소스 검색

Merge pull request #4319 from thinkyhead/rc_feedrates_to_mess_with_you

Wrangle feed rate variables
Scott Lahteine 8 년 전
부모
커밋
f242aea032

+ 12
- 2
Marlin/Marlin.h 파일 보기

@@ -297,8 +297,18 @@ inline void refresh_cmd_timeout() { previous_cmd_ms = millis(); }
297 297
   #define CRITICAL_SECTION_END    SREG = _sreg;
298 298
 #endif
299 299
 
300
+/**
301
+ * Feedrate scaling and conversion
302
+ */
303
+extern int feedrate_percentage;
304
+
305
+#define MMM_TO_MMS(MM_M) ((MM_M)/60.0)
306
+#define MMS_TO_MMM(MM_S) ((MM_S)*60.0)
307
+#define MMM_SCALED(MM_M) ((MM_M)*feedrate_percentage/100.0)
308
+#define MMS_SCALED(MM_S) MMM_SCALED(MM_S)
309
+#define MMM_TO_MMS_SCALED(MM_M) (MMS_SCALED(MMM_TO_MMS(MM_M)))
310
+
300 311
 extern bool axis_relative_modes[];
301
-extern int feedrate_multiplier;
302 312
 extern bool volumetric_enabled;
303 313
 extern int extruder_multiplier[EXTRUDERS]; // sets extrude multiply factor (in percent) for each extruder individually
304 314
 extern float filament_size[EXTRUDERS]; // cross-sectional area of filament (in millimeters), typically around 1.75 or 2.85, 0 disables the volumetric calculations for the extruder.
@@ -386,7 +396,7 @@ float code_value_temp_diff();
386 396
   extern bool autoretract_enabled;
387 397
   extern bool retracted[EXTRUDERS]; // extruder[n].retracted
388 398
   extern float retract_length, retract_length_swap, retract_feedrate_mm_s, retract_zlift;
389
-  extern float retract_recover_length, retract_recover_length_swap, retract_recover_feedrate;
399
+  extern float retract_recover_length, retract_recover_length_swap, retract_recover_feedrate_mm_s;
390 400
 #endif
391 401
 
392 402
 // Print job timer

+ 112
- 109
Marlin/Marlin_main.cpp 파일 보기

@@ -280,7 +280,6 @@ bool Running = true;
280 280
 
281 281
 uint8_t marlin_debug_flags = DEBUG_NONE;
282 282
 
283
-static float feedrate = 1500.0, saved_feedrate;
284 283
 float current_position[NUM_AXIS] = { 0.0 };
285 284
 static float destination[NUM_AXIS] = { 0.0 };
286 285
 bool axis_known_position[3] = { false };
@@ -302,11 +301,15 @@ static uint8_t cmd_queue_index_r = 0,
302 301
   TempUnit input_temp_units = TEMPUNIT_C;
303 302
 #endif
304 303
 
305
-const float homing_feedrate[] = HOMING_FEEDRATE;
304
+/**
305
+ * Feed rates are often configured with mm/m
306
+ * but the planner and stepper like mm/s units.
307
+ */
308
+const float homing_feedrate_mm_m[] = HOMING_FEEDRATE;
309
+static float feedrate_mm_m = 1500.0, saved_feedrate_mm_m;
310
+int feedrate_percentage = 100, saved_feedrate_percentage;
306 311
 
307 312
 bool axis_relative_modes[] = AXIS_RELATIVE_MODES;
308
-int feedrate_multiplier = 100; //100->1 200->2
309
-int saved_feedrate_multiplier;
310 313
 int extruder_multiplier[EXTRUDERS] = ARRAY_BY_EXTRUDERS1(100);
311 314
 bool volumetric_enabled = false;
312 315
 float filament_size[EXTRUDERS] = ARRAY_BY_EXTRUDERS1(DEFAULT_NOMINAL_FILAMENT_DIA);
@@ -382,16 +385,16 @@ static uint8_t target_extruder;
382 385
   float zprobe_zoffset = Z_PROBE_OFFSET_FROM_EXTRUDER;
383 386
 #endif
384 387
 
385
-#define PLANNER_XY_FEEDRATE() (min(planner.max_feedrate[X_AXIS], planner.max_feedrate[Y_AXIS]))
388
+#define PLANNER_XY_FEEDRATE() (min(planner.max_feedrate_mm_s[X_AXIS], planner.max_feedrate_mm_s[Y_AXIS]))
386 389
 
387 390
 #if ENABLED(AUTO_BED_LEVELING_FEATURE)
388
-  int xy_probe_speed = XY_PROBE_SPEED;
391
+  int xy_probe_feedrate_mm_m = XY_PROBE_SPEED;
389 392
   bool bed_leveling_in_progress = false;
390
-  #define XY_PROBE_FEEDRATE xy_probe_speed
393
+  #define XY_PROBE_FEEDRATE_MM_M xy_probe_feedrate_mm_m
391 394
 #elif defined(XY_PROBE_SPEED)
392
-  #define XY_PROBE_FEEDRATE XY_PROBE_SPEED
395
+  #define XY_PROBE_FEEDRATE_MM_M XY_PROBE_SPEED
393 396
 #else
394
-  #define XY_PROBE_FEEDRATE (PLANNER_XY_FEEDRATE() * 60)
397
+  #define XY_PROBE_FEEDRATE_MM_M MMS_TO_MMM(PLANNER_XY_FEEDRATE())
395 398
 #endif
396 399
 
397 400
 #if ENABLED(Z_DUAL_ENDSTOPS) && DISABLED(DELTA)
@@ -430,7 +433,7 @@ static uint8_t target_extruder;
430 433
   float retract_zlift = RETRACT_ZLIFT;
431 434
   float retract_recover_length = RETRACT_RECOVER_LENGTH;
432 435
   float retract_recover_length_swap = RETRACT_RECOVER_LENGTH_SWAP;
433
-  float retract_recover_feedrate = RETRACT_RECOVER_FEEDRATE;
436
+  float retract_recover_feedrate_mm_s = RETRACT_RECOVER_FEEDRATE;
434 437
 
435 438
 #endif // FWRETRACT
436 439
 
@@ -1599,7 +1602,7 @@ inline void set_homing_bump_feedrate(AxisEnum axis) {
1599 1602
     SERIAL_ECHO_START;
1600 1603
     SERIAL_ECHOLNPGM("Warning: Homing Bump Divisor < 1");
1601 1604
   }
1602
-  feedrate = homing_feedrate[axis] / hbd;
1605
+  feedrate_mm_m = homing_feedrate_mm_m[axis] / hbd;
1603 1606
 }
1604 1607
 //
1605 1608
 // line_to_current_position
@@ -1607,19 +1610,19 @@ inline void set_homing_bump_feedrate(AxisEnum axis) {
1607 1610
 // (or from wherever it has been told it is located).
1608 1611
 //
1609 1612
 inline void line_to_current_position() {
1610
-  planner.buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate / 60, active_extruder);
1613
+  planner.buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], MMM_TO_MMS(feedrate_mm_m), active_extruder);
1611 1614
 }
1612 1615
 inline void line_to_z(float zPosition) {
1613
-  planner.buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate / 60, active_extruder);
1616
+  planner.buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], MMM_TO_MMS(feedrate_mm_m), active_extruder);
1614 1617
 }
1615 1618
 //
1616 1619
 // line_to_destination
1617 1620
 // Move the planner, not necessarily synced with current_position
1618 1621
 //
1619
-inline void line_to_destination(float mm_m) {
1620
-  planner.buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], mm_m / 60, active_extruder);
1622
+inline void line_to_destination(float fr_mm_m) {
1623
+  planner.buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], MMM_TO_MMS(fr_mm_m), active_extruder);
1621 1624
 }
1622
-inline void line_to_destination() { line_to_destination(feedrate); }
1625
+inline void line_to_destination() { line_to_destination(feedrate_mm_m); }
1623 1626
 
1624 1627
 /**
1625 1628
  * sync_plan_position
@@ -1647,7 +1650,7 @@ inline void set_destination_to_current() { memcpy(destination, current_position,
1647 1650
     #endif
1648 1651
     refresh_cmd_timeout();
1649 1652
     calculate_delta(destination);
1650
-    planner.buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], destination[E_AXIS], (feedrate / 60) * (feedrate_multiplier / 100.0), active_extruder);
1653
+    planner.buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], destination[E_AXIS], MMM_TO_MMS_SCALED(feedrate_mm_m), active_extruder);
1651 1654
     set_current_to_destination();
1652 1655
   }
1653 1656
 #endif
@@ -1656,8 +1659,8 @@ inline void set_destination_to_current() { memcpy(destination, current_position,
1656 1659
  *  Plan a move to (X, Y, Z) and set the current_position
1657 1660
  *  The final current_position may not be the one that was requested
1658 1661
  */
1659
-static void do_blocking_move_to(float x, float y, float z, float feed_rate = 0.0) {
1660
-  float old_feedrate = feedrate;
1662
+static void do_blocking_move_to(float x, float y, float z, float fr_mm_m = 0.0) {
1663
+  float old_feedrate_mm_m = feedrate_mm_m;
1661 1664
 
1662 1665
   #if ENABLED(DEBUG_LEVELING_FEATURE)
1663 1666
     if (DEBUGGING(LEVELING)) print_xyz(PSTR("do_blocking_move_to"), NULL, x, y, z);
@@ -1665,7 +1668,7 @@ static void do_blocking_move_to(float x, float y, float z, float feed_rate = 0.0
1665 1668
 
1666 1669
   #if ENABLED(DELTA)
1667 1670
 
1668
-    feedrate = (feed_rate != 0.0) ? feed_rate : XY_PROBE_FEEDRATE;
1671
+    feedrate_mm_m = (fr_mm_m != 0.0) ? fr_mm_m : XY_PROBE_FEEDRATE_MM_M;
1669 1672
 
1670 1673
     destination[X_AXIS] = x;
1671 1674
     destination[Y_AXIS] = y;
@@ -1680,19 +1683,19 @@ static void do_blocking_move_to(float x, float y, float z, float feed_rate = 0.0
1680 1683
 
1681 1684
     // If Z needs to raise, do it before moving XY
1682 1685
     if (current_position[Z_AXIS] < z) {
1683
-      feedrate = (feed_rate != 0.0) ? feed_rate : homing_feedrate[Z_AXIS];
1686
+      feedrate_mm_m = (fr_mm_m != 0.0) ? fr_mm_m : homing_feedrate_mm_m[Z_AXIS];
1684 1687
       current_position[Z_AXIS] = z;
1685 1688
       line_to_current_position();
1686 1689
     }
1687 1690
 
1688
-    feedrate = (feed_rate != 0.0) ? feed_rate : XY_PROBE_FEEDRATE;
1691
+    feedrate_mm_m = (fr_mm_m != 0.0) ? fr_mm_m : XY_PROBE_FEEDRATE_MM_M;
1689 1692
     current_position[X_AXIS] = x;
1690 1693
     current_position[Y_AXIS] = y;
1691 1694
     line_to_current_position();
1692 1695
 
1693 1696
     // If Z needs to lower, do it after moving XY
1694 1697
     if (current_position[Z_AXIS] > z) {
1695
-      feedrate = (feed_rate != 0.0) ? feed_rate : homing_feedrate[Z_AXIS];
1698
+      feedrate_mm_m = (fr_mm_m != 0.0) ? fr_mm_m : homing_feedrate_mm_m[Z_AXIS];
1696 1699
       current_position[Z_AXIS] = z;
1697 1700
       line_to_current_position();
1698 1701
     }
@@ -1701,23 +1704,23 @@ static void do_blocking_move_to(float x, float y, float z, float feed_rate = 0.0
1701 1704
 
