indicate Marlin is still waiting.
1032 1030
   #if defined(NO_TIMEOUTS) && NO_TIMEOUTS > 0
1033 1031
     static millis_t last_command_time = 0;
1034
-    millis_t ms = millis();
1032
+    const millis_t ms = millis();
1035 1033
     if (commands_in_queue == 0 && !MYSERIAL.available() && ELAPSED(ms, last_command_time + NO_TIMEOUTS)) {
1036 1034
       SERIAL_ECHOLNPGM(MSG_WAIT);
1037 1035
       last_command_time = ms;
@@ -4710,8 +4708,8 @@ inline void gcode_G92() {
4710 4708
 
4711 4709
     #endif
4712 4710
 
4713
-    wait_for_user = true;
4714 4711
     KEEPALIVE_STATE(PAUSED_FOR_USER);
4712
+    wait_for_user = true;
4715 4713
 
4716 4714
     stepper.synchronize();
4717 4715
     refresh_cmd_timeout();
@@ -5050,7 +5048,7 @@ inline void gcode_M42() {
5050 5048
       if (first_pin > NUM_DIGITAL_PINS - 1) return;
5051 5049
     }
5052 5050
 
5053
-    bool ignore_protection = code_seen('I') ? code_value_bool() : false;
5051
+    const bool ignore_protection = code_seen('I') ? code_value_bool() : false;
5054 5052
 
5055 5053
     // Watch until click, M108, or reset
5056 5054
     if (code_seen('W') && code_value_bool()) { // watch digital pins
@@ -6324,8 +6322,8 @@ inline void gcode_M121() { endstops.enable_globally(false); }
6324 6322
 
6325 6323
     #if DISABLED(SDSUPPORT)
6326 6324
       // Wait for lcd click or M108
6327
-      wait_for_user = true;
6328 6325
       KEEPALIVE_STATE(PAUSED_FOR_USER);
6326
+      wait_for_user = true;
6329 6327
       while (wait_for_user) idle();
6330 6328
       KEEPALIVE_STATE(IN_HANDLER);
6331 6329
 
@@ -7591,7 +7589,7 @@ inline void gcode_M503() {
7591 7589
     disable_e_steppers();
7592 7590
     safe_delay(100);
7593 7591
 
7594
-    millis_t nozzle_timeout = millis() + (millis_t)(FILAMENT_CHANGE_NOZZLE_TIMEOUT) * 1000L;
7592
+    const millis_t nozzle_timeout = millis() + (millis_t)(FILAMENT_CHANGE_NOZZLE_TIMEOUT) * 1000UL;
7595 7593
     bool nozzle_timed_out = false;
7596 7594
     float temps[4];
7597 7595
 
@@ -7606,9 +7604,10 @@ inline void gcode_M503() {
7606 7604
 
7607 7605
     HOTEND_LOOP() temps[e] = thermalManager.target_temperature[e]; // Save nozzle temps
7608 7606
 
7607
+    KEEPALIVE_STATE(PAUSED_FOR_USER);
7609 7608
     wait_for_user = true;    // LCD click or M108 will clear this
7610 7609
     while (wait_for_user) {
7611
-      millis_t current_ms = millis();
7610
+
7612 7611
       if (nozzle_timed_out)
7613 7612
         lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_CLICK_TO_HEAT_NOZZLE);
7614 7613
 
@@ -7616,15 +7615,14 @@ inline void gcode_M503() {
7616 7615
         filament_change_beep();
7617 7616
       #endif
7618 7617
 
7619
-      if (current_ms >= nozzle_timeout) {
7620
-        if (!nozzle_timed_out) {
7621
-          nozzle_timed_out = true; // on nozzle timeout remember the nozzles need to be reheated
7622
-          HOTEND_LOOP() thermalManager.setTargetHotend(0, e); // Turn off all the nozzles
7623
-          lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_CLICK_TO_HEAT_NOZZLE);
7624
-        }
7618
+      if (!nozzle_timed_out && ELAPSED(millis(), nozzle_timeout)) {
7619
+        nozzle_timed_out = true; // on nozzle timeout remember the nozzles need to be reheated
7620
+        HOTEND_LOOP() thermalManager.setTargetHotend(0, e); // Turn off all the nozzles
7621
+        lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_CLICK_TO_HEAT_NOZZLE);
7625 7622
       }
7626 7623
       idle(true);
7627 7624
     }
7625
+    KEEPALIVE_STATE(IN_HANDLER);
7628 7626
 
7629 7627
     if (nozzle_timed_out)      // Turn nozzles back on if they were turned off
7630 7628
       HOTEND_LOOP() thermalManager.setTargetHotend(temps[e], e);
@@ -7652,6 +7650,7 @@ inline void gcode_M503() {
7652 7650
       filament_change_beep(true);
7653 7651
     #endif
7654 7652
 
7653
+    KEEPALIVE_STATE(PAUSED_FOR_USER);
7655 7654
     wait_for_user = true;    // LCD click or M108 will clear this
7656 7655
     while (wait_for_user && nozzle_timed_out) {
7657 7656
       #if HAS_BUZZER
@@ -7659,6 +7658,7 @@ inline void gcode_M503() {
7659 7658
       #endif
7660 7659
       idle(true);
7661 7660
     }
7661
+    KEEPALIVE_STATE(IN_HANDLER);
7662 7662
 
7663 7663
     // Show "load" message
7664 7664
     lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_LOAD);
@@ -10137,9 +10137,9 @@ void prepare_move_to_destination() {
10137 10137
 #if HAS_CONTROLLERFAN
10138 10138
 
10139 10139
   void controllerFan() {
10140
-    static millis_t lastMotorOn = 0; // Last time a motor was turned on
10141
-    static millis_t nextMotorCheck = 0; // Last time the state was checked
10142
-    millis_t ms = millis();
10140
+    static millis_t lastMotorOn = 0, // Last time a motor was turned on
10141
+                    nextMotorCheck = 0; // Last time the state was checked
10142
+    const millis_t ms = millis();
10143 10143
     if (ELAPSED(ms, nextMotorCheck)) {
10144 10144
       nextMotorCheck = ms + 2500UL; // Not a time critical function, so only check every 2.5s
10145 10145
       if (X_ENABLE_READ == X_ENABLE_ON || Y_ENABLE_READ == Y_ENABLE_ON || Z_ENABLE_READ == Z_ENABLE_ON || thermalManager.soft_pwm_bed > 0
@@ -10472,7 +10472,7 @@ void manage_inactivity(bool ignore_stepper_queue/*=false*/) {
10472 10472
 
10473 10473
   if (commands_in_queue < BUFSIZE) get_available_commands();
10474 10474
 
10475
-  millis_t ms = millis();
10475
+  const millis_t ms = millis();
10476 10476
 
10477 10477
   if (max_inactive_time && ELAPSED(ms, previous_cmd_ms + max_inactive_time)) {
10478 10478
     SERIAL_ERROR_START;
@@ -10686,7 +10686,7 @@ void kill(const char* lcd_msg) {
10686 10686
 
10687 10687
   thermalManager.disable_all_heaters();
10688 10688
   disable_all_steppers();
10689
-            
10689
+
10690 10690
   #if ENABLED(ULTRA_LCD)
10691 10691
     kill_screen(lcd_msg);
10692 10692
   #else
@@ -10695,7 +10695,7 @@ void kill(const char* lcd_msg) {
10695 10695
 
10696 10696
   _delay_ms(250); // Wait a short time
10697 10697
   cli(); // Stop interrupts
10698
-            
10698
+
10699 10699
   _delay_ms(250); //Wait to ensure all interrupts routines stopped
10700 10700
   thermalManager.disable_all_heaters(); //turn off heaters again
10701 10701
 

+ 68
- 104
Marlin/UBL_Bed_Leveling.cpp View File

@@ -38,6 +38,25 @@
38 38
   void bit_set(uint16_t bits[16], uint8_t x, uint8_t y) { SBI(bits[y], x); }
39 39
   bool is_bit_set(uint16_t bits[16], uint8_t x, uint8_t y) { return TEST(bits[y], x); }
40 40
 
41
+  static void serial_echo_xy(const uint16_t x, const uint16_t y) {
42
+    SERIAL_CHAR('(');
43
+    SERIAL_ECHO(x);
44
+    SERIAL_CHAR(',');
45
+    SERIAL_ECHO(y);
46
+    SERIAL_CHAR(')');
47
+    safe_delay(10);
48
+  }
49
+
50
+  static void serial_echo_10x_spaces() {
51
+    for (uint8_t i = UBL_MESH_NUM_X_POINTS - 1; --i;) {
52
+      SERIAL_ECHOPGM("          ");
53
+      #if TX_BUFFER_SIZE > 0
54
+        MYSERIAL.flushTX();
55
+      #endif
56
+      safe_delay(10);
57
+    }
58
+  }
59
+
41 60
   /**
42 61
    * These variables used to be declared inside the unified_bed_leveling class. We are going to
43 62
    * still declare them within the .cpp file for bed leveling. But there is only one instance of
@@ -105,13 +124,10 @@
105 124
     }
106 125
 
107 126
     j = UBL_LAST_EEPROM_INDEX - (m + 1) * sizeof(z_values);
108
-    eeprom_read_block((void *)&z_values , (void *)j, sizeof(z_values));
127
+    eeprom_read_block((void *)&z_values, (void *)j, sizeof(z_values));
109 128
 
110
-    SERIAL_PROTOCOLPGM("Mesh loaded from slot ");
111
-    SERIAL_PROTOCOL(m);
112
-    SERIAL_PROTOCOLPGM("  at offset 0x");
113
-    prt_hex_word(j);
114
-    SERIAL_EOL;
129
+    SERIAL_PROTOCOLPAIR("Mesh loaded from slot ", m);
130
+    SERIAL_PROTOCOLLNPAIR(" at offset 0x", hex_word(j));
115 131
   }
116 132
 
117 133
   void unified_bed_leveling::store_mesh(const int16_t m) {
@@ -132,11 +148,8 @@
132 148
     j = UBL_LAST_EEPROM_INDEX - (m + 1) * sizeof(z_values);
133 149
     eeprom_write_block((const void *)&z_values, (void *)j, sizeof(z_values));
134 150
 
