Browse Source

Drop FORCE_INLINE in planner.h

This change actually does increase the binary size by about 12 bytes,
but how does it affect performance?
Scott Lahteine 8 years ago
parent
commit
ff53819856
1 changed files with 9 additions and 9 deletions
  1. 9
    9
      Marlin/planner.h

+ 9
- 9
Marlin/planner.h View File

187
     /**
187
     /**
188
      * Number of moves currently in the planner
188
      * Number of moves currently in the planner
189
      */
189
      */
190
-    static FORCE_INLINE uint8_t movesplanned() { return BLOCK_MOD(block_buffer_head - block_buffer_tail + BLOCK_BUFFER_SIZE); }
190
+    static uint8_t movesplanned() { return BLOCK_MOD(block_buffer_head - block_buffer_tail + BLOCK_BUFFER_SIZE); }
191
 
191
 
192
     #if ENABLED(AUTO_BED_LEVELING_FEATURE) || ENABLED(MESH_BED_LEVELING)
192
     #if ENABLED(AUTO_BED_LEVELING_FEATURE) || ENABLED(MESH_BED_LEVELING)
193
 
193
 
233
     /**
233
     /**
234
      * Does the buffer have any blocks queued?
234
      * Does the buffer have any blocks queued?
235
      */
235
      */
236
-    static FORCE_INLINE bool blocks_queued() { return (block_buffer_head != block_buffer_tail); }
236
+    static bool blocks_queued() { return (block_buffer_head != block_buffer_tail); }
237
 
237
 
238
     /**
238
     /**
239
      * "Discards" the block and "releases" the memory.
239
      * "Discards" the block and "releases" the memory.
240
      * Called when the current block is no longer needed.
240
      * Called when the current block is no longer needed.
241
      */
241
      */
242
-    static FORCE_INLINE void discard_current_block() {
242
+    static void discard_current_block() {
243
       if (blocks_queued())
243
       if (blocks_queued())
244
         block_buffer_tail = BLOCK_MOD(block_buffer_tail + 1);
244
         block_buffer_tail = BLOCK_MOD(block_buffer_tail + 1);
245
     }
245
     }
248
      * The current block. NULL if the buffer is empty.
248
      * The current block. NULL if the buffer is empty.
249
      * This also marks the block as busy.
249
      * This also marks the block as busy.
250
      */
250
      */
251
-    static FORCE_INLINE block_t* get_current_block() {
251
+    static block_t* get_current_block() {
252
       if (blocks_queued()) {
252
       if (blocks_queued()) {
253
         block_t* block = &block_buffer[block_buffer_tail];
253
         block_t* block = &block_buffer[block_buffer_tail];
254
         block->busy = true;
254
         block->busy = true;
272
     /**
272
     /**
273
      * Get the index of the next / previous block in the ring buffer
273
      * Get the index of the next / previous block in the ring buffer
274
      */
274
      */
275
-    static FORCE_INLINE int8_t next_block_index(int8_t block_index) { return BLOCK_MOD(block_index + 1); }
276
-    static FORCE_INLINE int8_t prev_block_index(int8_t block_index) { return BLOCK_MOD(block_index - 1); }
275
+    static int8_t next_block_index(int8_t block_index) { return BLOCK_MOD(block_index + 1); }
276
+    static int8_t prev_block_index(int8_t block_index) { return BLOCK_MOD(block_index - 1); }
277
 
277
 
278
     /**
278
     /**
279
      * Calculate the distance (not time) it takes to accelerate
279
      * Calculate the distance (not time) it takes to accelerate
280
      * from initial_rate to target_rate using the given acceleration:
280
      * from initial_rate to target_rate using the given acceleration:
281
      */
281
      */
282
-    static FORCE_INLINE float estimate_acceleration_distance(float initial_rate, float target_rate, float acceleration) {
282
+    static float estimate_acceleration_distance(float initial_rate, float target_rate, float acceleration) {
283
       if (acceleration == 0) return 0; // acceleration was 0, set acceleration distance to 0
283
       if (acceleration == 0) return 0; // acceleration was 0, set acceleration distance to 0
284
       return (target_rate * target_rate - initial_rate * initial_rate) / (acceleration * 2);
284
       return (target_rate * target_rate - initial_rate * initial_rate) / (acceleration * 2);
285
     }
285
     }
292
      * This is used to compute the intersection point between acceleration and deceleration
292
      * This is used to compute the intersection point between acceleration and deceleration
293
      * in cases where the "trapezoid" has no plateau (i.e., never reaches maximum speed)
293
      * in cases where the "trapezoid" has no plateau (i.e., never reaches maximum speed)
294
      */
294
      */
295
-    static FORCE_INLINE float intersection_distance(float initial_rate, float final_rate, float acceleration, float distance) {
295
+    static float intersection_distance(float initial_rate, float final_rate, float acceleration, float distance) {
296
       if (acceleration == 0) return 0; // acceleration was 0, set intersection distance to 0
296
       if (acceleration == 0) return 0; // acceleration was 0, set intersection distance to 0
297
       return (acceleration * 2 * distance - initial_rate * initial_rate + final_rate * final_rate) / (acceleration * 4);
297
       return (acceleration * 2 * distance - initial_rate * initial_rate + final_rate * final_rate) / (acceleration * 4);
298
     }
298
     }
302
      * to reach 'target_velocity' using 'acceleration' within a given
302
      * to reach 'target_velocity' using 'acceleration' within a given
303
      * 'distance'.
303
      * 'distance'.
304
      */
304
      */
305
-    static FORCE_INLINE float max_allowable_speed(float acceleration, float target_velocity, float distance) {
305
+    static float max_allowable_speed(float acceleration, float target_velocity, float distance) {
306
       return sqrt(target_velocity * target_velocity - 2 * acceleration * distance);
306
       return sqrt(target_velocity * target_velocity - 2 * acceleration * distance);
307
     }
307
     }
308
 
308
 

Loading…
Cancel
Save