add BLTouch-related messages in english and (rusty) french;
add missing endstops.h in ultralcd.cpp;
fix misc. compiler warnings;
fix lsf_reset - ZERO macro can't handle a pointer as it would only memset the size of the pointer, not the size of the entire struct
This is what I did yesterday:
- basicly gave the tests more comprehensive names; put all the
declarations at the top; got rid of the magic negative C-value (renamed
to P + A, O, T)
- "cos(RADIANS(180 + 30 * axis)) * (1 + circles * 0.1 * ((zig_zag) ? 1 :
-1)) * delta_calibration_radius" compiles wrong is zig_zag statement is
without brackets
- DELTA_TOWER_ANGLE_TRIM reset to 3 values (the calcs use the 3th value
to normalize will not compile otherwise)
-Wrote 3 dummies to keep EEPROM lenght the same
-Reset the configs to the 'original' with autocal + menu disabled (but
can be enabled of course)
Allow BL-Touch users to control heaters during probe event (#6485)
The Configuration.h file entries for BL-Touch have been updated to:
```cpp
//#define BLTOUCH
//#define BLTOUCH_DELAY 375 // (ms) Enable and increase if needed
//#define BLTOUCH_HEATERS_OFF // if defined the printer's heaters are
turned off during probe event
```
The electro-magnetic interference from the bed and nozzle are affecting
the BL-Touch repeatability for some users. This problem can be helped
by shutting down the heaters during the actual probe event and then
quickly turning them back on.
Because this code is messing with the heaters, it is written in a
paranoid manner. It only turns the heaters back on if everything is
EXACTLY as it expects things to be. The BL-Touch probe must have been
put into a deployed state less than 20 seconds prior, or the stow()
function will NOT turn the heaters on.
This code has been tested and works for both G28 and probing functions.
Giving a negative number of probe points disables the tower angle
correction calibration ('4point' instead of '7point' solution)
EEPROM version updated
* relocated ubl state to config. store:
* removed a number of ubl state variables and padding which were largely unused - saved 58 bytes of both SRAM and EEPROM;
* modified ubl sanity_check - no longer checks removed state variables that were otherwise unused, where checking didn't seem to accomplish anything, ultimately;
* removed pre_initialized state, saving 64 bytes of SRAM;
* removed automatic saving of UBL state after UBL activation/deactivation;
* consolidated multiple GRID_MAX_POINTS_X/Y to 'Global Leveling' section of EEPROM;
* minor update to G29 Sx notes/instructions;
* renamed mesh load and save parameter to 'slot' from 'm' for clarity;
- Making M665 compatible with repetier (see
http://reprap.org/wiki/G_code#M665:_Set_delta_configuration)
- M665 B also sets the radius for manual calibration menu
- Converting tower ajustment definitions to arrays - tower angle
corrections compatible with Esher 3D wizzard
- Only tower angles need to be adjustable with M665 and stored to EEPROM
- tower radius and diag rod can be adjusted in the FW only with #define
Setup to find data corruption and general clean up
This data corruption problem is very difficult. Just changing the code
a little bit changes whether the problem even happens and what is
affected. I need these changes in the main branch so I can operate with
the extra debug code always available and turned on.
Everything is setup such that if M100 is turned off or DEBUG(ECHO) is
turned off, the code is not affected. M100 has been made a little bit
more inteligent so it can display the serial command buffers in a more
meaningful way (because the data corruption seems to often times end up
in that area).