1702 1705
   stepper.synchronize();
1703 1706
 
1704
-  feedrate = old_feedrate;
1707
+  feedrate_mm_m = old_feedrate_mm_m;
1705 1708
 }
1706 1709
 
1707
-inline void do_blocking_move_to_x(float x, float feed_rate = 0.0) {
1708
-  do_blocking_move_to(x, current_position[Y_AXIS], current_position[Z_AXIS], feed_rate);
1710
+inline void do_blocking_move_to_x(float x, float fr_mm_m = 0.0) {
1711
+  do_blocking_move_to(x, current_position[Y_AXIS], current_position[Z_AXIS], fr_mm_m);
1709 1712
 }
1710 1713
 
1711 1714
 inline void do_blocking_move_to_y(float y) {
1712 1715
   do_blocking_move_to(current_position[X_AXIS], y, current_position[Z_AXIS]);
1713 1716
 }
1714 1717
 
1715
-inline void do_blocking_move_to_xy(float x, float y, float feed_rate = 0.0) {
1716
-  do_blocking_move_to(x, y, current_position[Z_AXIS], feed_rate);
1718
+inline void do_blocking_move_to_xy(float x, float y, float fr_mm_m = 0.0) {
1719
+  do_blocking_move_to(x, y, current_position[Z_AXIS], fr_mm_m);
1717 1720
 }
1718 1721
 
1719
-inline void do_blocking_move_to_z(float z, float feed_rate = 0.0) {
1720
-  do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], z, feed_rate);
1722
+inline void do_blocking_move_to_z(float z, float fr_mm_m = 0.0) {
1723
+  do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], z, fr_mm_m);
1721 1724
 }
1722 1725
 
1723 1726
 //
@@ -1733,9 +1736,9 @@ static void setup_for_endstop_or_probe_move() {
1733 1736
   #if ENABLED(DEBUG_LEVELING_FEATURE)
1734 1737
     if (DEBUGGING(LEVELING)) DEBUG_POS("setup_for_endstop_or_probe_move", current_position);
1735 1738
   #endif
1736
-  saved_feedrate = feedrate;
1737
-  saved_feedrate_multiplier = feedrate_multiplier;
1738
-  feedrate_multiplier = 100;
1739
+  saved_feedrate_mm_m = feedrate_mm_m;
1740
+  saved_feedrate_percentage = feedrate_percentage;
1741
+  feedrate_percentage = 100;
1739 1742
   refresh_cmd_timeout();
1740 1743
 }
1741 1744
 
@@ -1743,8 +1746,8 @@ static void clean_up_after_endstop_or_probe_move() {
1743 1746
   #if ENABLED(DEBUG_LEVELING_FEATURE)
1744 1747
     if (DEBUGGING(LEVELING)) DEBUG_POS("clean_up_after_endstop_or_probe_move", current_position);
1745 1748
   #endif
1746
-  feedrate = saved_feedrate;
1747
-  feedrate_multiplier = saved_feedrate_multiplier;
1749
+  feedrate_mm_m = saved_feedrate_mm_m;
1750
+  feedrate_percentage = saved_feedrate_percentage;
1748 1751
   refresh_cmd_timeout();
1749 1752
 }
1750 1753
 
@@ -2003,6 +2006,7 @@ static void clean_up_after_endstop_or_probe_move() {
2003 2006
       if (DEBUGGING(LEVELING)) {
2004 2007
         DEBUG_POS("set_probe_deployed", current_position);
2005 2008
         SERIAL_ECHOPAIR("deploy: ", deploy);
2009
+        SERIAL_EOL;
2006 2010
       }
2007 2011
     #endif
2008 2012
 
@@ -2062,7 +2066,7 @@ static void clean_up_after_endstop_or_probe_move() {
2062 2066
   // at the height where the probe triggered.
2063 2067
   static float run_z_probe() {
2064 2068
 
2065
-    float old_feedrate = feedrate;
2069
+    float old_feedrate_mm_m = feedrate_mm_m;
2066 2070
 
2067 2071
     // Prevent stepper_inactive_time from running out and EXTRUDER_RUNOUT_PREVENT from extruding
2068 2072
     refresh_cmd_timeout();
@@ -2077,7 +2081,7 @@ static void clean_up_after_endstop_or_probe_move() {
2077 2081
       #endif
2078 2082
 
2079 2083
       // move down slowly until you find the bed
2080
-      feedrate = homing_feedrate[Z_AXIS] / 4;
2084
+      feedrate_mm_m = homing_feedrate_mm_m[Z_AXIS] / 4;
2081 2085
       destination[Z_AXIS] = -10;
2082 2086
       prepare_move_to_destination_raw(); // this will also set_current_to_destination
2083 2087
       stepper.synchronize();
@@ -2101,7 +2105,7 @@ static void clean_up_after_endstop_or_probe_move() {
2101 2105
         planner.bed_level_matrix.set_to_identity();
2102 2106
       #endif
2103 2107
 
2104
-      feedrate = homing_feedrate[Z_AXIS];
2108
+      feedrate_mm_m = homing_feedrate_mm_m[Z_AXIS];
2105 2109
 
2106 2110
       // Move down until the Z probe (or endstop?) is triggered
2107 2111
       float zPosition = -(Z_MAX_LENGTH + 10);
@@ -2140,7 +2144,7 @@ static void clean_up_after_endstop_or_probe_move() {
2140 2144
 
2141 2145
     SYNC_PLAN_POSITION_KINEMATIC();
2142 2146
 
2143
-    feedrate = old_feedrate;
2147
+    feedrate_mm_m = old_feedrate_mm_m;
2144 2148
 
2145 2149
     return current_position[Z_AXIS];
2146 2150
   }
@@ -2165,7 +2169,7 @@ static void clean_up_after_endstop_or_probe_move() {
2165 2169
       }
2166 2170
     #endif
2167 2171
 
2168
-    float old_feedrate = feedrate;
2172
+    float old_feedrate_mm_m = feedrate_mm_m;
2169 2173
 
2170 2174
     // Ensure a minimum height before moving the probe
2171 2175
     do_probe_raise(Z_RAISE_BETWEEN_PROBINGS);
@@ -2178,7 +2182,7 @@ static void clean_up_after_endstop_or_probe_move() {
2178 2182
         SERIAL_ECHOLNPGM(")");
2179 2183
       }
2180 2184
     #endif
2181
-    feedrate = XY_PROBE_FEEDRATE;
2185
+    feedrate_mm_m = XY_PROBE_FEEDRATE_MM_M;
2182 2186
     do_blocking_move_to_xy(x - (X_PROBE_OFFSET_FROM_EXTRUDER), y - (Y_PROBE_OFFSET_FROM_EXTRUDER));
2183 2187
 
2184 2188
     #if ENABLED(DEBUG_LEVELING_FEATURE)
@@ -2215,7 +2219,7 @@ static void clean_up_after_endstop_or_probe_move() {
2215 2219
       if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("<<< probe_pt");
2216 2220
     #endif
2217 2221
 
2218
-    feedrate = old_feedrate;
2222
+    feedrate_mm_m = old_feedrate_mm_m;
2219 2223
 
2220 2224
     return measured_z;
2221 2225
   }
@@ -2416,7 +2420,7 @@ static void homeaxis(AxisEnum axis) {
2416 2420
 
2417 2421
   // Move towards the endstop until an endstop is triggered
2418 2422
   destination[axis] = 1.5 * max_length(axis) * axis_home_dir;
2419
-  feedrate = homing_feedrate[axis];
2423
+  feedrate_mm_m = homing_feedrate_mm_m[axis];
2420 2424
   line_to_destination();
2421 2425
   stepper.synchronize();
2422 2426
 
@@ -2456,7 +2460,7 @@ static void homeaxis(AxisEnum axis) {
2456 2460
       sync_plan_position();
2457 2461
 
2458 2462
       // Move to the adjusted endstop height
2459
-      feedrate = homing_feedrate[axis];
2463
+      feedrate_mm_m = homing_feedrate_mm_m[axis];
2460 2464
       destination[Z_AXIS] = adj;
2461 2465
       line_to_destination();
2462 2466
       stepper.synchronize();
@@ -2520,13 +2524,13 @@ static void homeaxis(AxisEnum axis) {
2520 2524
 
2521 2525
     if (retracting == retracted[active_extruder]) return;
2522 2526
 
2523
-    float old_feedrate = feedrate;
2527
+    float old_feedrate_mm_m = feedrate_mm_m;
2524 2528
 
2525 2529
     set_destination_to_current();
2526 2530
 
2527 2531
     if (retracting) {
2528 2532
 
2529
-      feedrate = retract_feedrate_mm_s * 60;
2533
+      feedrate_mm_m = MMS_TO_MMM(retract_feedrate_mm_s);
2530 2534
       current_position[E_AXIS] += (swapping ? retract_length_swap : retract_length) / volumetric_multiplier[active_extruder];
2531 2535
       sync_plan_position_e();
2532 2536
       prepare_move_to_destination();
@@ -2544,14 +2548,14 @@ static void homeaxis(AxisEnum axis) {
2544 2548
         SYNC_PLAN_POSITION_KINEMATIC();
2545 2549
       }
2546 2550
 
2547
-      feedrate = retract_recover_feedrate * 60;
2551
+      feedrate_mm_m = MMM_TO_MMS(retract_recover_feedrate_mm_s);
2548 2552
       float move_e = swapping ? retract_length_swap + retract_recover_length_swap : retract_length + retract_recover_length;
2549 2553
       current_position[E_AXIS] -= move_e / volumetric_multiplier[active_extruder];
2550 2554
       sync_plan_position_e();
2551 2555
       prepare_move_to_destination();
2552 2556
     }
2553 2557
 
2554
-    feedrate = old_feedrate;
2558
+    feedrate_mm_m = old_feedrate_mm_m;
2555 2559
     retracted[active_extruder] = retracting;
2556 2560
 
2557 2561
   } // retract()
@@ -2613,10 +2617,10 @@ void gcode_get_destination() {
2613 2617
   }
2614 2618
 
2615 2619
   if (code_seen('F') && code_value_linear_units() > 0.0)
2616
-    feedrate = code_value_linear_units();
2620
+    feedrate_mm_m = code_value_linear_units();
2617 2621
 
2618 2622
   #if ENABLED(PRINTCOUNTER)
2619
-    if(!DEBUGGING(DRYRUN))
2623
+    if (!DEBUGGING(DRYRUN))
2620 2624
       print_job_timer.incFilamentUsed(destination[E_AXIS] - current_position[E_AXIS]);
2621 2625
   #endif
2622 2626
 
@@ -2846,7 +2850,7 @@ inline void gcode_G4() {
2846 2850
 
2847 2851
     destination[X_AXIS] = 1.5 * mlx * x_axis_home_dir;
2848 2852
     destination[Y_AXIS] = 1.5 * mly * home_dir(Y_AXIS);
2849
-    feedrate = min(homing_feedrate[X_AXIS], homing_feedrate[Y_AXIS]) * sqrt(mlratio * mlratio + 1);
2853
+    feedrate_mm_m = min(homing_feedrate_mm_m[X_AXIS], homing_feedrate_mm_m[Y_AXIS]) * sqrt(sq(mlratio) + 1);
2850 2854
     line_to_destination();
2851 2855
     stepper.synchronize();
2852 2856
     endstops.hit_on_purpose(); // clear endstop hit flags
@@ -2943,7 +2947,7 @@ inline void gcode_G28() {
2943 2947
 
