|
@@ -613,7 +613,7 @@ static void report_current_position();
|
613
|
613
|
#if ENABLED(DEBUG_LEVELING_FEATURE)
|
614
|
614
|
if (DEBUGGING(LEVELING)) DEBUG_POS("sync_plan_position_delta", current_position);
|
615
|
615
|
#endif
|
616
|
|
- calculate_delta(current_position);
|
|
616
|
+ inverse_kinematics(current_position);
|
617
|
617
|
planner.set_position_mm(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], current_position[E_AXIS]);
|
618
|
618
|
}
|
619
|
619
|
#define SYNC_PLAN_POSITION_KINEMATIC() sync_plan_position_delta()
|
|
@@ -1528,7 +1528,7 @@ static void set_axis_is_at_home(AxisEnum axis) {
|
1528
|
1528
|
* Works out real Homeposition angles using inverse kinematics,
|
1529
|
1529
|
* and calculates homing offset using forward kinematics
|
1530
|
1530
|
*/
|
1531
|
|
- calculate_delta(homeposition);
|
|
1531
|
+ inverse_kinematics(homeposition);
|
1532
|
1532
|
|
1533
|
1533
|
// SERIAL_ECHOPGM("base Theta= "); SERIAL_ECHO(delta[X_AXIS]);
|
1534
|
1534
|
// SERIAL_ECHOPGM(" base Psi+Theta="); SERIAL_ECHOLN(delta[Y_AXIS]);
|
|
@@ -1540,7 +1540,7 @@ static void set_axis_is_at_home(AxisEnum axis) {
|
1540
|
1540
|
// SERIAL_ECHOPGM(" addhome Theta="); SERIAL_ECHO(delta[X_AXIS]);
|
1541
|
1541
|
// SERIAL_ECHOPGM(" addhome Psi+Theta="); SERIAL_ECHOLN(delta[Y_AXIS]);
|
1542
|
1542
|
|
1543
|
|
- calculate_SCARA_forward_Transform(delta);
|
|
1543
|
+ forward_kinematics_SCARA(delta);
|
1544
|
1544
|
|
1545
|
1545
|
// SERIAL_ECHOPGM("Delta X="); SERIAL_ECHO(delta[X_AXIS]);
|
1546
|
1546
|
// SERIAL_ECHOPGM(" Delta Y="); SERIAL_ECHOLN(delta[Y_AXIS]);
|
|
@@ -1658,7 +1658,7 @@ inline void set_destination_to_current() { memcpy(destination, current_position,
|
1658
|
1658
|
if (DEBUGGING(LEVELING)) DEBUG_POS("prepare_move_to_destination_raw", destination);
|
1659
|
1659
|
#endif
|
1660
|
1660
|
refresh_cmd_timeout();
|
1661
|
|
- calculate_delta(destination);
|
|
1661
|
+ inverse_kinematics(destination);
|
1662
|
1662
|
planner.buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], destination[E_AXIS], MMM_TO_MMS_SCALED(feedrate_mm_m), active_extruder);
|
1663
|
1663
|
set_current_to_destination();
|
1664
|
1664
|
}
|
|
@@ -5886,7 +5886,7 @@ inline void gcode_M303() {
|
5886
|
5886
|
//gcode_get_destination(); // For X Y Z E F
|
5887
|
5887
|
delta[X_AXIS] = delta_x;
|
5888
|
5888
|
delta[Y_AXIS] = delta_y;
|
5889
|
|
- calculate_SCARA_forward_Transform(delta);
|
|
5889
|
+ forward_kinematics_SCARA(delta);
|
5890
|
5890
|
destination[X_AXIS] = delta[X_AXIS] / axis_scaling[X_AXIS];
|
5891
|
5891
|