135
-    SERIAL_PROTOCOLPGM("Mesh saved in slot ");
136
-    SERIAL_PROTOCOL(m);
137
-    SERIAL_PROTOCOLPGM("  at offset 0x");
138
-    prt_hex_word(j);
139
-    SERIAL_EOL;
151
+    SERIAL_PROTOCOLPAIR("Mesh saved in slot ", m);
152
+    SERIAL_PROTOCOLLNPAIR(" at offset 0x", hex_word(j));
140 153
   }
141 154
 
142 155
   void unified_bed_leveling::reset() {
@@ -151,7 +164,7 @@
151 164
   }
152 165
 
153 166
   void unified_bed_leveling::invalidate() {
154
-    prt_hex_word((unsigned int)this);
167
+    print_hex_word((uint16_t)this);
155 168
     SERIAL_EOL;
156 169
 
157 170
     state.active = false;
@@ -162,125 +175,76 @@
162 175
   }
163 176
 
164 177
   void unified_bed_leveling::display_map(const int map_type) {
165
-    float f, current_xi, current_yi;
166
-    int8_t i, j;
167
-    UNUSED(map_type);
168 178
 
169
-    if (map_type==0) {
170
-      SERIAL_PROTOCOLLNPGM("\nBed Topography Report:\n");
179
+    const bool map0 = map_type == 0;
171 180
 
172
-      SERIAL_ECHOPAIR("(", 0);
173
-      SERIAL_ECHOPAIR(", ", UBL_MESH_NUM_Y_POINTS - 1);
174
-      SERIAL_ECHOPGM(")    ");
181
+    if (map0) {
182
+      SERIAL_PROTOCOLLNPGM("\nBed Topography Report:\n");
183
+      serial_echo_xy(0, UBL_MESH_NUM_Y_POINTS - 1);
184
+      SERIAL_ECHOPGM("    ");
175 185
     }
176 186
 
177
-    current_xi = ubl.get_cell_index_x(current_position[X_AXIS] + (MESH_X_DIST) / 2.0);
178
-    current_yi = ubl.get_cell_index_y(current_position[Y_AXIS] + (MESH_Y_DIST) / 2.0);
179
-
180
-    if (map_type==0) {
181
-      for (i = 0; i < UBL_MESH_NUM_X_POINTS - 1; i++) {
182
-        SERIAL_ECHOPGM("            ");
183
-        #if TX_BUFFER_SIZE>0
184
-          MYSERIAL.flushTX();
185
-        #endif
186
-        safe_delay(15);
187
-      }
188
-      
189
-      SERIAL_ECHOPAIR("(", UBL_MESH_NUM_X_POINTS - 1);
190
-      SERIAL_ECHOPAIR(",", UBL_MESH_NUM_Y_POINTS - 1);
191
-      SERIAL_ECHOLNPGM(")");
192
-
193
-      SERIAL_ECHOPAIR("(", UBL_MESH_MIN_X);
194
-      SERIAL_ECHOPAIR(",", UBL_MESH_MAX_Y);
195
-      SERIAL_CHAR(')');
196
-      safe_delay(15);
197
-
198
-      for (i = 0; i < UBL_MESH_NUM_X_POINTS - 1; i++) {
199
-        SERIAL_ECHOPGM("            ");
200
-        #if TX_BUFFER_SIZE>0
201
-          MYSERIAL.flushTX();
202
-        #endif
203
-        safe_delay(15);
204
-      }
205
-
206
-      SERIAL_ECHOPAIR("(", UBL_MESH_MAX_X);
207
-      SERIAL_ECHOPAIR(",", UBL_MESH_MAX_Y);
208
-      SERIAL_ECHOLNPGM(")");
209
-      safe_delay(15);
187
+    if (map0) {
188
+      serial_echo_10x_spaces();
189
+      serial_echo_xy(UBL_MESH_NUM_X_POINTS - 1, UBL_MESH_NUM_Y_POINTS - 1);
190
+      SERIAL_EOL;
191
+      serial_echo_xy(UBL_MESH_MIN_X, UBL_MESH_MIN_Y);
192
+      serial_echo_10x_spaces();
193
+      serial_echo_xy(UBL_MESH_MAX_X, UBL_MESH_MAX_Y);
194
+      SERIAL_EOL;
210 195
     }
211 196
 
212
-    for (j = UBL_MESH_NUM_Y_POINTS - 1; j >= 0; j--) {
213
-      for (i = 0; i < UBL_MESH_NUM_X_POINTS; i++) {
214
-        f = z_values[i][j];
197
+    const float current_xi = ubl.get_cell_index_x(current_position[X_AXIS] + (MESH_X_DIST) / 2.0),
198
+                current_yi = ubl.get_cell_index_y(current_position[Y_AXIS] + (MESH_Y_DIST) / 2.0);
199
+
200
+    for (uint8_t j = UBL_MESH_NUM_Y_POINTS - 1; j >= 0; j--) {
201
+      for (uint8_t i = 0; i < UBL_MESH_NUM_X_POINTS; i++) {
202
+        const bool is_current = i == current_xi && j == current_yi;
215 203
 
216 204
         // is the nozzle here?  if so, mark the number
217
-        if (map_type==0) 
218
-          SERIAL_CHAR(i == current_xi && j == current_yi ? '[' : ' ');
219
-
220
-        if (isnan(f))
221
-          if (map_type==0) {
222
-            SERIAL_PROTOCOLPGM("    .    ");
223
-          } else 
224
-            SERIAL_PROTOCOLPGM("NAN");
205
+        if (map0)
206
+          SERIAL_CHAR(is_current ? '[' : ' ');
207
+
208
+        const float f = z_values[i][j];
209
+        if (isnan(f)) {
210
+          serialprintPGM(map0 ? PSTR("    .    ") : PSTR("NAN"));
211
+        }
225 212
         else {
226 213
           // if we don't do this, the columns won't line up nicely
227
-          if (f>=0.0 && map_type==0) SERIAL_CHAR(' ');
214
+          if (f >= 0.0 && map0) SERIAL_CHAR(' ');
228 215
           SERIAL_PROTOCOL_F(f, 3);
229 216
           idle();
230 217
         }
231
-        if (map_type!=0 && i<UBL_MESH_NUM_X_POINTS-1) 
232
-         SERIAL_PROTOCOLPGM(",");
218
+        if (!map0 && i < UBL_MESH_NUM_X_POINTS - 1)
219
+         SERIAL_CHAR(',');
233 220
 
234
-        #if TX_BUFFER_SIZE>0
221
+        #if TX_BUFFER_SIZE > 0
235 222
           MYSERIAL.flushTX();
236 223
         #endif
237 224
         safe_delay(15);
238
-        if (map_type==0) {
239
-          if (i == current_xi && j == current_yi) // is the nozzle here? if so, finish marking the number
240
-            SERIAL_CHAR(']');
241
-          else
242
-            SERIAL_PROTOCOL("  ");
225
+        if (map0) {
226
+          SERIAL_CHAR(is_current ? ']' : ' ');
243 227
           SERIAL_CHAR(' ');
244 228
         }
245 229
       }
246 230
       SERIAL_EOL;
247
-      if (j && map_type==0) { // we want the (0,0) up tight against the block of numbers
231
+      if (j && map0) { // we want the (0,0) up tight against the block of numbers
248 232
         SERIAL_CHAR(' ');
249 233
         SERIAL_EOL;
250 234
       }
251 235
     }
252 236
 
253
-    if (map_type==0) {
254
-      SERIAL_ECHOPAIR("(", int(UBL_MESH_MIN_X));
255
-      SERIAL_ECHOPAIR(",", int(UBL_MESH_MIN_Y));
256
-      SERIAL_ECHOPGM(")    ");
257
-
258
-      for (i = 0; i < UBL_MESH_NUM_X_POINTS - 1; i++)  {
259
-        SERIAL_ECHOPGM("            ");
260
-        #if TX_BUFFER_SIZE>0
261
-          MYSERIAL.flushTX();
262
-        #endif
263
-        safe_delay(15);
264
-      }
265
-      SERIAL_ECHOPAIR("(", int(UBL_MESH_MAX_X));
266
-      SERIAL_ECHOPAIR(",", int(UBL_MESH_MIN_Y));
267
-      SERIAL_CHAR(')');
237
+    if (map0) {
238
+      serial_echo_xy(UBL_MESH_MIN_X, UBL_MESH_MIN_Y);
239
+      SERIAL_ECHOPGM("    ");
240
+      serial_echo_10x_spaces();
241
+      serial_echo_xy(UBL_MESH_MAX_X, UBL_MESH_MIN_Y);
242
+      SERIAL_EOL;
243
+      serial_echo_xy(0, 0);
244
+      SERIAL_ECHOPGM("       ");
245
+      serial_echo_10x_spaces();
246
+      serial_echo_xy(UBL_MESH_NUM_X_POINTS - 1, 0);
268 247
       SERIAL_EOL;
269
-
270
-      SERIAL_ECHOPAIR("(", 0);
271
-      SERIAL_ECHOPAIR(",", 0);
272
-      SERIAL_ECHOPGM(")       ");
273
-
274
-      for (i = 0; i < UBL_MESH_NUM_X_POINTS - 1; i++) {
275
-        SERIAL_ECHOPGM("            ");
276
-        #if TX_BUFFER_SIZE>0
277
-          MYSERIAL.flushTX();
278
-        #endif
279
-        safe_delay(15);
280
-      }
281
-      SERIAL_ECHOPAIR("(", UBL_MESH_NUM_X_POINTS-1);
282
-      SERIAL_ECHOPAIR(",", 0);
283
-      SERIAL_ECHOLNPGM(")");
284 248
     }
285 249
   }
286 250
 

+ 203
- 207
Marlin/UBL_G29.cpp View File

@@ -158,7 +158,7 @@
158 158
    *                    only done between probe points. You will need to press and hold the switch until the
159 159
    *                    Phase 1 command can detect it.)
160 160
    *
161
-   *   P2    Phase 2    Probe areas of the Mesh that can not be automatically handled. Phase 2 respects an H
161
+   *   P2    Phase 2    Probe areas of the Mesh that can't be automatically handled. Phase 2 respects an H
162 162
    *                    parameter to control the height between Mesh points. The default height for movement
163 163
    *                    between Mesh points is 5mm. A smaller number can be used to make this part of the
164 164
    *                    calibration less time consuming. You will be running the nozzle down until it just barely
@@ -303,25 +303,17 @@
303 303
   volatile int8_t ubl_encoderDiff = 0; // Volatile because it's changed by Temperature ISR button update
304 304
 