2944 2948
     // Move all carriages up together until the first endstop is hit.
2945 2949
     for (int i = X_AXIS; i <= Z_AXIS; i++) destination[i] = 3 * (Z_MAX_LENGTH);
2946
-    feedrate = 1.732 * homing_feedrate[X_AXIS];
2950
+    feedrate_mm_m = 1.732 * homing_feedrate_mm_m[X_AXIS];
2947 2951
     line_to_destination();
2948 2952
     stepper.synchronize();
2949 2953
     endstops.hit_on_purpose(); // clear endstop hit flags
@@ -3164,7 +3168,7 @@ inline void gcode_G28() {
3164 3168
         #if ENABLED(MESH_G28_REST_ORIGIN)
3165 3169
           current_position[Z_AXIS] = 0.0;
3166 3170
           set_destination_to_current();
3167
-          feedrate = homing_feedrate[Z_AXIS];
3171
+          feedrate_mm_m = homing_feedrate_mm_m[Z_AXIS];
3168 3172
           line_to_destination();
3169 3173
           stepper.synchronize();
3170 3174
           #if ENABLED(DEBUG_LEVELING_FEATURE)
@@ -3224,8 +3228,8 @@ inline void gcode_G28() {
3224 3228
   enum MeshLevelingState { MeshReport, MeshStart, MeshNext, MeshSet, MeshSetZOffset, MeshReset };
3225 3229
 
3226 3230
   inline void _mbl_goto_xy(float x, float y) {
3227
-    float old_feedrate = feedrate;
3228
-    feedrate = homing_feedrate[X_AXIS];
3231
+    float old_feedrate_mm_m = feedrate_mm_m;
3232
+    feedrate_mm_m = homing_feedrate_mm_m[X_AXIS];
3229 3233
 
3230 3234
     current_position[Z_AXIS] = MESH_HOME_SEARCH_Z
3231 3235
       #if Z_RAISE_BETWEEN_PROBINGS > MIN_Z_HEIGHT_FOR_HOMING
@@ -3245,7 +3249,7 @@ inline void gcode_G28() {
3245 3249
       line_to_current_position();
3246 3250
     #endif
3247 3251
 
3248
-    feedrate = old_feedrate;
3252
+    feedrate_mm_m = old_feedrate_mm_m;
3249 3253
     stepper.synchronize();
3250 3254
   }
3251 3255
 
@@ -3492,7 +3496,7 @@ inline void gcode_G28() {
3492 3496
         }
3493 3497
       #endif
3494 3498
 
3495
-      xy_probe_speed = code_seen('S') ? (int)code_value_linear_units() : XY_PROBE_SPEED;
3499
+      xy_probe_feedrate_mm_m = code_seen('S') ? (int)code_value_linear_units() : XY_PROBE_SPEED;
3496 3500
 
3497 3501
       int left_probe_bed_position = code_seen('L') ? (int)code_value_axis_units(X_AXIS) : LEFT_PROBE_BED_POSITION,
3498 3502
           right_probe_bed_position = code_seen('R') ? (int)code_value_axis_units(X_AXIS) : RIGHT_PROBE_BED_POSITION,
@@ -3594,7 +3598,7 @@ inline void gcode_G28() {
3594 3598
          * so Vx = -a Vy = -b Vz = 1 (we want the vector facing towards positive Z
3595 3599
          */
3596 3600
 
3597
-        int abl2 = auto_bed_leveling_grid_points * auto_bed_leveling_grid_points;
3601
+        int abl2 = sq(auto_bed_leveling_grid_points);
3598 3602
 
3599 3603
         double eqnAMatrix[abl2 * 3], // "A" matrix of the linear system of equations
3600 3604
                eqnBVector[abl2],     // "B" vector of Z points
@@ -3627,7 +3631,7 @@ inline void gcode_G28() {
3627 3631
 
3628 3632
           #if ENABLED(DELTA)
3629 3633
             // Avoid probing the corners (outside the round or hexagon print surface) on a delta printer.
3630
-            float distance_from_center = sqrt(xProbe * xProbe + yProbe * yProbe);
3634
+            float distance_from_center = HYPOT(xProbe, yProbe);
3631 3635
             if (distance_from_center > DELTA_PROBEABLE_RADIUS) continue;
3632 3636
           #endif //DELTA
3633 3637
 
@@ -4250,7 +4254,7 @@ inline void gcode_M42() {
4250 4254
         return;
4251 4255
       }
4252 4256
     #else
4253
-      if (sqrt(X_probe_location * X_probe_location + Y_probe_location * Y_probe_location) > DELTA_PROBEABLE_RADIUS) {
4257
+      if (HYPOT(X_probe_location, Y_probe_location) > DELTA_PROBEABLE_RADIUS) {
4254 4258
         SERIAL_PROTOCOLLNPGM("? (X,Y) location outside of probeable radius.");
4255 4259
         return;
4256 4260
       }
@@ -4340,7 +4344,7 @@ inline void gcode_M42() {
4340 4344
           #else
4341 4345
             // If we have gone out too far, we can do a simple fix and scale the numbers
4342 4346
             // back in closer to the origin.
4343
-            while (sqrt(X_current * X_current + Y_current * Y_current) > DELTA_PROBEABLE_RADIUS) {
4347
+            while (HYPOT(X_current, Y_current) > DELTA_PROBEABLE_RADIUS) {
4344 4348
               X_current /= 1.25;
4345 4349
               Y_current /= 1.25;
4346 4350
               if (verbose_level > 3) {
@@ -4376,10 +4380,9 @@ inline void gcode_M42() {
4376 4380
        * data points we have so far
4377 4381
        */
4378 4382
       sum = 0.0;
4379
-      for (uint8_t j = 0; j <= n; j++) {
4380
-        float ss = sample_set[j] - mean;
4381
-        sum += ss * ss;
4382
-      }
4383
+      for (uint8_t j = 0; j <= n; j++)
4384
+        sum += sq(sample_set[j] - mean);
4385
+
4383 4386
       sigma = sqrt(sum / (n + 1));
4384 4387
       if (verbose_level > 0) {
4385 4388
         if (verbose_level > 1) {
@@ -5163,7 +5166,7 @@ inline void gcode_M92() {
5163 5166
         if (value < 20.0) {
5164 5167
           float factor = planner.axis_steps_per_mm[i] / value; // increase e constants if M92 E14 is given for netfab.
5165 5168
           planner.max_e_jerk *= factor;
5166
-          planner.max_feedrate[i] *= factor;
5169
+          planner.max_feedrate_mm_s[i] *= factor;
5167 5170
           planner.max_acceleration_steps_per_s2[i] *= factor;
5168 5171
         }
5169 5172
         planner.axis_steps_per_mm[i] = value;
@@ -5372,7 +5375,7 @@ inline void gcode_M201() {
5372 5375
 inline void gcode_M203() {
5373 5376
   for (int8_t i = 0; i < NUM_AXIS; i++)
5374 5377
     if (code_seen(axis_codes[i]))
5375
-      planner.max_feedrate[i] = code_value_axis_units(i);
5378
+      planner.max_feedrate_mm_s[i] = code_value_axis_units(i);
5376 5379
 }
5377 5380
 
5378 5381
 /**
@@ -5418,8 +5421,8 @@ inline void gcode_M204() {
5418 5421
  *    E = Max E Jerk (units/sec^2)
5419 5422
  */
5420 5423
 inline void gcode_M205() {
5421
-  if (code_seen('S')) planner.min_feedrate = code_value_linear_units();
5422
-  if (code_seen('T')) planner.min_travel_feedrate = code_value_linear_units();
5424
+  if (code_seen('S')) planner.min_feedrate_mm_s = code_value_linear_units();
5425
+  if (code_seen('T')) planner.min_travel_feedrate_mm_s = code_value_linear_units();
5423 5426
   if (code_seen('B')) planner.min_segment_time = code_value_millis();
5424 5427
   if (code_seen('X')) planner.max_xy_jerk = code_value_linear_units();
5425 5428
   if (code_seen('Z')) planner.max_z_jerk = code_value_axis_units(Z_AXIS);
@@ -5517,7 +5520,7 @@ inline void gcode_M206() {
5517 5520
    */
5518 5521
   inline void gcode_M207() {
5519 5522
     if (code_seen('S')) retract_length = code_value_axis_units(E_AXIS);
5520
-    if (code_seen('F')) retract_feedrate_mm_s = code_value_axis_units(E_AXIS) / 60;
5523
+    if (code_seen('F')) retract_feedrate_mm_s = MMM_TO_MMS(code_value_axis_units(E_AXIS));
5521 5524
     if (code_seen('Z')) retract_zlift = code_value_axis_units(Z_AXIS);
5522 5525
     #if EXTRUDERS > 1
5523 5526
       if (code_seen('W')) retract_length_swap = code_value_axis_units(E_AXIS);
@@ -5529,11 +5532,11 @@ inline void gcode_M206() {
5529 5532
    *
5530 5533
    *   S[+units]    retract_recover_length (in addition to M207 S*)
5531 5534
    *   W[+units]    retract_recover_length_swap (multi-extruder)
5532
-   *   F[units/min] retract_recover_feedrate
5535
+   *   F[units/min] retract_recover_feedrate_mm_s
5533 5536
    */
5534 5537
   inline void gcode_M208() {
5535 5538
     if (code_seen('S')) retract_recover_length = code_value_axis_units(E_AXIS);
5536
-    if (code_seen('F')) retract_recover_feedrate = code_value_axis_units(E_AXIS) / 60;
5539
+    if (code_seen('F')) retract_recover_feedrate_mm_s = MMM_TO_MMS(code_value_axis_units(E_AXIS));
5537 5540
     #if EXTRUDERS > 1
5538 5541
       if (code_seen('W')) retract_recover_length_swap = code_value_axis_units(E_AXIS);
5539 5542
     #endif
@@ -5604,7 +5607,7 @@ inline void gcode_M206() {
5604 5607
  * M220: Set speed percentage factor, aka "Feed Rate" (M220 S95)
5605 5608
  */
5606 5609
 inline void gcode_M220() {
5607
-  if (code_seen('S')) feedrate_multiplier = code_value_int();
5610
+  if (code_seen('S')) feedrate_percentage = code_value_int();
5608 5611
 }
5609 5612
 
5610 5613
 /**
@@ -6308,10 +6311,10 @@ inline void gcode_M503() {
6308 6311
 
6309 6312
     // Define runplan for move axes
6310 6313
     #if ENABLED(DELTA)
6311
-      #define RUNPLAN(RATE) calculate_delta(destination); \
6312
-                            planner.buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], destination[E_AXIS], RATE, active_extruder);
6314
+      #define RUNPLAN(RATE_MM_S) calculate_delta(destination); \
6315
+                                 planner.buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], destination[E_AXIS], RATE_MM_S, active_extruder);
6313 6316
     #else
6314
-      #define RUNPLAN(RATE) line_to_destination(RATE * 60);
6317
+      #define RUNPLAN(RATE_MM_S) line_to_destination(MMS_TO_MMM(RATE_MM_S));
6315 6318
     #endif
6316 6319
 
6317 6320
     KEEPALIVE_STATE(IN_HANDLER);
@@ -6726,14 +6729,14 @@ inline void gcode_T(uint8_t tmp_extruder) {
6726 6729
         return;
6727 6730
       }
6728 6731
 
6729
-      float old_feedrate = feedrate;
6732
+      float old_feedrate_mm_m = feedrate_mm_m;
6730 6733
 
6731 6734
       if (code_seen('F')) {
6732
-        float next_feedrate = code_value_axis_units(X_AXIS);
6733
-        if (next_feedrate > 0.0) old_feedrate = feedrate = next_feedrate;
6735
+        float next_feedrate_mm_m = code_value_axis_units(X_AXIS);
6736
+        if (next_feedrate_mm_m > 0.0) old_feedrate_mm_m = feedrate_mm_m = next_feedrate_mm_m;
6734 6737
       }
6735 6738
       else
6736
-        feedrate = XY_PROBE_FEEDRATE;
6739
+        feedrate_mm_m = XY_PROBE_FEEDRATE_MM_M;
6737 6740
 