destination[Y_AXIS] = delta[Y_AXIS] / axis_scaling[Y_AXIS];
|
5892
|
5892
|
prepare_move_to_destination();
|
|
@@ -6275,7 +6275,7 @@ inline void gcode_M503() {
|
6275
|
6275
|
|
6276
|
6276
|
// Define runplan for move axes
|
6277
|
6277
|
#if ENABLED(DELTA)
|
6278
|
|
- #define RUNPLAN(RATE_MM_S) calculate_delta(destination); \
|
|
6278
|
+ #define RUNPLAN(RATE_MM_S) inverse_kinematics(destination); \
|
6279
|
6279
|
planner.buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], destination[E_AXIS], RATE_MM_S, active_extruder);
|
6280
|
6280
|
#else
|
6281
|
6281
|
#define RUNPLAN(RATE_MM_S) line_to_destination(MMS_TO_MMM(RATE_MM_S));
|
|
@@ -6397,7 +6397,7 @@ inline void gcode_M503() {
|
6397
|
6397
|
|
6398
|
6398
|
#if ENABLED(DELTA)
|
6399
|
6399
|
// Move XYZ to starting position, then E
|
6400
|
|
- calculate_delta(lastpos);
|
|
6400
|
+ inverse_kinematics(lastpos);
|
6401
|
6401
|
planner.buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], destination[E_AXIS], FILAMENT_CHANGE_XY_FEEDRATE, active_extruder);
|
6402
|
6402
|
planner.buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], lastpos[E_AXIS], FILAMENT_CHANGE_XY_FEEDRATE, active_extruder);
|
6403
|
6403
|
#else
|
|
@@ -7737,7 +7737,7 @@ void clamp_to_software_endstops(float target[3]) {
|
7737
|
7737
|
delta_diagonal_rod_2_tower_3 = sq(diagonal_rod + delta_diagonal_rod_trim_tower_3);
|
7738
|
7738
|
}
|
7739
|
7739
|
|
7740
|
|
- void calculate_delta(float cartesian[3]) {
|
|
7740
|
+ void inverse_kinematics(float cartesian[3]) {
|
7741
|
7741
|
|
7742
|
7742
|
delta[TOWER_1] = sqrt(delta_diagonal_rod_2_tower_1
|
7743
|
7743
|
- sq(delta_tower1_x - cartesian[X_AXIS])
|
|
@@ -7764,14 +7764,14 @@ void clamp_to_software_endstops(float target[3]) {
|
7764
|
7764
|
|
7765
|
7765
|
float delta_safe_distance_from_top() {
|
7766
|
7766
|
float cartesian[3] = { 0 };
|
7767
|
|
- calculate_delta(cartesian);
|
|
7767
|
+ inverse_kinematics(cartesian);
|
7768
|
7768
|
float distance = delta[TOWER_3];
|
7769
|
7769
|
cartesian[Y_AXIS] = DELTA_PRINTABLE_RADIUS;
|
7770
|
|
- calculate_delta(cartesian);
|
|
7770
|
+ inverse_kinematics(cartesian);
|
7771
|
7771
|
return abs(distance - delta[TOWER_3]);
|
7772
|
7772
|
}
|
7773
|
7773
|
|
7774
|
|
- void forwardKinematics(float z1, float z2, float z3) {
|
|
7774
|
+ void forward_kinematics_DELTA(float z1, float z2, float z3) {
|
7775
|
7775
|
//As discussed in Wikipedia "Trilateration"
|
7776
|
7776
|
//we are establishing a new coordinate
|
7777
|
7777
|
//system in the plane of the three carriage points.