305 305
   // The simple parameter flags and values are 'static' so parameter parsing can be in a support routine.
306
-  static int g29_verbose_level = 0, phase_value = -1, repetition_cnt = 1,
307
-             storage_slot = 0, map_type = 0, test_pattern = 0, unlevel_value = -1;
308
-  static bool repeat_flag = UBL_OK, c_flag = false, x_flag = UBL_OK, y_flag = UBL_OK, statistics_flag = UBL_OK, business_card_mode = false;
309
-  static float x_pos = 0.0, y_pos = 0.0, height_value = 5.0, measured_z, card_thickness = 0.0, constant = 0.0;
306
+  static int g29_verbose_level, phase_value = -1, repetition_cnt,
307
+             storage_slot = 0, map_type; //unlevel_value = -1;
308
+  static bool repeat_flag, c_flag, x_flag, y_flag;
309
+  static float x_pos, y_pos, measured_z, card_thickness = 0.0, ubl_constant = 0.0;
310 310
 
311 311
   #if ENABLED(ULTRA_LCD)
312 312
     void lcd_setstatus(const char* message, bool persist);
313 313
   #endif
314 314
 
315 315
   void gcode_G29() {
316
-    float Z1, Z2, Z3;
317
-
318
-    g29_verbose_level = 0;  // These may change, but let's get some reasonable values into them.
319
-    repeat_flag       = UBL_OK;
320
-    repetition_cnt    = 1;
321
-    c_flag            = false;
322
-
323 316
     SERIAL_PROTOCOLLNPAIR("ubl_eeprom_start=", ubl_eeprom_start);
324
-
325 317
     if (ubl_eeprom_start < 0) {
326 318
       SERIAL_PROTOCOLLNPGM("?You need to enable your EEPROM and initialize it");
327 319
       SERIAL_PROTOCOLLNPGM("with M502, M500, M501 in that order.\n");
@@ -350,53 +342,46 @@
350 342
 
351 343
     if (code_seen('Q')) {
352 344
 
353
-      if (code_has_value()) test_pattern = code_value_int();
354
-
355
-      if (test_pattern < 0 || test_pattern > 4) {
356
-        SERIAL_PROTOCOLLNPGM("Invalid test_pattern value. (0-4)\n");
345
+      const int test_pattern = code_has_value() ? code_value_int() : -1;
346
+      if (test_pattern < 0 || test_pattern > 2) {
347
+        SERIAL_PROTOCOLLNPGM("Invalid test_pattern value. (0-2)\n");
357 348
         return;
358 349
       }
359 350
       SERIAL_PROTOCOLLNPGM("Loading test_pattern values.\n");
360 351
       switch (test_pattern) {
361 352
         case 0:
362
-          for (uint8_t x = 0; x < UBL_MESH_NUM_X_POINTS; x++) {         // Create a bowl shape. This is
363
-            for (uint8_t y = 0; y < UBL_MESH_NUM_Y_POINTS; y++) {       // similar to what a user would see with
364
-              Z1 = 0.5 * (UBL_MESH_NUM_X_POINTS) - x;                   // a poorly calibrated Delta.
365
-              Z2 = 0.5 * (UBL_MESH_NUM_Y_POINTS) - y;
366
-              z_values[x][y] += 2.0 * HYPOT(Z1, Z2);
353
+          for (uint8_t x = 0; x < UBL_MESH_NUM_X_POINTS; x++) {   // Create a bowl shape - similar to
354
+            for (uint8_t y = 0; y < UBL_MESH_NUM_Y_POINTS; y++) { // a poorly calibrated Delta.
355
+              const float p1 = 0.5 * (UBL_MESH_NUM_X_POINTS) - x,
356
+                          p2 = 0.5 * (UBL_MESH_NUM_Y_POINTS) - y;
357
+              z_values[x][y] += 2.0 * HYPOT(p1, p2);
367 358
             }
368 359
           }
369
-        break;
360
+          break;
370 361
         case 1:
371
-          for (uint8_t x = 0; x < UBL_MESH_NUM_X_POINTS; x++) {  // Create a diagonal line several Mesh
372
-            z_values[x][x] += 9.999;                             // cells thick that is raised
373
-            if (x < UBL_MESH_NUM_Y_POINTS - 1)
374
-              z_values[x][x + 1] += 9.999;                       // We want the altered line several mesh points thick
375
-            if (x > 0)
376
-              z_values[x][x - 1] += 9.999;                       // We want the altered line several mesh points thick
362
+          for (uint8_t x = 0; x < UBL_MESH_NUM_X_POINTS; x++) {  // Create a diagonal line several Mesh cells thick that is raised
363
+            z_values[x][x] += 9.999;
364
+            z_values[x][x + (x < UBL_MESH_NUM_Y_POINTS - 1) ? 1 : -1] += 9.999; // We want the altered line several mesh points thick
377 365
           }
378 366
           break;
379 367
         case 2:
380
-          // Allow the user to specify the height because 10mm is
381
-          // a little bit extreme in some cases.
368
+          // Allow the user to specify the height because 10mm is a little extreme in some cases.
382 369
           for (uint8_t x = (UBL_MESH_NUM_X_POINTS) / 3; x < 2 * (UBL_MESH_NUM_X_POINTS) / 3; x++)   // Create a rectangular raised area in
383 370
             for (uint8_t y = (UBL_MESH_NUM_Y_POINTS) / 3; y < 2 * (UBL_MESH_NUM_Y_POINTS) / 3; y++) // the center of the bed
384
-              z_values[x][y] += code_seen('C') ? constant : 9.99;
385
-          break;
386
-        case 3:
371
+              z_values[x][y] += code_seen('C') ? ubl_constant : 9.99;
387 372
           break;
388 373
       }
389 374
     }
390 375
 
391
-/*
376
+    /*
392 377
     if (code_seen('U')) {
393 378
       unlevel_value = code_value_int();
394
-//    if (unlevel_value < 0 || unlevel_value > 7) {
395
-//      SERIAL_PROTOCOLLNPGM("Invalid Unlevel value. (0-4)\n");
396
-//      return;
397
-//    }
379
+      //if (unlevel_value < 0 || unlevel_value > 7) {
380
+      //  SERIAL_PROTOCOLLNPGM("Invalid Unlevel value. (0-4)\n");
381
+      //  return;
382
+      //}
398 383
     }
399
-*/
384
+    //*/
400 385
 
401 386
     if (code_seen('P')) {
402 387
       phase_value = code_value_int();
@@ -430,9 +415,9 @@
430 415
                             code_seen('O') || code_seen('M'), code_seen('E'), code_seen('U'));
431 416
           break;
432 417
         //
433
-        // Manually Probe Mesh in areas that can not be reached by the probe
418
+        // Manually Probe Mesh in areas that can't be reached by the probe
434 419
         //
435
-        case 2:
420
+        case 2: {
436 421
           SERIAL_PROTOCOLLNPGM("Manually probing unreachable mesh locations.\n");
437 422
           do_blocking_move_to_z(Z_CLEARANCE_BETWEEN_PROBES);
438 423
           if (!x_flag && !y_flag) {      // use a good default location for the path
@@ -451,32 +436,34 @@
451 436
             y_pos = current_position[Y_AXIS];
452 437
           }
453 438
 
454
-          height_value = code_seen('H') && code_has_value() ? code_value_float() : Z_CLEARANCE_BETWEEN_PROBES;
439
+          const float height = code_seen('H') && code_has_value() ? code_value_float() : Z_CLEARANCE_BETWEEN_PROBES;
455 440
 
456
-          if ((business_card_mode = code_seen('B'))) {
457
-            card_thickness = code_has_value() ? code_value_float() : measure_business_card_thickness(height_value);
441
+          if (code_seen('B')) {
442
+            card_thickness = code_has_value() ? code_value_float() : measure_business_card_thickness(height);
458 443
 
459 444
             if (fabs(card_thickness) > 1.5) {
460
-              SERIAL_PROTOCOLLNPGM("?Error in Business Card measurment.\n");
445
+              SERIAL_PROTOCOLLNPGM("?Error in Business Card measurement.\n");
461 446
               return;
462 447
             }
463 448
           }
464
-          manually_probe_remaining_mesh(x_pos, y_pos, height_value, card_thickness, code_seen('O') || code_seen('M'));
465
-          break;
449
+          manually_probe_remaining_mesh(x_pos, y_pos, height, card_thickness, code_seen('O') || code_seen('M'));
450
+
451
+        } break;
452
+
466 453
         //
467 454
         // Populate invalid Mesh areas with a constant
468 455
         //
469
-        case 3:
470
-          height_value = 0.0; // Assume 0.0 until proven otherwise
471
-          if (code_seen('C')) height_value = constant;
456
+        case 3: {
457
+          const float height = code_seen('C') ? ubl_constant : 0.0;
472 458
           // If no repetition is specified, do the whole Mesh
473 459
           if (!repeat_flag) repetition_cnt = 9999;
474 460
           while (repetition_cnt--) {
475 461
             const mesh_index_pair location = find_closest_mesh_point_of_type(INVALID, x_pos, y_pos, 0, NULL, false); // The '0' says we want to use the nozzle's position
476 462
             if (location.x_index < 0) break; // No more invalid Mesh Points to populate
477
-            z_values[location.x_index][location.y_index] = height_value;
463
+            z_values[location.x_index][location.y_index] = height;
478 464
           }
479
-          break;
465
+        } break;
466
+
480 467
         //
481 468
         // Fine Tune (Or Edit) the Mesh
482 469
         //
@@ -491,36 +478,56 @@
491 478
           break;
492 479
 