6738 6741
       if (tmp_extruder != active_extruder) {
6739 6742
         bool no_move = code_seen('S') && code_value_bool();
@@ -6776,7 +6779,7 @@ inline void gcode_T(uint8_t tmp_extruder) {
6776 6779
                 current_position[Y_AXIS],
6777 6780
                 current_position[Z_AXIS] + (i == 2 ? 0 : TOOLCHANGE_PARK_ZLIFT),
6778 6781
                 current_position[E_AXIS],
6779
-                planner.max_feedrate[i == 1 ? X_AXIS : Z_AXIS],
6782
+                planner.max_feedrate_mm_s[i == 1 ? X_AXIS : Z_AXIS],
6780 6783
                 active_extruder
6781 6784
               );
6782 6785
             stepper.synchronize();
@@ -6839,7 +6842,7 @@ inline void gcode_T(uint8_t tmp_extruder) {
6839 6842
               current_position[Y_AXIS],
6840 6843
               current_position[Z_AXIS] + z_raise,
6841 6844
               current_position[E_AXIS],
6842
-              planner.max_feedrate[Z_AXIS],
6845
+              planner.max_feedrate_mm_s[Z_AXIS],
6843 6846
               active_extruder
6844 6847
             );
6845 6848
             stepper.synchronize();
@@ -6854,7 +6857,7 @@ inline void gcode_T(uint8_t tmp_extruder) {
6854 6857
                 current_position[Y_AXIS],
6855 6858
                 current_position[Z_AXIS] + z_diff,
6856 6859
                 current_position[E_AXIS],
6857
-                planner.max_feedrate[Z_AXIS],
6860
+                planner.max_feedrate_mm_s[Z_AXIS],
6858 6861
                 active_extruder
6859 6862
               );
6860 6863
               stepper.synchronize();
@@ -6985,7 +6988,7 @@ inline void gcode_T(uint8_t tmp_extruder) {
6985 6988
         enable_solenoid_on_active_extruder();
6986 6989
       #endif // EXT_SOLENOID
6987 6990
 
6988
-      feedrate = old_feedrate;
6991
+      feedrate_mm_m = old_feedrate_mm_m;
6989 6992
 
6990 6993
     #else // HOTENDS <= 1
6991 6994
 
@@ -7838,9 +7841,9 @@ void clamp_to_software_endstops(float target[3]) {
7838 7841
 #if ENABLED(MESH_BED_LEVELING)
7839 7842
 
7840 7843
 // This function is used to split lines on mesh borders so each segment is only part of one mesh area
7841
-void mesh_buffer_line(float x, float y, float z, const float e, float feed_rate, const uint8_t& extruder, uint8_t x_splits = 0xff, uint8_t y_splits = 0xff) {
7844
+void mesh_buffer_line(float x, float y, float z, const float e, float fr_mm_s, const uint8_t& extruder, uint8_t x_splits = 0xff, uint8_t y_splits = 0xff) {
7842 7845
   if (!mbl.active()) {
7843
-    planner.buffer_line(x, y, z, e, feed_rate, extruder);
7846
+    planner.buffer_line(x, y, z, e, fr_mm_s, extruder);
7844 7847
     set_current_to_destination();
7845 7848
     return;
7846 7849
   }
@@ -7854,7 +7857,7 @@ void mesh_buffer_line(float x, float y, float z, const float e, float feed_rate,
7854 7857
   NOMORE(cy,  MESH_NUM_Y_POINTS - 2);
7855 7858
   if (pcx == cx && pcy == cy) {
7856 7859
     // Start and end on same mesh square
7857
-    planner.buffer_line(x, y, z, e, feed_rate, extruder);
7860
+    planner.buffer_line(x, y, z, e, fr_mm_s, extruder);
7858 7861
     set_current_to_destination();
7859 7862
     return;
7860 7863
   }
@@ -7893,7 +7896,7 @@ void mesh_buffer_line(float x, float y, float z, const float e, float feed_rate,
7893 7896
   }
7894 7897
   else {
7895 7898
     // Already split on a border
7896
-    planner.buffer_line(x, y, z, e, feed_rate, extruder);
7899
+    planner.buffer_line(x, y, z, e, fr_mm_s, extruder);
7897 7900
     set_current_to_destination();
7898 7901
     return;
7899 7902
   }
@@ -7902,12 +7905,12 @@ void mesh_buffer_line(float x, float y, float z, const float e, float feed_rate,
7902 7905
   destination[Y_AXIS] = ny;
7903 7906
   destination[Z_AXIS] = nz;
7904 7907
   destination[E_AXIS] = ne;
7905
-  mesh_buffer_line(nx, ny, nz, ne, feed_rate, extruder, x_splits, y_splits);
7908
+  mesh_buffer_line(nx, ny, nz, ne, fr_mm_s, extruder, x_splits, y_splits);
7906 7909
   destination[X_AXIS] = x;
7907 7910
   destination[Y_AXIS] = y;
7908 7911
   destination[Z_AXIS] = z;
7909 7912
   destination[E_AXIS] = e;
7910
-  mesh_buffer_line(x, y, z, e, feed_rate, extruder, x_splits, y_splits);
7913
+  mesh_buffer_line(x, y, z, e, fr_mm_s, extruder, x_splits, y_splits);
7911 7914
 }
7912 7915
 #endif  // MESH_BED_LEVELING
7913 7916
 
@@ -7920,8 +7923,8 @@ void mesh_buffer_line(float x, float y, float z, const float e, float feed_rate,
7920 7923
     float cartesian_mm = sqrt(sq(difference[X_AXIS]) + sq(difference[Y_AXIS]) + sq(difference[Z_AXIS]));
7921 7924
     if (cartesian_mm < 0.000001) cartesian_mm = abs(difference[E_AXIS]);
7922 7925
     if (cartesian_mm < 0.000001) return false;
7923
-    float _feedrate = feedrate * feedrate_multiplier / 6000.0;
7924
-    float seconds = cartesian_mm / _feedrate;
7926
+    float _feedrate_mm_s = MMM_TO_MMS_SCALED(feedrate_mm_m);
7927
+    float seconds = cartesian_mm / _feedrate_mm_s;
7925 7928
     int steps = max(1, int(delta_segments_per_second * seconds));
7926 7929
     float inv_steps = 1.0/steps;
7927 7930
 
@@ -7945,7 +7948,7 @@ void mesh_buffer_line(float x, float y, float z, const float e, float feed_rate,
7945 7948
       //DEBUG_POS("prepare_delta_move_to", target);
7946 7949
       //DEBUG_POS("prepare_delta_move_to", delta);
7947 7950
 
7948
-      planner.buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], target[E_AXIS], _feedrate, active_extruder);
7951
+      planner.buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], target[E_AXIS], _feedrate_mm_s, active_extruder);
7949 7952
     }
7950 7953
     return true;
7951 7954
   }
@@ -7964,7 +7967,7 @@ void mesh_buffer_line(float x, float y, float z, const float e, float feed_rate,
7964 7967
         // move duplicate extruder into correct duplication position.
7965 7968
         planner.set_position_mm(inactive_extruder_x_pos, current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
7966 7969
         planner.buffer_line(current_position[X_AXIS] + duplicate_extruder_x_offset,
7967
-                         current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], planner.max_feedrate[X_AXIS], 1);
7970
+                         current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], planner.max_feedrate_mm_s[X_AXIS], 1);
7968 7971
         SYNC_PLAN_POSITION_KINEMATIC();
7969 7972
         stepper.synchronize();
7970 7973
         extruder_duplication_enabled = true;
@@ -7984,9 +7987,9 @@ void mesh_buffer_line(float x, float y, float z, const float e, float feed_rate,
7984 7987
         }
7985 7988
         delayed_move_time = 0;
7986 7989
         // unpark extruder: 1) raise, 2) move into starting XY position, 3) lower
7987
-        planner.buffer_line(raised_parked_position[X_AXIS], raised_parked_position[Y_AXIS], raised_parked_position[Z_AXIS], current_position[E_AXIS], planner.max_feedrate[Z_AXIS], active_extruder);
7990
+        planner.buffer_line(raised_parked_position[X_AXIS], raised_parked_position[Y_AXIS], raised_parked_position[Z_AXIS], current_position[E_AXIS], planner.max_feedrate_mm_s[Z_AXIS], active_extruder);
7988 7991
         planner.buffer_line(current_position[X_AXIS], current_position[Y_AXIS], raised_parked_position[Z_AXIS], current_position[E_AXIS], PLANNER_XY_FEEDRATE(), active_extruder);
7989
-        planner.buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], planner.max_feedrate[Z_AXIS], active_extruder);
7992
+        planner.buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], planner.max_feedrate_mm_s[Z_AXIS], active_extruder);
7990 7993
         active_extruder_parked = false;
7991 7994
       }
7992 7995
     }
@@ -7998,16 +8001,16 @@ void mesh_buffer_line(float x, float y, float z, const float e, float feed_rate,
7998 8001
 #if DISABLED(DELTA) && DISABLED(SCARA)
7999 8002
 
8000 8003
   inline bool prepare_move_to_destination_cartesian() {
8001
-    // Do not use feedrate_multiplier for E or Z only moves
8004
+    // Do not use feedrate_percentage for E or Z only moves
8002 8005
     if (current_position[X_AXIS] == destination[X_AXIS] && current_position[Y_AXIS] == destination[Y_AXIS]) {
8003 8006
       line_to_destination();
8004 8007
     }
8005 8008
     else {
8006 8009
       #if ENABLED(MESH_BED_LEVELING)
8007
-        mesh_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], (feedrate / 60) * (feedrate_multiplier / 100.0), active_extruder);
8010
+        mesh_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], MMM_TO_MMS_SCALED(feedrate_mm_m), active_extruder);
8008 8011
         return false;
8009 8012
       #else
8010
-        line_to_destination(feedrate * feedrate_multiplier / 100.0);
8013
+        line_to_destination(MMM_SCALED(feedrate_mm_m));
8011 8014
       #endif
8012 8015
     }
8013 8016
     return true;
@@ -8082,7 +8085,7 @@ void prepare_move_to_destination() {
8082 8085
     uint8_t clockwise       // Clockwise?
8083 8086
   ) {
8084 8087
 
8085
-    float radius = hypot(offset[X_AXIS], offset[Y_AXIS]),
8088
+    float radius = HYPOT(offset[X_AXIS], offset[Y_AXIS]),
8086 8089
           center_X = current_position[X_AXIS] + offset[X_AXIS],
8087 8090
           center_Y = current_position[Y_AXIS] + offset[Y_AXIS],
8088 8091
           linear_travel = target[Z_AXIS] - current_position[Z_AXIS],
@@ -8101,7 +8104,7 @@ void prepare_move_to_destination() {
8101 8104
     if (angular_travel == 0 && current_position[X_AXIS] == target[X_AXIS] && current_position[Y_AXIS] == target[Y_AXIS])
8102 8105
       angular_travel += RADIANS(360);
8103 8106
 
8104
-    float mm_of_travel = hypot(angular_travel * radius, fabs(linear_travel));
8107
+    float mm_of_travel = HYPOT(angular_travel * radius, fabs(linear_travel));
8105 8108
     if (mm_of_travel < 0.001) return;
8106 8109
     uint16_t segments = floor(mm_of_travel / (MM_PER_ARC_SEGMENT));
8107 8110
     if (segments == 0) segments = 1;
@@ -8137,7 +8140,7 @@ void prepare_move_to_destination() {
8137 8140
      * This is important when there are successive arc motions.
8138 8141
      */
8139 8142
     // Vector rotation matrix values
8140
-    float cos_T = 1 - 0.5 * theta_per_segment * theta_per_segment; // Small angle approximation
8143
+    float cos_T = 1 - 0.5 * sq(theta_per_segment); // Small angle approximation
8141 8144
     float sin_T = theta_per_segment;
8142 8145
 
