For cartesian bots, the X_AXIS is the real X movement and same for
Y_AXIS.
But for corexy bots, that is not true. The "X_AXIS" and "Y_AXIS" motors
(that should be named to A_AXIS
and B_AXIS) cannot be used for X and Y length, because A=X+Y and B=X-Y.
So we need to create other 2 "AXIS", named X_HEAD and Y_HEAD, meaning
the real displacement of the Head.
Having the real displacement of the head, we can calculate the total
movement length and apply the desired speed.
I have added some code in the "temperature.cpp" for have the possibility of control the time of the states with the heater drived by relays, with this feature now it is possible use PID function in conjunction with relay to control the temperature. I have made some tests and the temperature stay always in the range of +-1°C from the setted temp.
There is the possibility of turn on this features adding "#define SLOW_PWM_HEATERS" in Configuration.h
try, try again.
If 'OK' is garbled on sending PC won't receive it. Both machines will
wait on each other forever. This resends OK if nothing is heard from PC
for a while to avoid this bad case.
Due to the fix for #1248, X and Y probe offsets must not be floats.
The compiler does not support comparing float values: "error: floating constant in preprocessor expression"
The loss in X/Y precision shouldn't matter for Z probes, as most microswitches or inductive sensors are larger than 1mm square anyway.
Due to the fix for #1248, X and Y probe offsets must not be floats.
The compiler does not support comparing float values: "error: floating constant in preprocessor expression"
The loss in X/Y precision shouldn't matter for Z probes, as most microswitches or inductive sensors are larger than 1mm square anyway.