493 480
         case 10:
494
-          // Debug code... Pay no attention to this stuff
495
-          // it can be removed soon.
481
+          // [DEBUG] Pay no attention to this stuff. It can be removed soon.
496 482
           SERIAL_ECHO_START;
497 483
           SERIAL_ECHOLNPGM("Checking G29 has control of LCD Panel:");
498
-          wait_for_user = true;
484
+          KEEPALIVE_STATE(PAUSED_FOR_USER);
485
+          ubl_has_control_of_lcd_panel++;
499 486
           while (!ubl_lcd_clicked()) {
500 487
             safe_delay(250);
501
-            SERIAL_ECHO((int)ubl_encoderDiff);
502
-            ubl_encoderDiff = 0;
503
-            SERIAL_EOL;
488
+            if (ubl_encoderDiff) {
489
+              SERIAL_ECHOLN((int)ubl_encoderDiff);
490
+              ubl_encoderDiff = 0;
491
+            }
492
+          }
493
+          SERIAL_ECHOLNPGM("G29 giving back control of LCD Panel.");
494
+          ubl_has_control_of_lcd_panel = false;
495
+          KEEPALIVE_STATE(IN_HANDLER);
496
+          break;
497
+
498
+        case 11:
499
+          // [DEBUG] wait_for_user code. Pay no attention to this stuff. It can be removed soon.
500
+          SERIAL_ECHO_START;
501
+          SERIAL_ECHOLNPGM("Checking G29 has control of LCD Panel:");
502
+          KEEPALIVE_STATE(PAUSED_FOR_USER);
503
+          wait_for_user = true;
504
+          while (wait_for_user) {
505
+            safe_delay(250);
506
+            if (ubl_encoderDiff) {
507
+              SERIAL_ECHOLN((int)ubl_encoderDiff);
508
+              ubl_encoderDiff = 0;
509
+            }
504 510
           }
505 511
           SERIAL_ECHOLNPGM("G29 giving back control of LCD Panel.");
512
+          KEEPALIVE_STATE(IN_HANDLER);
506 513
           break;
507 514
       }
508 515
     }
509 516
 
510 517
     if (code_seen('T')) {
511
-      Z1 = probe_pt(ubl_3_point_1_X, ubl_3_point_1_Y, false /*Stow Flag*/, g29_verbose_level) + zprobe_zoffset;
512
-      Z2 = probe_pt(ubl_3_point_2_X, ubl_3_point_2_Y, false /*Stow Flag*/, g29_verbose_level) + zprobe_zoffset;
513
-      Z3 = probe_pt(ubl_3_point_3_X, ubl_3_point_3_Y, true  /*Stow Flag*/, g29_verbose_level) + zprobe_zoffset;
518
+      float z1 = probe_pt(ubl_3_point_1_X, ubl_3_point_1_Y, false /*Stow Flag*/, g29_verbose_level) + zprobe_zoffset,
519
+            z2 = probe_pt(ubl_3_point_2_X, ubl_3_point_2_Y, false /*Stow Flag*/, g29_verbose_level) + zprobe_zoffset,
520
+            z3 = probe_pt(ubl_3_point_3_X, ubl_3_point_3_Y, true  /*Stow Flag*/, g29_verbose_level) + zprobe_zoffset;
514 521
 
515
-      //  We need to adjust Z1, Z2, Z3 by the Mesh Height at these points. Just because they are non-zero doesn't mean
522
+      //  We need to adjust z1, z2, z3 by the Mesh Height at these points. Just because they are non-zero doesn't mean
516 523
       //  the Mesh is tilted!  (We need to compensate each probe point by what the Mesh says that location's height is)
517 524
 
518
-      Z1 -= ubl.get_z_correction(ubl_3_point_1_X, ubl_3_point_1_Y);
519
-      Z2 -= ubl.get_z_correction(ubl_3_point_2_X, ubl_3_point_2_Y);
520
-      Z3 -= ubl.get_z_correction(ubl_3_point_3_X, ubl_3_point_3_Y);
525
+      z1 -= ubl.get_z_correction(ubl_3_point_1_X, ubl_3_point_1_Y);
526
+      z2 -= ubl.get_z_correction(ubl_3_point_2_X, ubl_3_point_2_Y);
527
+      z3 -= ubl.get_z_correction(ubl_3_point_3_X, ubl_3_point_3_Y);
521 528
 
522 529
       do_blocking_move_to_xy((X_MAX_POS - (X_MIN_POS)) / 2.0, (Y_MAX_POS - (Y_MIN_POS)) / 2.0);
523
-      tilt_mesh_based_on_3pts(Z1, Z2, Z3);
530
+      tilt_mesh_based_on_3pts(z1, z2, z3);
524 531
     }
525 532
 
526 533
     //
@@ -610,13 +617,16 @@
610 617
         save_ubl_active_state_and_disable();
611 618
         //measured_z = probe_pt(x_pos + X_PROBE_OFFSET_FROM_EXTRUDER, y_pos + Y_PROBE_OFFSET_FROM_EXTRUDER, ProbeDeployAndStow, g29_verbose_level);
612 619
 
613
-        ubl_has_control_of_lcd_panel = true;// Grab the LCD Hardware
620
+        ubl_has_control_of_lcd_panel++;     // Grab the LCD Hardware
614 621
         measured_z = 1.5;
615 622
         do_blocking_move_to_z(measured_z);  // Get close to the bed, but leave some space so we don't damage anything
616 623
                                             // The user is not going to be locking in a new Z-Offset very often so
617 624
                                             // it won't be that painful to spin the Encoder Wheel for 1.5mm
618 625
         lcd_implementation_clear();
619 626
         lcd_z_offset_edit_setup(measured_z);
627
+
628
+        KEEPALIVE_STATE(PAUSED_FOR_USER);
629
+
620 630
         do {
621 631
           measured_z = lcd_z_offset_edit();
622 632
           idle();
@@ -628,6 +638,8 @@
628 638
                                           // or here. So, until we are done looking for a long Encoder Wheel Press,
629 639
                                           // we need to take control of the panel
630 640
 
641
+        KEEPALIVE_STATE(IN_HANDLER);
642
+
631 643
         lcd_return_to_status();
632 644
 
633 645
         const millis_t nxt = millis() + 1500UL;
@@ -637,7 +649,6 @@
637 649
             SERIAL_PROTOCOLLNPGM("\nZ-Offset Adjustment Stopped.");
638 650
             do_blocking_move_to_z(Z_CLEARANCE_DEPLOY_PROBE);
639 651
             lcd_setstatus("Z-Offset Stopped", true);
640
-            ubl_has_control_of_lcd_panel = false;
641 652
             restore_ubl_active_state_and_leave();
642 653
             goto LEAVE;
643 654
           }
@@ -702,14 +713,14 @@
702 713
       for (x = 0; x < UBL_MESH_NUM_X_POINTS; x++)
703 714
         for (y = 0; y < UBL_MESH_NUM_Y_POINTS; y++)
704 715
           if (!isnan(z_values[x][y]))
705
-            z_values[x][y] -= mean + constant;
716
+            z_values[x][y] -= mean + ubl_constant;
706 717
   }
707 718
 
708 719
   void shift_mesh_height() {
709 720
     for (uint8_t x = 0; x < UBL_MESH_NUM_X_POINTS; x++)
710 721
       for (uint8_t y = 0; y < UBL_MESH_NUM_Y_POINTS; y++)
711 722
         if (!isnan(z_values[x][y]))
712
-          z_values[x][y] += constant;
723
+          z_values[x][y] += ubl_constant;
713 724
   }
714 725
 
715 726
   /**
@@ -728,9 +739,7 @@
728 739
         SERIAL_PROTOCOLLNPGM("\nMesh only partially populated.\n");
729 740
         lcd_quick_feedback();
730 741
         STOW_PROBE();
731
-        while (ubl_lcd_clicked() ) {
732
-          idle();
733
-        }
742
+        while (ubl_lcd_clicked()) idle();
734 743
         ubl_has_control_of_lcd_panel = false;
735 744
         restore_ubl_active_state_and_leave();
736 745
         safe_delay(50);  // Debounce the Encoder wheel
@@ -739,14 +748,18 @@
739 748
 
740 749
       location = find_closest_mesh_point_of_type(INVALID, lx, ly, 1, NULL, do_furthest );  // the '1' says we want the location to be relative to the probe
741 750
       if (location.x_index >= 0 && location.y_index >= 0) {
742
-        const float xProbe = ubl.map_x_index_to_bed_location(location.x_index),
743
-                    yProbe = ubl.map_y_index_to_bed_location(location.y_index);
744
-        if (xProbe < MIN_PROBE_X || xProbe > MAX_PROBE_X || yProbe < MIN_PROBE_Y || yProbe > MAX_PROBE_Y) {
745
-          SERIAL_PROTOCOLLNPGM("?Error: Attempt to probe off the bed.");
751
+
752
+        const float rawx = ubl.map_x_index_to_bed_location(location.x_index),
753
+                    rawy = ubl.map_y_index_to_bed_location(location.y_index);
754
+
755
+        // TODO: Change to use `position_is_reachable` (for SCARA-compatibility)
756
+        if (rawx < (MIN_PROBE_X) || rawx > (MAX_PROBE_X) || rawy < (MIN_PROBE_Y) || rawy > (MAX_PROBE_Y)) {
757
+          SERIAL_ERROR_START;
758
+          SERIAL_ERRORLNPGM("Attempt to probe off the bed.");
746 759
           ubl_has_control_of_lcd_panel = false;
747 760
           goto LEAVE;
748 761
         }
749
-        const float measured_z = probe_pt(xProbe, yProbe, stow_probe, g29_verbose_level);
762
+        const float measured_z = probe_pt(LOGICAL_X_POSITION(rawx), LOGICAL_Y_POSITION(rawy), stow_probe, g29_verbose_level);
750 763
         z_values[location.x_index][location.y_index] = measured_z + zprobe_zoffset;
751 764
       }
752 765
 
@@ -831,6 +844,7 @@
831 844
   }
832 845
 
833 846
   float use_encoder_wheel_to_measure_point() {
847
+    KEEPALIVE_STATE(PAUSED_FOR_USER);
834 848
     while (!ubl_lcd_clicked()) {     // we need the loop to move the nozzle based on the encoder wheel here!
835 849
       idle();
836 850
       if (ubl_encoderDiff) {
@@ -838,34 +852,35 @@
838 852
         ubl_encoderDiff = 0;
839 853
       }
840 854
     }
855
+    KEEPALIVE_STATE(IN_HANDLER);
841 856
     return current_position[Z_AXIS];
842 857
   }
843 858
 