8143 8146
     float arc_target[NUM_AXIS];
@@ -8151,7 +8154,7 @@ void prepare_move_to_destination() {
8151 8154
     // Initialize the extruder axis
8152 8155
     arc_target[E_AXIS] = current_position[E_AXIS];
8153 8156
 
8154
-    float feed_rate = feedrate * feedrate_multiplier / 60 / 100.0;
8157
+    float fr_mm_s = MMM_TO_MMS_SCALED(feedrate_mm_m);
8155 8158
 
8156 8159
     millis_t next_idle_ms = millis() + 200UL;
8157 8160
 
@@ -8195,9 +8198,9 @@ void prepare_move_to_destination() {
8195 8198
         #if ENABLED(AUTO_BED_LEVELING_FEATURE)
8196 8199
           adjust_delta(arc_target);
8197 8200
         #endif
8198
-        planner.buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], arc_target[E_AXIS], feed_rate, active_extruder);
8201
+        planner.buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], arc_target[E_AXIS], fr_mm_s, active_extruder);
8199 8202
       #else
8200
-        planner.buffer_line(arc_target[X_AXIS], arc_target[Y_AXIS], arc_target[Z_AXIS], arc_target[E_AXIS], feed_rate, active_extruder);
8203
+        planner.buffer_line(arc_target[X_AXIS], arc_target[Y_AXIS], arc_target[Z_AXIS], arc_target[E_AXIS], fr_mm_s, active_extruder);
8201 8204
       #endif
8202 8205
     }
8203 8206
 
@@ -8207,9 +8210,9 @@ void prepare_move_to_destination() {
8207 8210
       #if ENABLED(AUTO_BED_LEVELING_FEATURE)
8208 8211
         adjust_delta(target);
8209 8212
       #endif
8210
-      planner.buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], target[E_AXIS], feed_rate, active_extruder);
8213
+      planner.buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], target[E_AXIS], fr_mm_s, active_extruder);
8211 8214
     #else
8212
-      planner.buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], feed_rate, active_extruder);
8215
+      planner.buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], fr_mm_s, active_extruder);
8213 8216
     #endif
8214 8217
 
8215 8218
     // As far as the parser is concerned, the position is now == target. In reality the
@@ -8222,7 +8225,7 @@ void prepare_move_to_destination() {
8222 8225
 #if ENABLED(BEZIER_CURVE_SUPPORT)
8223 8226
 
8224 8227
   void plan_cubic_move(const float offset[4]) {
8225
-    cubic_b_spline(current_position, destination, offset, feedrate * feedrate_multiplier / 60 / 100.0, active_extruder);
8228
+    cubic_b_spline(current_position, destination, offset, MMM_TO_MMS_SCALED(feedrate_mm_m), active_extruder);
8226 8229
 
8227 8230
     // As far as the parser is concerned, the position is now == target. In reality the
8228 8231
     // motion control system might still be processing the action and the real tool position
@@ -8548,7 +8551,7 @@ void manage_inactivity(bool ignore_stepper_queue/*=false*/) {
8548 8551
       float oldepos = current_position[E_AXIS], oldedes = destination[E_AXIS];
8549 8552
       planner.buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS],
8550 8553
                        destination[E_AXIS] + (EXTRUDER_RUNOUT_EXTRUDE) * (EXTRUDER_RUNOUT_ESTEPS) / planner.axis_steps_per_mm[E_AXIS],
8551
-                       (EXTRUDER_RUNOUT_SPEED) / 60. * (EXTRUDER_RUNOUT_ESTEPS) / planner.axis_steps_per_mm[E_AXIS], active_extruder);
8554
+                       MMM_TO_MMS(EXTRUDER_RUNOUT_SPEED) * (EXTRUDER_RUNOUT_ESTEPS) / planner.axis_steps_per_mm[E_AXIS], active_extruder);
8552 8555
       current_position[E_AXIS] = oldepos;
8553 8556
       destination[E_AXIS] = oldedes;
8554 8557
       planner.set_e_position_mm(oldepos);

+ 24
- 24
Marlin/configuration_store.cpp 파일 보기

@@ -49,13 +49,13 @@
49 49
  *  104  EEPROM Checksum (uint16_t)
50 50
  *
51 51
  *  106  M92 XYZE  planner.axis_steps_per_mm (float x4)
52
- *  122  M203 XYZE planner.max_feedrate (float x4)
52
+ *  122  M203 XYZE planner.max_feedrate_mm_s (float x4)
53 53
  *  138  M201 XYZE planner.max_acceleration_mm_per_s2 (uint32_t x4)
54 54
  *  154  M204 P    planner.acceleration (float)
55 55
  *  158  M204 R    planner.retract_acceleration (float)
56 56
  *  162  M204 T    planner.travel_acceleration (float)
57
- *  166  M205 S    planner.min_feedrate (float)
58
- *  170  M205 T    planner.min_travel_feedrate (float)
57
+ *  166  M205 S    planner.min_feedrate_mm_s (float)
58
+ *  170  M205 T    planner.min_travel_feedrate_mm_s (float)
59 59
  *  174  M205 B    planner.min_segment_time (ulong)
60 60
  *  178  M205 X    planner.max_xy_jerk (float)
61 61
  *  182  M205 Z    planner.max_z_jerk (float)
@@ -116,7 +116,7 @@
116 116
  *  406  M207 Z    retract_zlift (float)
117 117
  *  410  M208 S    retract_recover_length (float)
118 118
  *  414  M208 W    retract_recover_length_swap (float)
119
- *  418  M208 F    retract_recover_feedrate (float)
119
+ *  418  M208 F    retract_recover_feedrate_mm_s (float)
120 120
  *
121 121
  * Volumetric Extrusion:
122 122
  *  422  M200 D    volumetric_enabled (bool)
@@ -202,13 +202,13 @@ void Config_StoreSettings()  {
202 202
   eeprom_checksum = 0; // clear before first "real data"
203 203
 
204 204
   EEPROM_WRITE_VAR(i, planner.axis_steps_per_mm);
205
-  EEPROM_WRITE_VAR(i, planner.max_feedrate);
205
+  EEPROM_WRITE_VAR(i, planner.max_feedrate_mm_s);
206 206
   EEPROM_WRITE_VAR(i, planner.max_acceleration_mm_per_s2);
207 207
   EEPROM_WRITE_VAR(i, planner.acceleration);
208 208
   EEPROM_WRITE_VAR(i, planner.retract_acceleration);
209 209
   EEPROM_WRITE_VAR(i, planner.travel_acceleration);
210
-  EEPROM_WRITE_VAR(i, planner.min_feedrate);
211
-  EEPROM_WRITE_VAR(i, planner.min_travel_feedrate);
210
+  EEPROM_WRITE_VAR(i, planner.min_feedrate_mm_s);
211
+  EEPROM_WRITE_VAR(i, planner.min_travel_feedrate_mm_s);
212 212
   EEPROM_WRITE_VAR(i, planner.min_segment_time);
213 213
   EEPROM_WRITE_VAR(i, planner.max_xy_jerk);
214 214
   EEPROM_WRITE_VAR(i, planner.max_z_jerk);
@@ -343,7 +343,7 @@ void Config_StoreSettings()  {
343 343
       dummy = 0.0f;
344 344
       EEPROM_WRITE_VAR(i, dummy);
345 345
     #endif
346
-    EEPROM_WRITE_VAR(i, retract_recover_feedrate);
346
+    EEPROM_WRITE_VAR(i, retract_recover_feedrate_mm_s);
347 347
   #endif // FWRETRACT
348 348
 
349 349
   EEPROM_WRITE_VAR(i, volumetric_enabled);
@@ -389,14 +389,14 @@ void Config_RetrieveSettings() {
389 389
 
390 390
     // version number match
391 391
     EEPROM_READ_VAR(i, planner.axis_steps_per_mm);
392
-    EEPROM_READ_VAR(i, planner.max_feedrate);
392
+    EEPROM_READ_VAR(i, planner.max_feedrate_mm_s);
393 393
     EEPROM_READ_VAR(i, planner.max_acceleration_mm_per_s2);
394 394
 
395 395
     EEPROM_READ_VAR(i, planner.acceleration);
396 396
     EEPROM_READ_VAR(i, planner.retract_acceleration);
397 397
     EEPROM_READ_VAR(i, planner.travel_acceleration);
398
-    EEPROM_READ_VAR(i, planner.min_feedrate);
399
-    EEPROM_READ_VAR(i, planner.min_travel_feedrate);
398
+    EEPROM_READ_VAR(i, planner.min_feedrate_mm_s);
399
+    EEPROM_READ_VAR(i, planner.min_travel_feedrate_mm_s);
400 400
     EEPROM_READ_VAR(i, planner.min_segment_time);
401 401
     EEPROM_READ_VAR(i, planner.max_xy_jerk);
402 402
     EEPROM_READ_VAR(i, planner.max_z_jerk);
@@ -525,7 +525,7 @@ void Config_RetrieveSettings() {
525 525
       #else
526 526
         EEPROM_READ_VAR(i, dummy);
527 527
       #endif
528
-      EEPROM_READ_VAR(i, retract_recover_feedrate);
528
+      EEPROM_READ_VAR(i, retract_recover_feedrate_mm_s);
529 529
     #endif // FWRETRACT
530 530
 
531 531
     EEPROM_READ_VAR(i, volumetric_enabled);
@@ -565,7 +565,7 @@ void Config_ResetDefault() {
565 565
   long tmp3[] = DEFAULT_MAX_ACCELERATION;
566 566
   for (uint8_t i = 0; i < NUM_AXIS; i++) {
567 567
     planner.axis_steps_per_mm[i] = tmp1[i];
568
-    planner.max_feedrate[i] = tmp2[i];
568
+    planner.max_feedrate_mm_s[i] = tmp2[i];
569 569
     planner.max_acceleration_mm_per_s2[i] = tmp3[i];
570 570
     #if ENABLED(SCARA)
571 571
       if (i < COUNT(axis_scaling))
@@ -576,9 +576,9 @@ void Config_ResetDefault() {
576 576
   planner.acceleration = DEFAULT_ACCELERATION;
577 577
   planner.retract_acceleration = DEFAULT_RETRACT_ACCELERATION;
578 578
   planner.travel_acceleration = DEFAULT_TRAVEL_ACCELERATION;
579
-  planner.min_feedrate = DEFAULT_MINIMUMFEEDRATE;
579
+  planner.min_feedrate_mm_s = DEFAULT_MINIMUMFEEDRATE;
580 580
   planner.min_segment_time = DEFAULT_MINSEGMENTTIME;
581
-  planner.min_travel_feedrate = DEFAULT_MINTRAVELFEEDRATE;
581
+  planner.min_travel_feedrate_mm_s = DEFAULT_MINTRAVELFEEDRATE;
582 582
   planner.max_xy_jerk = DEFAULT_XYJERK;
583 583
   planner.max_z_jerk = DEFAULT_ZJERK;
584 584
   planner.max_e_jerk = DEFAULT_EJERK;
@@ -654,7 +654,7 @@ void Config_ResetDefault() {
654 654
     #if EXTRUDERS > 1
655 655
       retract_recover_length_swap = RETRACT_RECOVER_LENGTH_SWAP;
656 656
     #endif
657
-    retract_recover_feedrate = RETRACT_RECOVER_FEEDRATE;
657
+    retract_recover_feedrate_mm_s = RETRACT_RECOVER_FEEDRATE;
658 658
   #endif
659 659
 