|
|
@@ -7840,12 +7840,12 @@ void clamp_to_software_endstops(float target[3]) {
|
7840
|
7840
|
cartesian_position[Z_AXIS] = z1 + ex[2]*Xnew + ey[2]*Ynew - ez[2]*Znew;
|
7841
|
7841
|
};
|
7842
|
7842
|
|
7843
|
|
- void forwardKinematics(float point[3]) {
|
7844
|
|
- forwardKinematics(point[X_AXIS], point[Y_AXIS], point[Z_AXIS]);
|
|
7843
|
+ void forward_kinematics_DELTA(float point[3]) {
|
|
7844
|
+ forward_kinematics_DELTA(point[X_AXIS], point[Y_AXIS], point[Z_AXIS]);
|
7845
|
7845
|
}
|
7846
|
7846
|
|
7847
|
7847
|
void set_cartesian_from_steppers() {
|
7848
|
|
- forwardKinematics(stepper.get_axis_position_mm(X_AXIS),
|
|
7848
|
+ forward_kinematics_DELTA(stepper.get_axis_position_mm(X_AXIS),
|
7849
|
7849
|
stepper.get_axis_position_mm(Y_AXIS),
|
7850
|
7850
|
stepper.get_axis_position_mm(Z_AXIS));
|
7851
|
7851
|
}
|
|
@@ -7973,7 +7973,7 @@ void mesh_line_to_destination(float fr_mm_m, uint8_t x_splits = 0xff, uint8_t y_
|
7973
|
7973
|
|
7974
|
7974
|
#if ENABLED(DELTA) || ENABLED(SCARA)
|
7975
|
7975
|
|
7976
|
|
- inline bool prepare_delta_move_to(float target[NUM_AXIS]) {
|
|
7976
|
+ inline bool prepare_kinematic_move_to(float target[NUM_AXIS]) {
|
7977
|
7977
|
float difference[NUM_AXIS];
|
7978
|
7978
|
for (int8_t i = 0; i < NUM_AXIS; i++) difference[i] = target[i] - current_position[i];
|
7979
|
7979
|
|
|
@@ -7996,14 +7996,14 @@ void mesh_line_to_destination(float fr_mm_m, uint8_t x_splits = 0xff, uint8_t y_
|
7996
|
7996
|
for (int8_t i = 0; i < NUM_AXIS; i++)
|
7997
|
7997
|
target[i] = current_position[i] + difference[i] * fraction;
|
7998
|
7998
|
|
7999
|
|
- calculate_delta(target);
|
|
7999
|
+ inverse_kinematics(target);
|
8000
|
8000
|
|
8001
|
8001
|
#if ENABLED(AUTO_BED_LEVELING_FEATURE)
|
8002
|
8002
|
if (!bed_leveling_in_progress) adjust_delta(target);
|
8003
|
8003
|
#endif
|
8004
|
8004
|
|
8005
|
|
- //DEBUG_POS("prepare_delta_move_to", target);
|
8006
|
|
- //DEBUG_POS("prepare_delta_move_to", delta);
|
|
8005
|
+ //DEBUG_POS("prepare_kinematic_move_to", target);
|
|
8006
|
+ //DEBUG_POS("prepare_kinematic_move_to", delta);
|
8007
|
8007
|
|
8008
|
8008
|
planner.buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], target[E_AXIS], _feedrate_mm_s, active_extruder);
|
8009
|
8009
|
}
|
|
@@ -8012,10 +8012,6 @@ void mesh_line_to_destination(float fr_mm_m, uint8_t x_splits = 0xff, uint8_t y_
|
8012
|
8012
|
|
8013
|
8013
|
#endif // DELTA || SCARA
|
8014
|
8014
|
|
8015
|
|
-#if ENABLED(SCARA)
|
8016
|
|
- inline bool prepare_scara_move_to(float target[NUM_AXIS]) { return prepare_delta_move_to(target); }
|
8017
|
|
-#endif
|
8018
|
|
-
|
8019
|
8015
|
#if ENABLED(DUAL_X_CARRIAGE)
|
8020
|
8016
|
|
8021
|
8017
|
inline bool prepare_move_to_destination_dualx() {
|
|
@@ -8114,10 +8110,8 @@ void prepare_move_to_destination() {
|
8114
|