844
-  float measure_business_card_thickness(const float &height_value) {
859
+  float measure_business_card_thickness(const float &in_height) {
845 860
 
846 861
     ubl_has_control_of_lcd_panel++;
847 862
     save_ubl_active_state_and_disable();   // we don't do bed level correction because we want the raw data when we probe
848 863
 
849 864
     SERIAL_PROTOCOLLNPGM("Place Shim Under Nozzle and Perform Measurement.");
850
-    do_blocking_move_to_z(height_value);
865
+    do_blocking_move_to_z(in_height);
851 866
     do_blocking_move_to_xy((float(X_MAX_POS) - float(X_MIN_POS)) / 2.0, (float(Y_MAX_POS) - float(Y_MIN_POS)) / 2.0);
852 867
       //, min( planner.max_feedrate_mm_s[X_AXIS], planner.max_feedrate_mm_s[Y_AXIS])/2.0);
853 868
 
854
-    const float Z1 = use_encoder_wheel_to_measure_point();
869
+    const float z1 = use_encoder_wheel_to_measure_point();
855 870
     do_blocking_move_to_z(current_position[Z_AXIS] + SIZE_OF_LITTLE_RAISE);
856 871
     ubl_has_control_of_lcd_panel = false;
857 872
 
858 873
     SERIAL_PROTOCOLLNPGM("Remove Shim and Measure Bed Height.");
859
-    const float Z2 = use_encoder_wheel_to_measure_point();
874
+    const float z2 = use_encoder_wheel_to_measure_point();
860 875
     do_blocking_move_to_z(current_position[Z_AXIS] + SIZE_OF_LITTLE_RAISE);
861 876
 
862 877
     if (g29_verbose_level > 1) {
863 878
       SERIAL_PROTOCOLPGM("Business Card is: ");
864
-      SERIAL_PROTOCOL_F(abs(Z1 - Z2), 6);
879
+      SERIAL_PROTOCOL_F(abs(z1 - z2), 6);
865 880
       SERIAL_PROTOCOLLNPGM("mm thick.");
866 881
     }
867 882
     restore_ubl_active_state_and_leave();
868
-    return abs(Z1 - Z2);
883
+    return abs(z1 - z2);
869 884
   }
870 885
 
871 886
   void manually_probe_remaining_mesh(const float &lx, const float &ly, const float &z_clearance, const float &card_thickness, const bool do_ubl_mesh_map) {
@@ -881,21 +896,23 @@
881 896
       if (do_ubl_mesh_map) ubl.display_map(map_type);
882 897
 
883 898
       location = find_closest_mesh_point_of_type(INVALID, lx, ly, 0, NULL, false); // The '0' says we want to use the nozzle's position
884
-      // It doesn't matter if the probe can not reach the
885
-      // NAN location. This is a manual probe.
899
+      // It doesn't matter if the probe can't reach the NAN location. This is a manual probe.
886 900
       if (location.x_index < 0 && location.y_index < 0) continue;
887 901
 
888
-      const float xProbe = ubl.map_x_index_to_bed_location(location.x_index),
889
-                  yProbe = ubl.map_y_index_to_bed_location(location.y_index);
902
+      const float rawx = ubl.map_x_index_to_bed_location(location.x_index),
903
+                  rawy = ubl.map_y_index_to_bed_location(location.y_index);
890 904
 
891
-      // Modify to use if (position_is_reachable(pos[XYZ]))
892
-      if (xProbe < (X_MIN_POS) || xProbe > (X_MAX_POS) || yProbe < (Y_MIN_POS) || yProbe > (Y_MAX_POS)) {
893
-        SERIAL_PROTOCOLLNPGM("?Error: Attempt to probe off the bed.");
905
+      // TODO: Change to use `position_is_reachable` (for SCARA-compatibility)
906
+      if (rawx < (X_MIN_POS) || rawx > (X_MAX_POS) || rawy < (Y_MIN_POS) || rawy > (Y_MAX_POS)) {
907
+        SERIAL_ERROR_START;
908
+        SERIAL_ERRORLNPGM("Attempt to probe off the bed.");
894 909
         ubl_has_control_of_lcd_panel = false;
895 910
         goto LEAVE;
896 911
       }
897 912
 
898
-      const float dx = xProbe - last_x,
913
+      const float xProbe = LOGICAL_X_POSITION(rawx),
914
+                  yProbe = LOGICAL_Y_POSITION(rawy),
915
+                  dx = xProbe - last_x,
899 916
                   dy = yProbe - last_y;
900 917
 
901 918
       if (HYPOT(dx, dy) < BIG_RAISE_NOT_NEEDED)
@@ -908,8 +925,10 @@
908 925
       last_x = xProbe;
909 926
       last_y = yProbe;
910 927
 
928
+      KEEPALIVE_STATE(PAUSED_FOR_USER);
911 929
       ubl_has_control_of_lcd_panel = true;
912
-      while (!ubl_lcd_clicked) {     // we need the loop to move the nozzle based on the encoder wheel here!
930
+
931
+      while (!ubl_lcd_clicked()) {     // we need the loop to move the nozzle based on the encoder wheel here!
913 932
         idle();
914 933
         if (ubl_encoderDiff) {
915 934
           do_blocking_move_to_z(current_position[Z_AXIS] + float(ubl_encoderDiff) / 100.0);
@@ -926,6 +945,7 @@
926 945
           lcd_quick_feedback();
927 946
           while (ubl_lcd_clicked()) idle();
928 947
           ubl_has_control_of_lcd_panel = false;
948
+          KEEPALIVE_STATE(IN_HANDLER);
929 949
           restore_ubl_active_state_and_leave();
930 950
           return;
931 951
         }
@@ -933,7 +953,7 @@
933 953
 
934 954
       z_values[location.x_index][location.y_index] = current_position[Z_AXIS] - card_thickness;
935 955
       if (g29_verbose_level > 2) {
936
-        SERIAL_PROTOCOL("Mesh Point Measured at: ");
956
+        SERIAL_PROTOCOLPGM("Mesh Point Measured at: ");
937 957
         SERIAL_PROTOCOL_F(z_values[location.x_index][location.y_index], 6);
938 958
         SERIAL_EOL;
939 959
       }
@@ -943,52 +963,40 @@
943 963
 
944 964
     LEAVE:
945 965
     restore_ubl_active_state_and_leave();
966
+    KEEPALIVE_STATE(IN_HANDLER);
946 967
     do_blocking_move_to_z(Z_CLEARANCE_DEPLOY_PROBE);
947 968
     do_blocking_move_to_xy(lx, ly);
948 969
   }
949 970
 
950 971
   bool g29_parameter_parsing() {
951
-
952 972
     #if ENABLED(ULTRA_LCD)
953 973
       lcd_setstatus("Doing G29 UBL !", true);
954 974
       lcd_quick_feedback();
955 975
     #endif
956 976
 
957
-    x_pos = current_position[X_AXIS];
958
-    y_pos = current_position[Y_AXIS];
959
-    x_flag = y_flag = repeat_flag = false;
960
-    map_type = 0;
961
-    constant = 0.0;
962
-    repetition_cnt = 1;
963
-
964
-    if ((x_flag = code_seen('X'))) {
965
-      x_pos = code_value_float();
966
-      if (x_pos < X_MIN_POS || x_pos > X_MAX_POS) {
967
-        SERIAL_PROTOCOLLNPGM("Invalid X location specified.\n");
968
-        return UBL_ERR;
969
-      }
977
+    g29_verbose_level = code_seen('V') ? code_value_int() : 0;
978
+    if (g29_verbose_level < 0 || g29_verbose_level > 4) {
979
+      SERIAL_PROTOCOLLNPGM("Invalid Verbose Level specified. (0-4)\n");
980
+      return UBL_ERR;
970 981
     }
971 982
 
972
-    if ((y_flag = code_seen('Y'))) {
973
-      y_pos = code_value_float();
974
-      if (y_pos < Y_MIN_POS || y_pos > Y_MAX_POS) {
975
-        SERIAL_PROTOCOLLNPGM("Invalid Y location specified.\n");
976
-        return UBL_ERR;
977
-      }
983
+    x_flag = code_seen('X') && code_has_value();
984
+    x_pos = x_flag ? code_value_float() : current_position[X_AXIS];
985
+    if (x_pos < LOGICAL_X_POSITION(X_MIN_POS) || x_pos > LOGICAL_X_POSITION(X_MAX_POS)) {
986
+      SERIAL_PROTOCOLLNPGM("Invalid X location specified.\n");
987
+      return UBL_ERR;
978 988
     }
979 989
 
980
-    if (x_flag != y_flag) {
981
-      SERIAL_PROTOCOLLNPGM("Both X & Y locations must be specified.\n");
990
+    y_flag = code_seen('Y') && code_has_value();
991
+    y_pos = y_flag ? code_value_float() : current_position[Y_AXIS];
992
+    if (y_pos < LOGICAL_Y_POSITION(Y_MIN_POS) || y_pos > LOGICAL_Y_POSITION(Y_MAX_POS)) {
993
+      SERIAL_PROTOCOLLNPGM("Invalid Y location specified.\n");
982 994
       return UBL_ERR;
983 995
     }
984 996
 
985
-    g29_verbose_level = 0;
986
-    if (code_seen('V')) {
987
-      g29_verbose_level = code_value_int();
988
-      if (g29_verbose_level < 0 || g29_verbose_level > 4) {
989
-        SERIAL_PROTOCOLLNPGM("Invalid Verbose Level specified. (0-4)\n");
990
-        return UBL_ERR;
991
-      }
997
+    if (x_flag != y_flag) {
998
+      SERIAL_PROTOCOLLNPGM("Both X & Y locations must be specified.\n");
999
+      return UBL_ERR;
992 1000
     }
993 1001
 
994 1002
     if (code_seen('A')) {     // Activate the Unified Bed Leveling System
@@ -997,8 +1005,8 @@
997 1005
       ubl.store_state();
998 1006
     }
999 1007
 
1000
-    if ((c_flag = code_seen('C') && code_has_value()))
1001
-      constant = code_value_float();
1008
+    c_flag = code_seen('C') && code_has_value();
1009
+    ubl_constant = c_flag ? code_value_float() : 0.0;
1002 1010
 