660 660
   volumetric_enabled = false;
@@ -715,10 +715,10 @@ void Config_PrintSettings(bool forReplay) {
715 715
     SERIAL_ECHOLNPGM("Maximum feedrates (mm/s):");
716 716
     CONFIG_ECHO_START;
717 717
   }
718
-  SERIAL_ECHOPAIR("  M203 X", planner.max_feedrate[X_AXIS]);
719
-  SERIAL_ECHOPAIR(" Y", planner.max_feedrate[Y_AXIS]);
720
-  SERIAL_ECHOPAIR(" Z", planner.max_feedrate[Z_AXIS]);
721
-  SERIAL_ECHOPAIR(" E", planner.max_feedrate[E_AXIS]);
718
+  SERIAL_ECHOPAIR("  M203 X", planner.max_feedrate_mm_s[X_AXIS]);
719
+  SERIAL_ECHOPAIR(" Y", planner.max_feedrate_mm_s[Y_AXIS]);
720
+  SERIAL_ECHOPAIR(" Z", planner.max_feedrate_mm_s[Z_AXIS]);
721
+  SERIAL_ECHOPAIR(" E", planner.max_feedrate_mm_s[E_AXIS]);
722 722
   SERIAL_EOL;
723 723
 
724 724
   CONFIG_ECHO_START;
@@ -746,8 +746,8 @@ void Config_PrintSettings(bool forReplay) {
746 746
     SERIAL_ECHOLNPGM("Advanced variables: S=Min feedrate (mm/s), T=Min travel feedrate (mm/s), B=minimum segment time (ms), X=maximum XY jerk (mm/s),  Z=maximum Z jerk (mm/s),  E=maximum E jerk (mm/s)");
747 747
     CONFIG_ECHO_START;
748 748
   }
749
-  SERIAL_ECHOPAIR("  M205 S", planner.min_feedrate);
750
-  SERIAL_ECHOPAIR(" T", planner.min_travel_feedrate);
749
+  SERIAL_ECHOPAIR("  M205 S", planner.min_feedrate_mm_s);
750
+  SERIAL_ECHOPAIR(" T", planner.min_travel_feedrate_mm_s);
751 751
   SERIAL_ECHOPAIR(" B", planner.min_segment_time);
752 752
   SERIAL_ECHOPAIR(" X", planner.max_xy_jerk);
753 753
   SERIAL_ECHOPAIR(" Z", planner.max_z_jerk);
@@ -903,7 +903,7 @@ void Config_PrintSettings(bool forReplay) {
903 903
     #if EXTRUDERS > 1
904 904
       SERIAL_ECHOPAIR(" W", retract_length_swap);
905 905
     #endif
906
-    SERIAL_ECHOPAIR(" F", retract_feedrate_mm_s * 60);
906
+    SERIAL_ECHOPAIR(" F", MMS_TO_MMM(retract_feedrate_mm_s));
907 907
     SERIAL_ECHOPAIR(" Z", retract_zlift);
908 908
     SERIAL_EOL;
909 909
     CONFIG_ECHO_START;
@@ -915,7 +915,7 @@ void Config_PrintSettings(bool forReplay) {
915 915
     #if EXTRUDERS > 1
916 916
       SERIAL_ECHOPAIR(" W", retract_recover_length_swap);
917 917
     #endif
918
-    SERIAL_ECHOPAIR(" F", retract_recover_feedrate * 60);
918
+    SERIAL_ECHOPAIR(" F", MMS_TO_MMM(retract_recover_feedrate_mm_s));
919 919
     SERIAL_EOL;
920 920
     CONFIG_ECHO_START;
921 921
     if (!forReplay) {

+ 1
- 1
Marlin/dogm_lcd_implementation.h 파일 보기

@@ -450,7 +450,7 @@ static void lcd_implementation_status_screen() {
450 450
 
451 451
   lcd_setFont(FONT_STATUSMENU);
452 452
   u8g.setPrintPos(12, 49);
453
-  lcd_print(itostr3(feedrate_multiplier));
453
+  lcd_print(itostr3(feedrate_percentage));
454 454
   lcd_print('%');
455 455
 
456 456
   // Status line

+ 1
- 0
Marlin/macros.h 파일 보기

@@ -36,6 +36,7 @@
36 36
 // Macros for maths shortcuts
37 37
 #define RADIANS(d) ((d)*M_PI/180.0)
38 38
 #define DEGREES(r) ((r)*180.0/M_PI)
39
+#define HYPOT(x,y) sqrt(sq(x)+sq(y))
39 40
 
40 41
 // Macros to contrain values
41 42
 #define NOLESS(v,n) do{ if (v < n) v = n; }while(0)

+ 19
- 19
Marlin/planner.cpp 파일 보기

@@ -80,20 +80,20 @@ block_t Planner::block_buffer[BLOCK_BUFFER_SIZE];
80 80
 volatile uint8_t Planner::block_buffer_head = 0;           // Index of the next block to be pushed
81 81
 volatile uint8_t Planner::block_buffer_tail = 0;
82 82
 
83
-float Planner::max_feedrate[NUM_AXIS]; // Max speeds in mm per second
83
+float Planner::max_feedrate_mm_s[NUM_AXIS]; // Max speeds in mm per second
84 84
 float Planner::axis_steps_per_mm[NUM_AXIS];
85 85
 unsigned long Planner::max_acceleration_steps_per_s2[NUM_AXIS];
86 86
 unsigned long Planner::max_acceleration_mm_per_s2[NUM_AXIS]; // Use M201 to override by software
87 87
 
88 88
 millis_t Planner::min_segment_time;
89
-float Planner::min_feedrate;
89
+float Planner::min_feedrate_mm_s;
90 90
 float Planner::acceleration;         // Normal acceleration mm/s^2  DEFAULT ACCELERATION for all printing moves. M204 SXXXX
91 91
 float Planner::retract_acceleration; // Retract acceleration mm/s^2 filament pull-back and push-forward while standing still in the other axes M204 TXXXX
92 92
 float Planner::travel_acceleration;  // Travel acceleration mm/s^2  DEFAULT ACCELERATION for all NON printing moves. M204 MXXXX
93 93
 float Planner::max_xy_jerk;          // The largest speed change requiring no acceleration
94 94
 float Planner::max_z_jerk;
95 95
 float Planner::max_e_jerk;
96
-float Planner::min_travel_feedrate;
96
+float Planner::min_travel_feedrate_mm_s;
97 97
 
98 98
 #if ENABLED(AUTO_BED_LEVELING_FEATURE)
99 99
   matrix_3x3 Planner::bed_level_matrix; // Transform to compensate for bed level
@@ -171,8 +171,8 @@ void Planner::calculate_trapezoid_for_block(block_t* block, float entry_factor,
171 171
   }
172 172
 
173 173
   #if ENABLED(ADVANCE)
174
-    volatile long initial_advance = block->advance * entry_factor * entry_factor;
175
-    volatile long final_advance = block->advance * exit_factor * exit_factor;
174
+    volatile long initial_advance = block->advance * sq(entry_factor);
175
+    volatile long final_advance = block->advance * sq(exit_factor);
176 176
   #endif // ADVANCE
177 177
 
178 178
   // block->accelerate_until = accelerate_steps;
@@ -527,14 +527,14 @@ void Planner::check_axes_activity() {
527 527
  * Add a new linear movement to the buffer.
528 528
  *
529 529
  *  x,y,z,e   - target position in mm
530
- *  feed_rate - (target) speed of the move
530
+ *  fr_mm_s   - (target) speed of the move
531 531
  *  extruder  - target extruder
532 532
  */
533 533
 
534 534
 #if ENABLED(AUTO_BED_LEVELING_FEATURE) || ENABLED(MESH_BED_LEVELING)
535
-  void Planner::buffer_line(float x, float y, float z, const float& e, float feed_rate, const uint8_t extruder)
535
+  void Planner::buffer_line(float x, float y, float z, const float& e, float fr_mm_s, const uint8_t extruder)
536 536
 #else
537
-  void Planner::buffer_line(const float& x, const float& y, const float& z, const float& e, float feed_rate, const uint8_t extruder)
537
+  void Planner::buffer_line(const float& x, const float& y, const float& z, const float& e, float fr_mm_s, const uint8_t extruder)
538 538
 #endif  // AUTO_BED_LEVELING_FEATURE
539 539
 {
540 540
   // Calculate the buffer head after we push this byte
@@ -768,9 +768,9 @@ void Planner::check_axes_activity() {
768 768
   }
769 769
 
770 770
   if (block->steps[E_AXIS])
771
-    NOLESS(feed_rate, min_feedrate);
771
+    NOLESS(fr_mm_s, min_feedrate_mm_s);
772 772
   else
773
-    NOLESS(feed_rate, min_travel_feedrate);
773
+    NOLESS(fr_mm_s, min_travel_feedrate_mm_s);
774 774
 
775 775
   /**
776 776
    * This part of the code calculates the total length of the movement.
@@ -815,20 +815,20 @@ void Planner::check_axes_activity() {
815 815
   else {
816 816
     block->millimeters = sqrt(
817 817
       #if ENABLED(COREXY)
818
-        square(delta_mm[X_HEAD]) + square(delta_mm[Y_HEAD]) + square(delta_mm[Z_AXIS])
818
+        sq(delta_mm[X_HEAD]) + sq(delta_mm[Y_HEAD]) + sq(delta_mm[Z_AXIS])
819 819
       #elif ENABLED(COREXZ)
820
-        square(delta_mm[X_HEAD]) + square(delta_mm[Y_AXIS]) + square(delta_mm[Z_HEAD])
820
+        sq(delta_mm[X_HEAD]) + sq(delta_mm[Y_AXIS]) + sq(delta_mm[Z_HEAD])
821 821
       #elif ENABLED(COREYZ)
822
-        square(delta_mm[X_AXIS]) + square(delta_mm[Y_HEAD]) + square(delta_mm[Z_HEAD])
822
+        sq(delta_mm[X_AXIS]) + sq(delta_mm[Y_HEAD]) + sq(delta_mm[Z_HEAD])
823 823
       #else
824
-        square(delta_mm[X_AXIS]) + square(delta_mm[Y_AXIS]) + square(delta_mm[Z_AXIS])
824
+        sq(delta_mm[X_AXIS]) + sq(delta_mm[Y_AXIS]) + sq(delta_mm[Z_AXIS])
825 825
       #endif
826 826
     );
827 827
   }
828 828
   float inverse_millimeters = 1.0 / block->millimeters;  // Inverse millimeters to remove multiple divides
829 829
 
830 830
   // Calculate moves/second for this move. No divide by zero due to previous checks.
831
-  float inverse_second = feed_rate * inverse_millimeters;
831
+  float inverse_second = fr_mm_s * inverse_millimeters;
832 832
 
833 833
   int moves_queued = movesplanned();
834 834
 
@@ -836,7 +836,7 @@ void Planner::check_axes_activity() {
836 836
   #if ENABLED(OLD_SLOWDOWN) || ENABLED(SLOWDOWN)
837 837
     bool mq = moves_queued > 1 && moves_queued < (BLOCK_BUFFER_SIZE) / 2;
838 838
     #if ENABLED(OLD_SLOWDOWN)
839
-      if (mq) feed_rate *= 2.0 * moves_queued / (BLOCK_BUFFER_SIZE);
839
+      if (mq) fr_mm_s *= 2.0 * moves_queued / (BLOCK_BUFFER_SIZE);
840 840
     #endif
841 841
     #if ENABLED(SLOWDOWN)
842 842
       //  segment time im micro seconds
@@ -895,7 +895,7 @@ void Planner::check_axes_activity() {
895 895
   float speed_factor = 1.0; //factor <=1 do decrease speed
896 896
   for (int i = 0; i < NUM_AXIS; i++) {
897 897
     current_speed[i] = delta_mm[i] * inverse_second;
898
-    float cs = fabs(current_speed[i]), mf = max_feedrate[i];
898
+    float cs = fabs(current_speed[i]), mf = max_feedrate_mm_s[i];
899 899
     if (cs > mf) speed_factor = min(speed_factor, mf / cs);
900 900
   }
901 901
 