8110
|
prevent_dangerous_extrude(current_position[E_AXIS], destination[E_AXIS]);
|
8115
|
8111
|
#endif
|
8116
|
8112
|
|
8117
|
|
- #if ENABLED(SCARA)
|
8118
|
|
- if (!prepare_scara_move_to(destination)) return;
|
8119
|
|
- #elif ENABLED(DELTA)
|
8120
|
|
- if (!prepare_delta_move_to(destination)) return;
|
|
8113
|
+ #if ENABLED(DELTA) || ENABLED(SCARA)
|
|
8114
|
+ if (!prepare_kinematic_move_to(destination)) return;
|
8121
|
8115
|
#else
|
8122
|
8116
|
#if ENABLED(DUAL_X_CARRIAGE)
|
8123
|
8117
|
if (!prepare_move_to_destination_dualx()) return;
|
|
@@ -8253,7 +8247,7 @@ void prepare_move_to_destination() {
|
8253
|
8247
|
clamp_to_software_endstops(arc_target);
|
8254
|
8248
|
|
8255
|
8249
|
#if ENABLED(DELTA) || ENABLED(SCARA)
|
8256
|
|
- calculate_delta(arc_target);
|
|
8250
|
+ inverse_kinematics(arc_target);
|
8257
|
8251
|
#if ENABLED(AUTO_BED_LEVELING_FEATURE)
|
8258
|
8252
|
adjust_delta(arc_target);
|
8259
|
8253
|
#endif
|
|
@@ -8265,7 +8259,7 @@ void prepare_move_to_destination() {
|
8265
|
8259
|
|
8266
|
8260
|
// Ensure last segment arrives at target location.
|
8267
|
8261
|
#if ENABLED(DELTA) || ENABLED(SCARA)
|
8268
|
|
- calculate_delta(target);
|
|
8262
|
+ inverse_kinematics(target);
|
8269
|
8263
|
#if ENABLED(AUTO_BED_LEVELING_FEATURE)
|
8270
|
8264
|
adjust_delta(target);
|
8271
|
8265
|
#endif
|
|
@@ -8333,7 +8327,7 @@ void prepare_move_to_destination() {
|
8333
|
8327
|
|
8334
|
8328
|
#if ENABLED(SCARA)
|
8335
|
8329
|
|
8336
|
|
- void calculate_SCARA_forward_Transform(float f_scara[3]) {
|
|
8330
|
+ void forward_kinematics_SCARA(float f_scara[3]) {
|
8337
|
8331
|
// Perform forward kinematics, and place results in delta[3]
|
8338
|
8332
|
// The maths and first version has been done by QHARLEY . Integrated into masterbranch 06/2014 and slightly restructured by Joachim Cerny in June 2014
|
8339
|
8333
|
|
|
@@ -8359,10 +8353,11 @@ void prepare_move_to_destination() {
|
8359
|
8353
|
//SERIAL_ECHOPGM(" delta[Y_AXIS]="); SERIAL_ECHOLN(delta[Y_AXIS]);
|
8360
|
8354
|
}
|
8361
|
8355
|
|
8362
|
|
- void calculate_delta(float cartesian[3]) {
|
8363
|
|
- //reverse kinematics.
|
8364
|
|
- // Perform reversed kinematics, and place results in delta[3]
|
8365
|
|
- // The maths and first version has been done by QHARLEY . Integrated into masterbranch 06/2014 and slightly restructured by Joachim Cerny in June 2014
|
|
8356
|
+ void inverse_kinematics(float cartesian[3]) {
|
|
8357
|
+ // Inverse kinematics.
|
|
8358
|
+ // Perform SCARA IK and place results in delta[3].
|
|
8359
|
+ // The maths and first version were done by QHARLEY.
|
|
8360
|
+ // Integrated, tweaked by Joachim Cerny in June 2014.
|
8366
|
8361
|
|
8367
|
8362
|
float SCARA_pos[2];
|
8368
|
8363
|
static float SCARA_C2, SCARA_S2, SCARA_K1, SCARA_K2, SCARA_theta, SCARA_psi;
|