1003 1011
     if (code_seen('D')) {     // Disable the Unified Bed Leveling System
1004 1012
       ubl.state.active = 0;
@@ -1018,29 +1026,28 @@
1018 1026
       }
1019 1027
     #endif
1020 1028
 
1021
-    if ((repeat_flag = code_seen('R'))) {
1022
-      repetition_cnt = code_has_value() ? code_value_int() : 9999;
1023
-      if (repetition_cnt < 1) {
1024
-        SERIAL_PROTOCOLLNPGM("Invalid Repetition count.\n");
1025
-        return UBL_ERR;
1026
-      }
1029
+    repeat_flag = code_seen('R');
1030
+    repetition_cnt = repeat_flag ? (code_has_value() ? code_value_int() : 9999) : 1;
1031
+    if (repetition_cnt < 1) {
1032
+      SERIAL_PROTOCOLLNPGM("Invalid Repetition count.\n");
1033
+      return UBL_ERR;
1027 1034
     }
1028 1035
 
1029
-    if (code_seen('O')) {     // Check if a map type was specified
1030
-      map_type = code_value_int() ? code_has_value() : 0; 
1031
-      if ( map_type<0 || map_type>1) {
1032
-        SERIAL_PROTOCOLLNPGM("Invalid map type.\n");
1033
-        return UBL_ERR;
1034
-      }
1036
+    map_type = code_seen('O') && code_has_value() ? code_value_int() : 0;
1037
+    if (map_type < 0 || map_type > 1) {
1038
+      SERIAL_PROTOCOLLNPGM("Invalid map type.\n");
1039
+      return UBL_ERR;
1035 1040
     }
1036 1041
 
1042
+    /*
1037 1043
     if (code_seen('M')) {     // Check if a map type was specified
1038
-      map_type = code_value_int() ? code_has_value() : 0; 
1039
-      if ( map_type<0 || map_type>1) {
1044
+      map_type = code_has_value() ? code_value_int() : 0; 
1045
+      if (map_type < 0 || map_type > 1) {
1040 1046
         SERIAL_PROTOCOLLNPGM("Invalid map type.\n");
1041 1047
         return UBL_ERR;
1042 1048
       }
1043 1049
     }
1050
+    //*/
1044 1051
 
1045 1052
     return UBL_OK;
1046 1053
   }
@@ -1054,20 +1061,15 @@
1054 1061
 
1055 1062
     SERIAL_PROTOCOL(str);
1056 1063
     SERIAL_PROTOCOL_F(f, 8);
1057
-    SERIAL_PROTOCOL("  ");
1064
+    SERIAL_PROTOCOLPGM("  ");
1058 1065
     ptr = (char*)&f;
1059
-    for (uint8_t i = 0; i < 4; i++) {
1060
-      SERIAL_PROTOCOL("  ");
1061
-      prt_hex_byte(*ptr++);
1062
-    }
1063
-    SERIAL_PROTOCOL("  isnan()=");
1064
-    SERIAL_PROTOCOL(isnan(f));
1065
-    SERIAL_PROTOCOL("  isinf()=");
1066
-    SERIAL_PROTOCOL(isinf(f));
1066
+    for (uint8_t i = 0; i < 4; i++)
1067
+      SERIAL_PROTOCOLPAIR("  ", hex_byte(*ptr++));
1068
+    SERIAL_PROTOCOLPAIR("  isnan()=", isnan(f));
1069
+    SERIAL_PROTOCOLPAIR("  isinf()=", isinf(f));
1067 1070
 
1068
-    constexpr float g = INFINITY;
1069
-    if (f == -g)
1070
-      SERIAL_PROTOCOL("  Minus Infinity detected.");
1071
+    if (f == -INFINITY)
1072
+      SERIAL_PROTOCOLPGM("  Minus Infinity detected.");
1071 1073
 
1072 1074
     SERIAL_EOL;
1073 1075
   }
@@ -1104,7 +1106,6 @@
1104 1106
    */
1105 1107
   void g29_what_command() {
1106 1108
     const uint16_t k = E2END - ubl_eeprom_start;
1107
-    statistics_flag++;
1108 1109
 
1109 1110
     SERIAL_PROTOCOLPGM("Unified Bed Leveling System Version 1.00 ");
1110 1111
     if (ubl.state.active)  
@@ -1117,8 +1118,7 @@
1117 1118
     if (ubl.state.eeprom_storage_slot == -1)
1118 1119
       SERIAL_PROTOCOLPGM("No Mesh Loaded.");
1119 1120
     else {
1120
-      SERIAL_PROTOCOLPGM("Mesh: ");
1121
-      prt_hex_word(ubl.state.eeprom_storage_slot);
1121
+      SERIAL_PROTOCOLPAIR("Mesh ", ubl.state.eeprom_storage_slot);
1122 1122
       SERIAL_PROTOCOLPGM(" Loaded.");
1123 1123
     }
1124 1124
     SERIAL_EOL;
@@ -1136,7 +1136,7 @@
1136 1136
 
1137 1137
     SERIAL_PROTOCOLPGM("X-Axis Mesh Points at: ");
1138 1138
     for (uint8_t i = 0; i < UBL_MESH_NUM_X_POINTS; i++) {
1139
-      SERIAL_PROTOCOL_F( ubl.map_x_index_to_bed_location(i), 1);
1139
+      SERIAL_PROTOCOL_F(LOGICAL_X_POSITION(ubl.map_x_index_to_bed_location(i)), 1);
1140 1140
       SERIAL_PROTOCOLPGM("  ");
1141 1141
       safe_delay(50);
1142 1142
     }
@@ -1144,7 +1144,7 @@
1144 1144
 
1145 1145
     SERIAL_PROTOCOLPGM("Y-Axis Mesh Points at: ");
1146 1146
     for (uint8_t i = 0; i < UBL_MESH_NUM_Y_POINTS; i++) {
1147
-      SERIAL_PROTOCOL_F( ubl.map_y_index_to_bed_location(i), 1);
1147
+      SERIAL_PROTOCOL_F(LOGICAL_Y_POSITION(ubl.map_y_index_to_bed_location(i)), 1);
1148 1148
       SERIAL_PROTOCOLPGM("  ");
1149 1149
       safe_delay(50);
1150 1150
     }
@@ -1162,13 +1162,9 @@
1162 1162
     SERIAL_PROTOCOLLNPAIR("ubl_state_recursion_chk :", ubl_state_recursion_chk);
1163 1163
     SERIAL_EOL;
1164 1164
     safe_delay(50);
1165
-    SERIAL_PROTOCOLPGM("Free EEPROM space starts at: 0x");
1166
-    prt_hex_word(ubl_eeprom_start);
1167
-    SERIAL_EOL;
1165
+    SERIAL_PROTOCOLLNPAIR("Free EEPROM space starts at: 0x", hex_word(ubl_eeprom_start));
1168 1166
 
1169
-    SERIAL_PROTOCOLPGM("end of EEPROM              : ");
1170
-    prt_hex_word(E2END);
1171
-    SERIAL_EOL;
1167
+    SERIAL_PROTOCOLLNPAIR("end of EEPROM              : ", hex_word(E2END));
1172 1168
     safe_delay(50);
1173 1169
 
1174 1170
     SERIAL_PROTOCOLLNPAIR("sizeof(ubl) :  ", (int)sizeof(ubl));
@@ -1177,18 +1173,14 @@
1177 1173
     SERIAL_EOL;
1178 1174
     safe_delay(50);
1179 1175
 
1180
-    SERIAL_PROTOCOLPGM("EEPROM free for UBL: 0x");
1181
-    prt_hex_word(k);
1182
-    SERIAL_EOL;
1176
+    SERIAL_PROTOCOLLNPAIR("EEPROM free for UBL: 0x", hex_word(k));
1183 1177
     safe_delay(50);
1184 1178
 
1185
-    SERIAL_PROTOCOLPGM("EEPROM can hold 0x");
1186
-    prt_hex_word(k / sizeof(z_values));
1179
+    SERIAL_PROTOCOLPAIR("EEPROM can hold ", k / sizeof(z_values));
1187 1180
     SERIAL_PROTOCOLLNPGM(" meshes.\n");
1188 1181
     safe_delay(50);
1189 1182
 
1190
-    SERIAL_PROTOCOLPGM("sizeof(ubl.state) :");
1191
-    prt_hex_word(sizeof(ubl.state));
1183
+    SERIAL_PROTOCOLPAIR("sizeof(ubl.state) : ", (int)sizeof(ubl.state));
1192 1184
 
1193 1185
     SERIAL_PROTOCOLPAIR("\nUBL_MESH_NUM_X_POINTS  ", UBL_MESH_NUM_X_POINTS);
1194 1186
     SERIAL_PROTOCOLPAIR("\nUBL_MESH_NUM_Y_POINTS  ", UBL_MESH_NUM_Y_POINTS);
@@ -1222,12 +1214,12 @@
1222 1214
     SERIAL_ECHOLNPGM("EEPROM Dump:");
1223 1215
     for (uint16_t i = 0; i < E2END + 1; i += 16) {
1224 1216
       if (!(i & 0x3)) idle();
1225
-      prt_hex_word(i);
1217
+      print_hex_word(i);
1226 1218
       SERIAL_ECHOPGM(": ");
1227 1219
       for (uint16_t j = 0; j < 16; j++) {
1228 1220
         kkkk = i + j;
1229 1221
         eeprom_read_block(&cccc, (void *)kkkk, 1);
1230
-        prt_hex_byte(cccc);
1222
+        print_hex_byte(cccc);
1231 1223
         SERIAL_ECHO(' ');
1232 1224
       }
1233 1225
       SERIAL_EOL;
@@ -1259,9 +1251,8 @@
1259 1251
     eeprom_read_block((void *)&tmp_z_values, (void *)j, sizeof(tmp_z_values));
1260 1252
 