@@ -1030,7 +1030,7 @@ void Planner::check_axes_activity() {
1030 1030
           dsy = current_speed[Y_AXIS] - previous_speed[Y_AXIS],
1031 1031
           dsz = fabs(csz - previous_speed[Z_AXIS]),
1032 1032
           dse = fabs(cse - previous_speed[E_AXIS]),
1033
-          jerk = sqrt(dsx * dsx + dsy * dsy);
1033
+          jerk = HYPOT(dsx, dsy);
1034 1034
 
1035 1035
     //    if ((fabs(previous_speed[X_AXIS]) > 0.0001) || (fabs(previous_speed[Y_AXIS]) > 0.0001)) {
1036 1036
     vmax_junction = block->nominal_speed;
@@ -1086,7 +1086,7 @@ void Planner::check_axes_activity() {
1086 1086
     }
1087 1087
     else {
1088 1088
       long acc_dist = estimate_acceleration_distance(0, block->nominal_rate, block->acceleration_steps_per_s2);
1089
-      float advance = ((STEPS_PER_CUBIC_MM_E) * (EXTRUDER_ADVANCE_K)) * (cse * cse * (EXTRUSION_AREA) * (EXTRUSION_AREA)) * 256;
1089
+      float advance = ((STEPS_PER_CUBIC_MM_E) * (EXTRUDER_ADVANCE_K)) * HYPOT(cse, EXTRUSION_AREA) * 256;
1090 1090
       block->advance = advance;
1091 1091
       block->advance_rate = acc_dist ? advance / (float)acc_dist : 0;
1092 1092
     }

+ 9
- 9
Marlin/planner.h 파일 보기

@@ -119,20 +119,20 @@ class Planner {
119 119
     static volatile uint8_t block_buffer_head;           // Index of the next block to be pushed
120 120
     static volatile uint8_t block_buffer_tail;
121 121
 
122
-    static float max_feedrate[NUM_AXIS]; // Max speeds in mm per second
122
+    static float max_feedrate_mm_s[NUM_AXIS]; // Max speeds in mm per second
123 123
     static float axis_steps_per_mm[NUM_AXIS];
124 124
     static unsigned long max_acceleration_steps_per_s2[NUM_AXIS];
125 125
     static unsigned long max_acceleration_mm_per_s2[NUM_AXIS]; // Use M201 to override by software
126 126
 
127 127
     static millis_t min_segment_time;
128
-    static float min_feedrate;
128
+    static float min_feedrate_mm_s;
129 129
     static float acceleration;         // Normal acceleration mm/s^2  DEFAULT ACCELERATION for all printing moves. M204 SXXXX
130 130
     static float retract_acceleration; // Retract acceleration mm/s^2 filament pull-back and push-forward while standing still in the other axes M204 TXXXX
131 131
     static float travel_acceleration;  // Travel acceleration mm/s^2  DEFAULT ACCELERATION for all NON printing moves. M204 MXXXX
132 132
     static float max_xy_jerk;          // The largest speed change requiring no acceleration
133 133
     static float max_z_jerk;
134 134
     static float max_e_jerk;
135
-    static float min_travel_feedrate;
135
+    static float min_travel_feedrate_mm_s;
136 136
 
137 137
     #if ENABLED(AUTO_BED_LEVELING_FEATURE)
138 138
       static matrix_3x3 bed_level_matrix; // Transform to compensate for bed level
@@ -211,10 +211,10 @@ class Planner {
211 211
        * Add a new linear movement to the buffer.
212 212
        *
213 213
        *  x,y,z,e   - target position in mm
214
-       *  feed_rate - (target) speed of the move
214
+       *  fr_mm_s   - (target) speed of the move (mm/s)
215 215
        *  extruder  - target extruder
216 216
        */
217
-      static void buffer_line(float x, float y, float z, const float& e, float feed_rate, const uint8_t extruder);
217
+      static void buffer_line(float x, float y, float z, const float& e, float fr_mm_s, const uint8_t extruder);
218 218
 
219 219
       /**
220 220
        * Set the planner.position and individual stepper positions.
@@ -229,7 +229,7 @@ class Planner {
229 229
 
230 230
     #else
231 231
 
232
-      static void buffer_line(const float& x, const float& y, const float& z, const float& e, float feed_rate, const uint8_t extruder);
232
+      static void buffer_line(const float& x, const float& y, const float& z, const float& e, float fr_mm_s, const uint8_t extruder);
233 233
       static void set_position_mm(const float& x, const float& y, const float& z, const float& e);
234 234
 
235 235
     #endif // AUTO_BED_LEVELING_FEATURE || MESH_BED_LEVELING
@@ -290,7 +290,7 @@ class Planner {
290 290
      */
291 291
     static float estimate_acceleration_distance(float initial_rate, float target_rate, float accel) {
292 292
       if (accel == 0) return 0; // accel was 0, set acceleration distance to 0
293
-      return (target_rate * target_rate - initial_rate * initial_rate) / (accel * 2);
293
+      return (sq(target_rate) - sq(initial_rate)) / (accel * 2);
294 294
     }
295 295
 
296 296
     /**
@@ -303,7 +303,7 @@ class Planner {
303 303
      */
304 304
     static float intersection_distance(float initial_rate, float final_rate, float accel, float distance) {
305 305
       if (accel == 0) return 0; // accel was 0, set intersection distance to 0
306
-      return (accel * 2 * distance - initial_rate * initial_rate + final_rate * final_rate) / (accel * 4);
306
+      return (accel * 2 * distance - sq(initial_rate) + sq(final_rate)) / (accel * 4);
307 307
     }
308 308
 
309 309
     /**
@@ -312,7 +312,7 @@ class Planner {
312 312
      * 'distance'.
313 313
      */
314 314
     static float max_allowable_speed(float accel, float target_velocity, float distance) {
315
-      return sqrt(target_velocity * target_velocity - 2 * accel * distance);
315
+      return sqrt(sq(target_velocity) - 2 * accel * distance);
316 316
     }
317 317
 
318 318
     static void calculate_trapezoid_for_block(block_t* block, float entry_factor, float exit_factor);

+ 3
- 3
Marlin/planner_bezier.cpp 파일 보기

@@ -105,7 +105,7 @@ inline static float dist1(float x1, float y1, float x2, float y2) { return fabs(
105 105
  * the mitigation offered by MIN_STEP and the small computational
106 106
  * power available on Arduino, I think it is not wise to implement it.
107 107
  */
108
-void cubic_b_spline(const float position[NUM_AXIS], const float target[NUM_AXIS], const float offset[4], float feed_rate, uint8_t extruder) {
108
+void cubic_b_spline(const float position[NUM_AXIS], const float target[NUM_AXIS], const float offset[4], float fr_mm_s, uint8_t extruder) {
109 109
   // Absolute first and second control points are recovered.
110 110
   float first0 = position[X_AXIS] + offset[0];
111 111
   float first1 = position[Y_AXIS] + offset[1];
@@ -193,9 +193,9 @@ void cubic_b_spline(const float position[NUM_AXIS], const float target[NUM_AXIS]
193 193
       #if ENABLED(AUTO_BED_LEVELING_FEATURE)
194 194
         adjust_delta(bez_target);
195 195
       #endif
196
-      planner.buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], bez_target[E_AXIS], feed_rate, extruder);
196
+      planner.buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], bez_target[E_AXIS], fr_mm_s, extruder);
197 197
     #else
198
-      planner.buffer_line(bez_target[X_AXIS], bez_target[Y_AXIS], bez_target[Z_AXIS], bez_target[E_AXIS], feed_rate, extruder);
198
+      planner.buffer_line(bez_target[X_AXIS], bez_target[Y_AXIS], bez_target[Z_AXIS], bez_target[E_AXIS], fr_mm_s, extruder);
199 199
     #endif
200 200
   }
201 201
 }

+ 1
- 1
Marlin/planner_bezier.h 파일 보기

@@ -36,7 +36,7 @@ void cubic_b_spline(
36 36
               const float position[NUM_AXIS], // current position
37 37
               const float target[NUM_AXIS],   // target position
38 38
               const float offset[4],          // a pair of offsets
39
-              float feed_rate,
39
+              float fr_mm_s,
40 40
               uint8_t extruder
41 41
             );
42 42
 

+ 30
- 30
Marlin/ultralcd.cpp 파일 보기

@@ -104,7 +104,7 @@ uint8_t lcdDrawUpdate = LCDVIEW_CLEAR_CALL_REDRAW; // Set when the LCD needs to
104 104
   #if HAS_POWER_SWITCH
105 105
     extern bool powersupply;
106 106
   #endif
107
-  const float manual_feedrate[] = MANUAL_FEEDRATE;
107
+  const float manual_feedrate_mm_m[] = MANUAL_FEEDRATE;
108 108
   static void lcd_main_menu();
109 109
   static void lcd_tune_menu();
110 110
   static void lcd_prepare_menu();
@@ -254,10 +254,10 @@ uint8_t lcdDrawUpdate = LCDVIEW_CLEAR_CALL_REDRAW; // Set when the LCD needs to
254 254
    *     lcd_implementation_drawmenu_function(sel, row, PSTR(MSG_PAUSE_PRINT), lcd_sdcard_pause)
255 255
    *     menu_action_function(lcd_sdcard_pause)
256 256
    *
257
-   *   MENU_ITEM_EDIT(int3, MSG_SPEED, &feedrate_multiplier, 10, 999)
258
-   *   MENU_ITEM(setting_edit_int3, MSG_SPEED, PSTR(MSG_SPEED), &feedrate_multiplier, 10, 999)
259
-   *     lcd_implementation_drawmenu_setting_edit_int3(sel, row, PSTR(MSG_SPEED), PSTR(MSG_SPEED), &feedrate_multiplier, 10, 999)
260
-   *     menu_action_setting_edit_int3(PSTR(MSG_SPEED), &feedrate_multiplier, 10, 999)
257
+   *   MENU_ITEM_EDIT(int3, MSG_SPEED, &feedrate_percentage, 10, 999)
258
+   *   MENU_ITEM(setting_edit_int3, MSG_SPEED, PSTR(MSG_SPEED), &feedrate_percentage, 10, 999)
259
+   *     lcd_implementation_drawmenu_setting_edit_int3(sel, row, PSTR(MSG_SPEED), PSTR(MSG_SPEED), &feedrate_percentage, 10, 999)
260
+   *     menu_action_setting_edit_int3(PSTR(MSG_SPEED), &feedrate_percentage, 10, 999)
261 261
    *
262 262
    */
263 263
   #define _MENU_ITEM_PART_1(TYPE, LABEL, ARGS...) \
@@ -523,29 +523,29 @@ static void lcd_status_screen() {
523 523
     }
524 524
 
525 525
     #if ENABLED(ULTIPANEL_FEEDMULTIPLY)
526
-      int new_frm = feedrate_multiplier + (int32_t)encoderPosition;
526
+      int new_frm = feedrate_percentage + (int32_t)encoderPosition;
527 527
       // Dead zone at 100% feedrate
528
-      if ((feedrate_multiplier < 100 && new_frm > 100) || (feedrate_multiplier > 100 && new_frm < 100)) {
529
-        feedrate_multiplier = 100;
528
+      if ((feedrate_percentage < 100 && new_frm > 100) || (feedrate_percentage > 100 && new_frm < 100)) {
529
+        feedrate_percentage = 100;
530 530
         encoderPosition = 0;
531 531
       }
532
-      else if (feedrate_multiplier == 100) {
532
+      else if (feedrate_percentage == 100) {
533 533
         if ((int32_t)encoderPosition > ENCODER_FEEDRATE_DEADZONE) {
534
-          feedrate_multiplier += (int32_t)encoderPosition - (ENCODER_FEEDRATE_DEADZONE);
534
+          feedrate_percentage += (int32_t)encoderPosition - (ENCODER_FEEDRATE_DEADZONE);
535 535
           encoderPosition = 0;
536 536
         }
537 537
         else if ((int32_t)encoderPosition < -(ENCODER_FEEDRATE_DEADZONE)) {
538
-          feedrate_multiplier += (int32_t)encoderPosition + ENCODER_FEEDRATE_DEADZONE;
538
+          feedrate_percentage += (int32_t)encoderPosition + ENCODER_FEEDRATE_DEADZONE;
539 539
           encoderPosition = 0;
540 540
         }
541 541
       }
542 542
       else {
543
-        feedrate_multiplier = new_frm;
543
+        feedrate_percentage = new_frm;
544 544
         encoderPosition = 0;
545 545
       }
546 546
     #endif // ULTIPANEL_FEEDMULTIPLY
547 547
 
548
-    feedrate_multiplier = constrain(feedrate_multiplier, 10, 999);
548
+    feedrate_percentage = constrain(feedrate_percentage, 10, 999);
549 549
 
550 550
   #endif //ULTIPANEL
551 551
 }
@@ -573,9 +573,9 @@ void kill_screen(const char* lcd_msg) {
573 573
   inline void line_to_current(AxisEnum axis) {
574 574
     #if ENABLED(DELTA)
575 575
       calculate_delta(current_position);
576
-      planner.buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], current_position[E_AXIS], manual_feedrate[axis]/60, active_extruder);
576
+      planner.buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], current_position[E_AXIS], MMM_TO_MMS(manual_feedrate_mm_m[axis]), active_extruder);
577 577
     #else // !DELTA
578
-      planner.buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], manual_feedrate[axis]/60, active_extruder);
578
+      planner.buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], MMM_TO_MMS(manual_feedrate_mm_m[axis]), active_extruder);
579 579
     #endif // !DELTA
580 580
   }
581 581
 
@@ -757,7 +757,7 @@ void kill_screen(const char* lcd_msg) {
757 757
     //
758 758
     // Speed:
759 759
     //
760
-    MENU_ITEM_EDIT(int3, MSG_SPEED, &feedrate_multiplier, 10, 999);
760
+    MENU_ITEM_EDIT(int3, MSG_SPEED, &feedrate_percentage, 10, 999);
761 761
 
762 762
     // Manual bed leveling, Bed Z:
763 763
     #if ENABLED(MANUAL_BED_LEVELING)
@@ -1020,7 +1020,7 @@ void kill_screen(const char* lcd_msg) {
1020 1020
       line_to_current(Z_AXIS);
1021 1021
       current_position[X_AXIS] = x + home_offset[X_AXIS];
1022 1022
       current_position[Y_AXIS] = y + home_offset[Y_AXIS];
1023
-      line_to_current(manual_feedrate[X_AXIS] <= manual_feedrate[Y_AXIS] ? X_AXIS : Y_AXIS);
1023
+      line_to_current(manual_feedrate_mm_m[X_AXIS] <= manual_feedrate_mm_m[Y_AXIS] ? X_AXIS : Y_AXIS);
1024 1024
       #if MIN_Z_HEIGHT_FOR_HOMING > 0
1025 1025
         current_position[Z_AXIS] = MESH_HOME_SEARCH_Z; // How do condition and action match?
1026 1026
         line_to_current(Z_AXIS);
@@ -1310,9 +1310,9 @@ void kill_screen(const char* lcd_msg) {
1310 1310
     if (manual_move_axis != (int8_t)NO_AXIS && ELAPSED(millis(), manual_move_start_time) && !planner.is_full()) {
1311 1311
       #if ENABLED(DELTA)
1312 1312
         calculate_delta(current_position);
1313
-        planner.buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], current_position[E_AXIS], manual_feedrate[manual_move_axis]/60, manual_move_e_index);
1313
+        planner.buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], current_position[E_AXIS], MMM_TO_MMS(manual_feedrate_mm_m[manual_move_axis]), manual_move_e_index);
1314 1314
       #else
1315
-        planner.buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], manual_feedrate[manual_move_axis]/60, manual_move_e_index);
1315
+        planner.buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], MMM_TO_MMS(manual_feedrate_mm_m[manual_move_axis]), manual_move_e_index);
1316 1316
       #endif
1317 1317
       manual_move_axis = (int8_t)NO_AXIS;
1318 1318
     }
@@ -1356,7 +1356,7 @@ void kill_screen(const char* lcd_msg) {
1356 1356
   }
1357 1357
   #if ENABLED(DELTA)
1358 1358
     static float delta_clip_radius_2 =  (DELTA_PRINTABLE_RADIUS) * (DELTA_PRINTABLE_RADIUS);
1359
-    static int delta_clip( float a ) { return sqrt(delta_clip_radius_2 - a*a); }
1359
+    static int delta_clip( float a ) { return sqrt(delta_clip_radius_2 - sq(a)); }
1360 1360
     static void lcd_move_x() { int clip = delta_clip(current_position[Y_AXIS]); _lcd_move_xyz(PSTR(MSG_MOVE_X), X_AXIS, max(sw_endstop_min[X_AXIS], -clip), min(sw_endstop_max[X_AXIS], clip)); }
1361 1361
     static void lcd_move_y() { int clip = delta_clip(current_position[X_AXIS]); _lcd_move_xyz(PSTR(MSG_MOVE_Y), Y_AXIS, max(sw_endstop_min[Y_AXIS], -clip), min(sw_endstop_max[Y_AXIS], clip)); }
1362 1362
   #else
@@ -1800,12 +1800,12 @@ void kill_screen(const char* lcd_msg) {
1800 1800
       MENU_ITEM_EDIT(float52, MSG_VZ_JERK, &planner.max_z_jerk, 0.1, 990);
1801 1801
     #endif
1802 1802
     MENU_ITEM_EDIT(float3, MSG_VE_JERK, &planner.max_e_jerk, 1, 990);
1803
-    MENU_ITEM_EDIT(float3, MSG_VMAX MSG_X, &planner.max_feedrate[X_AXIS], 1, 999);
1804
-    MENU_ITEM_EDIT(float3, MSG_VMAX MSG_Y, &planner.max_feedrate[Y_AXIS], 1, 999);
1805
-    MENU_ITEM_EDIT(float3, MSG_VMAX MSG_Z, &planner.max_feedrate[Z_AXIS], 1, 999);
1806
-    MENU_ITEM_EDIT(float3, MSG_VMAX MSG_E, &planner.max_feedrate[E_AXIS], 1, 999);
1807
-    MENU_ITEM_EDIT(float3, MSG_VMIN, &planner.min_feedrate, 0, 999);
1808
-    MENU_ITEM_EDIT(float3, MSG_VTRAV_MIN, &planner.min_travel_feedrate, 0, 999);
1803
+    MENU_ITEM_EDIT(float3, MSG_VMAX MSG_X, &planner.max_feedrate_mm_s[X_AXIS], 1, 999);
1804
+    MENU_ITEM_EDIT(float3, MSG_VMAX MSG_Y, &planner.max_feedrate_mm_s[Y_AXIS], 1, 999);
1805
+    MENU_ITEM_EDIT(float3, MSG_VMAX MSG_Z, &planner.max_feedrate_mm_s[Z_AXIS], 1, 999);
1806
+    MENU_ITEM_EDIT(float3, MSG_VMAX MSG_E, &planner.max_feedrate_mm_s[E_AXIS], 1, 999);
1807
+    MENU_ITEM_EDIT(float3, MSG_VMIN, &planner.min_feedrate_mm_s, 0, 999);
1808
+    MENU_ITEM_EDIT(float3, MSG_VTRAV_MIN, &planner.min_travel_feedrate_mm_s, 0, 999);
1809 1809
     MENU_ITEM_EDIT_CALLBACK(long5, MSG_AMAX MSG_X, &planner.max_acceleration_mm_per_s2[X_AXIS], 100, 99000, _reset_acceleration_rates);
1810 1810
     MENU_ITEM_EDIT_CALLBACK(long5, MSG_AMAX MSG_Y, &planner.max_acceleration_mm_per_s2[Y_AXIS], 100, 99000, _reset_acceleration_rates);
1811 1811
     MENU_ITEM_EDIT_CALLBACK(long5, MSG_AMAX MSG_Z, &planner.max_acceleration_mm_per_s2[Z_AXIS], 10, 99000, _reset_acceleration_rates);
@@ -1905,7 +1905,7 @@ void kill_screen(const char* lcd_msg) {
1905 1905
       #if EXTRUDERS > 1
1906 1906
         MENU_ITEM_EDIT(float52, MSG_CONTROL_RETRACT_RECOVER_SWAP, &retract_recover_length_swap, 0, 100);
1907 1907
       #endif
1908
-      MENU_ITEM_EDIT(float3, MSG_CONTROL_RETRACT_RECOVERF, &retract_recover_feedrate, 1, 999);
1908
+      MENU_ITEM_EDIT(float3, MSG_CONTROL_RETRACT_RECOVERF, &retract_recover_feedrate_mm_s, 1, 999);
1909 1909
       END_MENU();
1910 1910
     }
1911 1911
   #endif // FWRETRACT
@@ -2257,15 +2257,15 @@ void kill_screen(const char* lcd_msg) {
2257 2257
    *   static void menu_action_setting_edit_callback_int3(const char* pstr, int* ptr, int minValue, int maxValue, screenFunc_t callback); // edit int with callback
2258 2258
    *
2259 2259
    * You can then use one of the menu macros to present the edit interface:
2260
-   *   MENU_ITEM_EDIT(int3, MSG_SPEED, &feedrate_multiplier, 10, 999)
2260
+   *   MENU_ITEM_EDIT(int3, MSG_SPEED, &feedrate_percentage, 10, 999)
2261 2261
    *
2262 2262
    * This expands into a more primitive menu item:
2263
-   *   MENU_ITEM(setting_edit_int3, MSG_SPEED, PSTR(MSG_SPEED), &feedrate_multiplier, 10, 999)
2263
+   *   MENU_ITEM(setting_edit_int3, MSG_SPEED, PSTR(MSG_SPEED), &feedrate_percentage, 10, 999)
2264 2264
    *
2265 2265
    *
2266 2266
    * Also: MENU_MULTIPLIER_ITEM_EDIT, MENU_ITEM_EDIT_CALLBACK, and MENU_MULTIPLIER_ITEM_EDIT_CALLBACK
2267 2267
    *
2268
-   *       menu_action_setting_edit_int3(PSTR(MSG_SPEED), &feedrate_multiplier, 10, 999)
2268
+   *       menu_action_setting_edit_int3(PSTR(MSG_SPEED), &feedrate_percentage, 10, 999)
2269 2269
    */
2270 2270
   #define menu_edit_type(_type, _name, _strFunc, scale) \
2271 2271
     bool _menu_edit_ ## _name () { \

+ 1
- 1
Marlin/ultralcd_implementation_hitachi_HD44780.h 파일 보기

@@ -742,7 +742,7 @@ static void lcd_implementation_status_screen() {
742 742
 
743 743
     lcd.setCursor(0, 2);
744 744
     lcd.print(LCD_STR_FEEDRATE[0]);
745
-    lcd.print(itostr3(feedrate_multiplier));
745
+    lcd.print(itostr3(feedrate_percentage));
746 746
     lcd.print('%');
747 747
 
748 748
     #if LCD_WIDTH > 19 && ENABLED(SDSUPPORT)

Loading…
취소
저장