1261 1253
     SERIAL_ECHOPAIR("Subtracting Mesh ", storage_slot);
1262
-    SERIAL_PROTOCOLPGM(" loaded from EEPROM address ");   // Soon, we can remove the extra clutter of printing
1263
-    prt_hex_word(j);            // the address in the EEPROM where the Mesh is stored.
1264
-    SERIAL_EOL;
1254
+    SERIAL_PROTOCOLLNPAIR(" loaded from EEPROM address ", hex_word(j)); // Soon, we can remove the extra clutter of printing
1255
+                                                                        // the address in the EEPROM where the Mesh is stored.
1265 1256
 
1266 1257
     for (uint8_t x = 0; x < UBL_MESH_NUM_X_POINTS; x++)
1267 1258
       for (uint8_t y = 0; y < UBL_MESH_NUM_Y_POINTS; y++)
@@ -1269,7 +1260,6 @@
1269 1260
   }
1270 1261
 
1271 1262
   mesh_index_pair find_closest_mesh_point_of_type(const MeshPointType type, const float &lx, const float &ly, const bool probe_as_reference, unsigned int bits[16], bool far_flag) {
1272
-    int i, j, k, l;
1273 1263
     float distance, closest = far_flag ? -99999.99 : 99999.99;
1274 1264
     mesh_index_pair return_val;
1275 1265
 
@@ -1282,8 +1272,8 @@
1282 1272
     const float px = lx - (probe_as_reference ? X_PROBE_OFFSET_FROM_EXTRUDER : 0),
1283 1273
                 py = ly - (probe_as_reference ? Y_PROBE_OFFSET_FROM_EXTRUDER : 0);
1284 1274
 
1285
-    for (i = 0; i < UBL_MESH_NUM_X_POINTS; i++) {
1286
-      for (j = 0; j < UBL_MESH_NUM_Y_POINTS; j++) {
1275
+    for (uint8_t i = 0; i < UBL_MESH_NUM_X_POINTS; i++) {
1276
+      for (uint8_t j = 0; j < UBL_MESH_NUM_Y_POINTS; j++) {
1287 1277
 
1288 1278
         if ( (type == INVALID && isnan(z_values[i][j]))  // Check to see if this location holds the right thing
1289 1279
           || (type == REAL && !isnan(z_values[i][j]))
@@ -1292,42 +1282,45 @@
1292 1282
 
1293 1283
           // We only get here if we found a Mesh Point of the specified type
1294 1284
 
1295
-          const float mx = LOGICAL_X_POSITION(ubl.map_x_index_to_bed_location(i)), // Check if we can probe this mesh location
1296
-                      my = LOGICAL_Y_POSITION(ubl.map_y_index_to_bed_location(j));
1285
+          const float rawx = ubl.map_x_index_to_bed_location(i), // Check if we can probe this mesh location
1286
+                      rawy = ubl.map_y_index_to_bed_location(j);
1297 1287
 
1298
-          // If we are using the probe as the reference there are some locations we can't get to.
1299
-          // We prune these out of the list and ignore them until the next Phase where we do the
1300
-          // manual nozzle probing.
1288
+          // If using the probe as the reference there are some unreachable locations.
1289
+          // Prune them from the list and ignore them till the next Phase (manual nozzle probing).
1301 1290
 
1302 1291
           if (probe_as_reference &&
1303
-            (mx < (MIN_PROBE_X) || mx > (MAX_PROBE_X) || my < (MIN_PROBE_Y) || my > (MAX_PROBE_Y))
1292
+            (rawx < (MIN_PROBE_X) || rawx > (MAX_PROBE_X) || rawy < (MIN_PROBE_Y) || rawy > (MAX_PROBE_Y))
1304 1293
           ) continue;
1305 1294
 
1306
-          // We can get to it. Let's see if it is the closest location to the nozzle.
1295
+          // Unreachable. Check if it's the closest location to the nozzle.
1307 1296
           // Add in a weighting factor that considers the current location of the nozzle.
1308 1297
 
1298
+          const float mx = LOGICAL_X_POSITION(rawx), // Check if we can probe this mesh location
1299
+                      my = LOGICAL_Y_POSITION(rawy);
1300
+
1309 1301
           distance = HYPOT(px - mx, py - my) + HYPOT(current_x - mx, current_y - my) * 0.1;
1310 1302
 
1311
-	  if (far_flag) {                                    // If doing the far_flag action, we want to be as far as possible
1312
-            for (k = 0; k < UBL_MESH_NUM_X_POINTS; k++) {    // from the starting point and from any other probed points.  We
1313
-              for (l = 0; l < UBL_MESH_NUM_Y_POINTS; l++) {  // want the next point spread out and filling in any blank spaces
1314
-                if ( !isnan(z_values[k][l])) {               // in the mesh.   So we add in some of the distance to every probed 
1315
-                  distance += (i-k)*(i-k)*MESH_X_DIST*.05;   // point we can find.
1316
-                  distance += (j-l)*(j-l)*MESH_Y_DIST*.05;
1317
-		}
1303
+          if (far_flag) {                                           // If doing the far_flag action, we want to be as far as possible
1304
+            for (uint8_t k = 0; k < UBL_MESH_NUM_X_POINTS; k++) {   // from the starting point and from any other probed points.  We
1305
+              for (uint8_t l = 0; l < UBL_MESH_NUM_Y_POINTS; l++) { // want the next point spread out and filling in any blank spaces
1306
+                if (!isnan(z_values[k][l])) {                       // in the mesh. So we add in some of the distance to every probed
1307
+                  distance += sq(i - k) * (MESH_X_DIST) * .05       // point we can find.
1308
+                            + sq(j - l) * (MESH_Y_DIST) * .05;
1309
+                }
1318 1310
               }
1319
-	    }
1320
-	  }
1311
+            }
1312
+          }
1321 1313
 
1322
-          if ( (!far_flag&&(distance < closest)) || (far_flag&&(distance > closest)) ) {  // if far_flag, look for furthest away point
1323
-            closest = distance;       // We found a closer location with
1314
+          if (far_flag == (distance > closest) && distance != closest) {  // if far_flag, look for farthest point
1315
+            closest = distance;       // We found a closer/farther location with
1324 1316
             return_val.x_index = i;   // the specified type of mesh value.
1325 1317
             return_val.y_index = j;
1326 1318
             return_val.distance = closest;
1327 1319
           }
1328 1320
         }
1329
-      }
1330
-    }
1321
+      } // for j
1322
+    } // for i
1323
+
1331 1324
     return return_val;
1332 1325
   }
1333 1326
 
@@ -1356,27 +1349,30 @@
1356 1349
       bit_clear(not_done, location.x_index, location.y_index);  // Mark this location as 'adjusted' so we will find a
1357 1350
                                                                 // different location the next time through the loop
1358 1351
 
1359
-      const float xProbe = ubl.map_x_index_to_bed_location(location.x_index),
1360
-                  yProbe = ubl.map_y_index_to_bed_location(location.y_index);
1361
-      if (xProbe < X_MIN_POS || xProbe > X_MAX_POS || yProbe < Y_MIN_POS || yProbe > Y_MAX_POS) { // In theory, we don't need this check.
1362
-        SERIAL_PROTOCOLLNPGM("?Error: Attempt to edit off the bed.");                             // This really can't happen, but for now,
1363
-        ubl_has_control_of_lcd_panel = false;                                                         // Let's do the check.
1352
+      const float rawx = ubl.map_x_index_to_bed_location(location.x_index),
1353
+                  rawy = ubl.map_y_index_to_bed_location(location.y_index);
1354
+
1355
+      // TODO: Change to use `position_is_reachable` (for SCARA-compatibility)
1356
+      if (rawx < (X_MIN_POS) || rawx > (X_MAX_POS) || rawy < (Y_MIN_POS) || rawy > (Y_MAX_POS)) { // In theory, we don't need this check.
1357
+        SERIAL_ERROR_START;
1358
+        SERIAL_ERRORLNPGM("Attempt to edit off the bed."); // This really can't happen, but do the check for now
1359
+        ubl_has_control_of_lcd_panel = false;
1364 1360
         goto FINE_TUNE_EXIT;
1365 1361
       }
1366 1362
 
1367 1363
       do_blocking_move_to_z(Z_CLEARANCE_DEPLOY_PROBE);    // Move the nozzle to where we are going to edit
1368
-      do_blocking_move_to_xy(xProbe, yProbe);
1364
+      do_blocking_move_to_xy(LOGICAL_X_POSITION(rawx), LOGICAL_Y_POSITION(rawy));
1369 1365
       float new_z = z_values[location.x_index][location.y_index];
1370 1366
       
1371 1367
       round_off = (int32_t)(new_z * 1000.0);    // we chop off the last digits just to be clean. We are rounding to the
1372 1368
       new_z = float(round_off) / 1000.0;
1373 1369
 
1370
+      KEEPALIVE_STATE(PAUSED_FOR_USER);
1374 1371
       ubl_has_control_of_lcd_panel = true;
1375 1372
 
1376 1373
       lcd_implementation_clear();
1377 1374
       lcd_mesh_edit_setup(new_z);
1378 1375
 
1379
-      wait_for_user = true;
1380 1376
       do {
1381 1377
         new_z = lcd_mesh_edit();
1382 1378
         idle();
@@ -1393,13 +1389,12 @@
1393 1389
         idle();
1394 1390
         if (ELAPSED(millis(), nxt)) {
1395 1391
           lcd_return_to_status();
1396
-//        SERIAL_PROTOCOLLNPGM("\nFine Tuning of Mesh Stopped.");
1392
+          //SERIAL_PROTOCOLLNPGM("\nFine Tuning of Mesh Stopped.");
1397 1393
           do_blocking_move_to_z(Z_CLEARANCE_DEPLOY_PROBE);
1398 1394
           lcd_setstatus("Mesh Editing Stopped", true);
1399 1395
 
1400 1396
           while (ubl_lcd_clicked()) idle();
1401 1397
 
1402
-          ubl_has_control_of_lcd_panel = false;
1403 1398
           goto FINE_TUNE_EXIT;
1404 1399
         }
1405 1400
       }
@@ -1415,6 +1410,7 @@
1415 1410
     FINE_TUNE_EXIT:
1416 1411
 
1417 1412
     ubl_has_control_of_lcd_panel = false;
1413
+    KEEPALIVE_STATE(IN_HANDLER);
1418 1414
 
1419 1415
     if (do_ubl_mesh_map) ubl.display_map(map_type);
1420 1416
     restore_ubl_active_state_and_leave();

+ 8
- 11
Marlin/configuration_store.cpp View File

@@ -1235,20 +1235,17 @@ void Config_ResetDefault() {
1235 1235
         SERIAL_ECHOPAIR("EEPROM can hold ", (int)((UBL_LAST_EEPROM_INDEX - ubl_eeprom_start) / sizeof(z_values)));
1236 1236
         SERIAL_ECHOLNPGM(" meshes.\n");
1237 1237
 
1238
-        SERIAL_ECHOPAIR("\nUBL_MESH_NUM_X_POINTS  ", UBL_MESH_NUM_X_POINTS);
1239
-        SERIAL_ECHOPAIR("\nUBL_MESH_NUM_Y_POINTS  ", UBL_MESH_NUM_Y_POINTS);
1238
+        SERIAL_ECHOLNPGM("UBL_MESH_NUM_X_POINTS  " STRINGIFY(UBL_MESH_NUM_X_POINTS));
1239
+        SERIAL_ECHOLNPGM("UBL_MESH_NUM_Y_POINTS  " STRINGIFY(UBL_MESH_NUM_Y_POINTS));
1240 1240
 
1241
-        SERIAL_ECHOPAIR("\nUBL_MESH_MIN_X         ", UBL_MESH_MIN_X);
1242
-        SERIAL_ECHOPAIR("\nUBL_MESH_MIN_Y         ", UBL_MESH_MIN_Y);
1241
+        SERIAL_ECHOLNPGM("UBL_MESH_MIN_X         " STRINGIFY(UBL_MESH_MIN_X));
1242
+        SERIAL_ECHOLNPGM("UBL_MESH_MIN_Y         " STRINGIFY(UBL_MESH_MIN_Y));
1243 1243
 
1244
-        SERIAL_ECHOPAIR("\nUBL_MESH_MAX_X         ", UBL_MESH_MAX_X);
1245
-        SERIAL_ECHOPAIR("\nUBL_MESH_MAX_Y         ", UBL_MESH_MAX_Y);
1244
+        SERIAL_ECHOLNPGM("UBL_MESH_MAX_X         " STRINGIFY(UBL_MESH_MAX_X));
1245
+        SERIAL_ECHOLNPGM("UBL_MESH_MAX_Y         " STRINGIFY(UBL_MESH_MAX_Y));
1246 1246
 
1247
-        SERIAL_ECHOPGM("\nMESH_X_DIST        ");
1248
-        SERIAL_ECHO_F(MESH_X_DIST, 6);
1249
-        SERIAL_ECHOPGM("\nMESH_Y_DIST        ");
1250
-        SERIAL_ECHO_F(MESH_Y_DIST, 6);
1251
-        SERIAL_EOL;
1247
+        SERIAL_ECHOLNPGM("MESH_X_DIST        " STRINGIFY(MESH_X_DIST));
1248
+        SERIAL_ECHOLNPGM("MESH_Y_DIST        " STRINGIFY(MESH_Y_DIST));
1252 1249
         SERIAL_EOL;
1253 1250
       }
1254 1251
 

+ 16
- 13
Marlin/hex_print_routines.cpp View File

@@ -26,22 +26,25 @@
26 26
 
27 27
 #include "hex_print_routines.h"
28 28
 
29
-void prt_hex_nibble(uint8_t n) {
30
-  if (n <= 9) 
31
-    SERIAL_CHAR('0'+n);
32
-  else
33
-    SERIAL_CHAR('A' + n - 10);
34
-  delay(3);
35
-}
29
+static char _hex[5] = { 0 };
36 30
 
37
-void prt_hex_byte(uint8_t b) {
38
-  prt_hex_nibble((b & 0xF0) >> 4);
39
-  prt_hex_nibble(b & 0x0F);
31
+char* hex_byte(const uint8_t b) {
32
+  _hex[0] = hex_nybble(b >> 4);
33
+  _hex[1] = hex_nybble(b);
34
+  _hex[2] = '\0';
35
+  return _hex;
40 36
 }
41 37
 
42
-void prt_hex_word(uint16_t w) {
43
-  prt_hex_byte((w & 0xFF00) >> 8);
44
-  prt_hex_byte(w & 0x0FF);
38
+char* hex_word(const uint16_t w) {
39
+  _hex[0] = hex_nybble(w >> 12);
40
+  _hex[1] = hex_nybble(w >> 8);
41
+  _hex[2] = hex_nybble(w >> 4);
42
+  _hex[3] = hex_nybble(w);
43
+  return _hex;
45 44
 }
46 45
 
46
+void print_hex_nybble(const uint8_t n) { SERIAL_CHAR(hex_nybble(n));  }
47
+void print_hex_byte(const uint8_t b)   { SERIAL_ECHO(hex_byte(b)); }
48
+void print_hex_word(const uint16_t w)  { SERIAL_ECHO(hex_word(w)); }
49
+
47 50
 #endif // AUTO_BED_LEVELING_UBL || M100_FREE_MEMORY_WATCHER

+ 16
- 4
Marlin/hex_print_routines.h View File

@@ -23,11 +23,23 @@
23 23
 #ifndef HEX_PRINT_ROUTINES_H
24 24
 #define HEX_PRINT_ROUTINES_H
25 25
 
26
+#include "MarlinConfig.h"
27
+
28
+#if ENABLED(AUTO_BED_LEVELING_UBL) || ENABLED(M100_FREE_MEMORY_WATCHER)
29
+
26 30
 //
27
-// 3 support routines to print hex numbers.  We can print a nibble, byte and word
31
+// Utility functions to create and print hex strings as nybble, byte, and word.
28 32
 //
29
-void prt_hex_nibble(uint8_t n);
30
-void prt_hex_byte(uint8_t b);
31
-void prt_hex_word(uint16_t w);
32 33
 
34
+inline char hex_nybble(const uint8_t n) {
35
+  return (n & 0xF) + ((n & 0xF) < 10 ? '0' : 'A' - 10);
36
+}
37
+char* hex_byte(const uint8_t b);
38
+char* hex_word(const uint16_t w);
39
+
40
+void print_hex_nybble(const uint8_t n);
41
+void print_hex_byte(const uint8_t b);
42
+void print_hex_word(const uint16_t w);
43
+
44
+#endif // AUTO_BED_LEVELING_UBL || M100_FREE_MEMORY_WATCHER
33 45
 #endif // HEX_PRINT_ROUTINES_H

+ 1
- 1
Marlin/stepper.cpp View File

@@ -1265,7 +1265,7 @@ void Stepper::report_positions() {
1265 1265
     #if STEP_PULSE_CYCLES > CYCLES_EATEN_BY_BABYSTEP
1266 1266
       uint32_t pulse_start;
1267 1267
     #endif
1268
-    
1268
+
1269 1269
     switch (axis) {
1270 1270
 
1271 1271
       case X_AXIS:

+ 4
- 24
Marlin/ultralcd.cpp View File

@@ -859,65 +859,45 @@ void kill_screen(const char* lcd_msg) {
859 859
     static int ubl_encoderPosition = 0;
860 860
 
861 861
     static void _lcd_mesh_fine_tune(const char* msg) {
862
-//    static millis_t next_click = 0;             // We are going to accelerate the number speed when the wheel
863
-//                                                // turns fast.   But that isn't implemented yet
864
-      int16_t last_digit;
865
-      int32_t rounded;
866
-
867 862
       defer_return_to_status = true;
868 863
       if (ubl_encoderDiff) {
869
-        if ( ubl_encoderDiff > 0 ) 
870
-          ubl_encoderPosition = 1;
871
-        else {
872
-          ubl_encoderPosition = -1;
873
-        }
874
-
864
+        ubl_encoderPosition = (ubl_encoderDiff > 0) ? 1 : -1;
875 865
         ubl_encoderDiff = 0;
876
-//      next_click = millis();
877 866
 
878
-        mesh_edit_accumulator += ( (float) (ubl_encoderPosition)) * .005 / 2.0 ;
867
+        mesh_edit_accumulator += float(ubl_encoderPosition) * 0.005 / 2.0;
879 868
         mesh_edit_value = mesh_edit_accumulator;
880 869
         encoderPosition = 0;
881 870
         lcdDrawUpdate = LCDVIEW_REDRAW_NOW;
882 871
 
883
-        rounded = (int32_t)(mesh_edit_value * 1000.0);
884
-        last_digit = rounded % 5L; //10L;
885
-        rounded -= last_digit;
886
-        mesh_edit_value = float(rounded) / 1000.0;
872
+        const int32_t rounded = (int32_t)(mesh_edit_value * 1000.0);
873
+        mesh_edit_value = float(rounded - (rounded % 5L)) / 1000.0;
887 874
       }
888 875
 
889 876
       if (lcdDrawUpdate)
890 877
         lcd_implementation_drawedit(msg, ftostr43sign(mesh_edit_value));
891 878
     }
892 879
 
893
-
894 880
     void _lcd_mesh_edit_NOP() {
895 881
       defer_return_to_status = true;
896 882
     }
897 883
 
898
-
899 884
     void _lcd_mesh_edit() {
900 885
       _lcd_mesh_fine_tune(PSTR("Mesh Editor: "));
901
-      defer_return_to_status = true;
902 886
     }
903 887
 
904 888
     float lcd_mesh_edit() {
905 889
       lcd_goto_screen(_lcd_mesh_edit_NOP);
906 890
       _lcd_mesh_fine_tune(PSTR("Mesh Editor: "));
907
-      defer_return_to_status = true;
908 891
       return mesh_edit_value;
909 892
     }
910 893
 
911 894
     void lcd_mesh_edit_setup(float initial) {
912 895
       mesh_edit_value = mesh_edit_accumulator = initial;
913 896
       lcd_goto_screen(_lcd_mesh_edit_NOP);
914
-      mesh_edit_value = mesh_edit_accumulator = initial;
915
-      defer_return_to_status = true; 
916 897
     }
917 898
 
918 899
     void _lcd_z_offset_edit() {
919 900
       _lcd_mesh_fine_tune(PSTR("Z-Offset: "));
920
-      defer_return_to_status = true;
921 901
     }
922 902
 
923 903
     float lcd_z_offset_edit() {

Loading…
Cancel
Save