/** * Marlin 3D Printer Firmware * Copyright (c) 2020 MarlinFirmware [https://github.com/MarlinFirmware/Marlin] * * Based on Sprinter and grbl. * Copyright (c) 2011 Camiel Gubbels / Erik van der Zalm * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see . * */ /** * This module is off by default, but can be enabled to facilitate the display of * extra debug information during code development. * * Just connect up 5V and GND to give it power, then connect up the pins assigned * in Configuration_adv.h. For example, on the Re-ARM you could use: * * #define MAX7219_CLK_PIN 77 * #define MAX7219_DIN_PIN 78 * #define MAX7219_LOAD_PIN 79 * * send() is called automatically at startup, and then there are a number of * support functions available to control the LEDs in the 8x8 grid. */ #include "../inc/MarlinConfigPre.h" #if ENABLED(MAX7219_DEBUG) #define MAX7219_ERRORS // Disable to save 406 bytes of Program Memory #include "max7219.h" #include "../module/planner.h" #include "../MarlinCore.h" #include "../HAL/shared/Delay.h" #if ENABLED(MAX7219_SIDE_BY_SIDE) && MAX7219_NUMBER_UNITS > 1 #define HAS_SIDE_BY_SIDE 1 #endif #define _ROT ((MAX7219_ROTATE + 360) % 360) #if _ROT == 0 || _ROT == 180 #define MAX7219_X_LEDS TERN(HAS_SIDE_BY_SIDE, 8, MAX7219_LINES) #define MAX7219_Y_LEDS TERN(HAS_SIDE_BY_SIDE, MAX7219_LINES, 8) #elif _ROT == 90 || _ROT == 270 #define MAX7219_X_LEDS TERN(HAS_SIDE_BY_SIDE, MAX7219_LINES, 8) #define MAX7219_Y_LEDS TERN(HAS_SIDE_BY_SIDE, 8, MAX7219_LINES) #else #error "MAX7219_ROTATE must be a multiple of +/- 90°." #endif #ifdef MAX7219_DEBUG_PROFILE CodeProfiler::Mode CodeProfiler::mode = ACCUMULATE_AVERAGE; uint8_t CodeProfiler::instance_count = 0; uint32_t CodeProfiler::last_calc_time = micros(); uint8_t CodeProfiler::time_fraction = 0; uint32_t CodeProfiler::total_time = 0; uint16_t CodeProfiler::call_count = 0; #endif Max7219 max7219; uint8_t Max7219::led_line[MAX7219_LINES]; // = { 0 }; uint8_t Max7219::suspended; // = 0; #define LINE_REG(Q) (max7219_reg_digit0 + ((Q) & 0x7)) #if (_ROT == 0 || _ROT == 270) == DISABLED(MAX7219_REVERSE_EACH) #define _LED_BIT(Q) (7 - ((Q) & 0x7)) #else #define _LED_BIT(Q) ((Q) & 0x7) #endif #if _ROT == 0 || _ROT == 180 #define LED_BIT(X,Y) _LED_BIT(X) #else #define LED_BIT(X,Y) _LED_BIT(Y) #endif #if _ROT == 0 || _ROT == 90 #define _LED_IND(P,Q) (_LED_TOP(P) + ((Q) & 0x7)) #else #define _LED_IND(P,Q) (_LED_TOP(P) + (7 - ((Q) & 0x7))) #endif #if HAS_SIDE_BY_SIDE #if (_ROT == 0 || _ROT == 90) == DISABLED(MAX7219_REVERSE_ORDER) #define _LED_TOP(Q) ((MAX7219_NUMBER_UNITS - 1 - ((Q) >> 3)) << 3) #else #define _LED_TOP(Q) ((Q) & ~0x7) #endif #if _ROT == 0 || _ROT == 180 #define LED_IND(X,Y) _LED_IND(Y,Y) #elif _ROT == 90 || _ROT == 270 #define LED_IND(X,Y) _LED_IND(X,X) #endif #else #if (_ROT == 0 || _ROT == 270) == DISABLED(MAX7219_REVERSE_ORDER) #define _LED_TOP(Q) ((Q) & ~0x7) #else #define _LED_TOP(Q) ((MAX7219_NUMBER_UNITS - 1 - ((Q) >> 3)) << 3) #endif #if _ROT == 0 || _ROT == 180 #define LED_IND(X,Y) _LED_IND(X,Y) #elif _ROT == 90 || _ROT == 270 #define LED_IND(X,Y) _LED_IND(Y,X) #endif #endif #define XOR_7219(X,Y) do{ led_line[LED_IND(X,Y)] ^= _BV(LED_BIT(X,Y)); }while(0) #define SET_7219(X,Y) do{ led_line[LED_IND(X,Y)] |= _BV(LED_BIT(X,Y)); }while(0) #define CLR_7219(X,Y) do{ led_line[LED_IND(X,Y)] &= ~_BV(LED_BIT(X,Y)); }while(0) #define BIT_7219(X,Y) TEST(led_line[LED_IND(X,Y)], LED_BIT(X,Y)) #ifdef CPU_32_BIT #define SIG_DELAY() DELAY_US(1) // Approximate a 1µs delay on 32-bit ARM #undef CRITICAL_SECTION_START #undef CRITICAL_SECTION_END #define CRITICAL_SECTION_START() NOOP #define CRITICAL_SECTION_END() NOOP #else #define SIG_DELAY() DELAY_NS(250) #endif void Max7219::error(FSTR_P const func, const int32_t v1, const int32_t v2/*=-1*/) { #if ENABLED(MAX7219_ERRORS) SERIAL_ECHOPGM("??? Max7219::"); SERIAL_ECHOF(func, AS_CHAR('(')); SERIAL_ECHO(v1); if (v2 > 0) SERIAL_ECHOPGM(", ", v2); SERIAL_CHAR(')'); SERIAL_EOL(); #else UNUSED(func); UNUSED(v1); UNUSED(v2); #endif } /** * Flip the lowest n_bytes of the supplied bits: * flipped(x, 1) flips the low 8 bits of x. * flipped(x, 2) flips the low 16 bits of x. * flipped(x, 3) flips the low 24 bits of x. * flipped(x, 4) flips the low 32 bits of x. */ inline uint32_t flipped(const uint32_t bits, const uint8_t n_bytes) { uint32_t mask = 1, outbits = 0; LOOP_L_N(b, n_bytes * 8) { outbits <<= 1; if (bits & mask) outbits |= 1; mask <<= 1; } return outbits; } void Max7219::noop() { CRITICAL_SECTION_START(); SIG_DELAY(); WRITE(MAX7219_DIN_PIN, LOW); for (uint8_t i = 16; i--;) { SIG_DELAY(); WRITE(MAX7219_CLK_PIN, LOW); SIG_DELAY(); SIG_DELAY(); WRITE(MAX7219_CLK_PIN, HIGH); SIG_DELAY(); } CRITICAL_SECTION_END(); } void Max7219::putbyte(uint8_t data) { CRITICAL_SECTION_START(); for (uint8_t i = 8; i--;) { SIG_DELAY(); WRITE(MAX7219_CLK_PIN, LOW); // tick SIG_DELAY(); WRITE(MAX7219_DIN_PIN, (data & 0x80) ? HIGH : LOW); // send 1 or 0 based on data bit SIG_DELAY(); WRITE(MAX7219_CLK_PIN, HIGH); // tock SIG_DELAY(); data <<= 1; } CRITICAL_SECTION_END(); } void Max7219::pulse_load() { SIG_DELAY(); WRITE(MAX7219_LOAD_PIN, LOW); // tell the chip to load the data SIG_DELAY(); WRITE(MAX7219_LOAD_PIN, HIGH); SIG_DELAY(); } void Max7219::send(const uint8_t reg, const uint8_t data) { SIG_DELAY(); CRITICAL_SECTION_START(); SIG_DELAY(); putbyte(reg); // specify register SIG_DELAY(); putbyte(data); // put data CRITICAL_SECTION_END(); } // Send out a single native row of bits to just one unit void Max7219::refresh_unit_line(const uint8_t line) { if (suspended) return; #if MAX7219_NUMBER_UNITS == 1 send(LINE_REG(line), led_line[line]); #else for (uint8_t u = MAX7219_NUMBER_UNITS; u--;) if (u == (line >> 3)) send(LINE_REG(line), led_line[line]); else noop(); #endif pulse_load(); } // Send out a single native row of bits to all units void Max7219::refresh_line(const uint8_t line) { if (suspended) return; #if MAX7219_NUMBER_UNITS == 1 refresh_unit_line(line); #else for (uint8_t u = MAX7219_NUMBER_UNITS; u--;) send(LINE_REG(line), led_line[(u << 3) | (line & 0x7)]); #endif pulse_load(); } void Max7219::set(const uint8_t line, const uint8_t bits) { led_line[line] = bits; refresh_unit_line(line); } #if ENABLED(MAX7219_NUMERIC) // Draw an integer with optional leading zeros and optional decimal point void Max7219::print(const uint8_t start, int16_t value, uint8_t size, const bool leadzero=false, bool dec=false) { if (suspended) return; constexpr uint8_t led_numeral[10] = { 0x7E, 0x60, 0x6D, 0x79, 0x63, 0x5B, 0x5F, 0x70, 0x7F, 0x7A }, led_decimal = 0x80, led_minus = 0x01; bool blank = false, neg = value < 0; if (neg) value *= -1; while (size--) { const bool minus = neg && blank; if (minus) neg = false; send( max7219_reg_digit0 + start + size, minus ? led_minus : blank ? 0x00 : led_numeral[value % 10] | (dec ? led_decimal : 0x00) ); pulse_load(); // tell the chips to load the clocked out data value /= 10; if (!value && !leadzero) blank = true; dec = false; } } // Draw a float with a decimal point and optional digits void Max7219::print(const uint8_t start, const_float_t value, const uint8_t pre_size, const uint8_t post_size, const bool leadzero=false) { if (pre_size) print(start, value, pre_size, leadzero, !!post_size); if (post_size) { const int16_t after = ABS(value) * (10 ^ post_size); print(start + pre_size, after, post_size, true); } } #endif // MAX7219_NUMERIC // Modify a single LED bit and send the changed line void Max7219::led_set(const uint8_t x, const uint8_t y, const bool on, uint8_t * const rcm/*=nullptr*/) { if (x >= MAX7219_X_LEDS || y >= MAX7219_Y_LEDS) return error(F("led_set"), x, y); if (BIT_7219(x, y) == on) return; XOR_7219(x, y); refresh_unit_line(LED_IND(x, y)); if (rcm != nullptr) *rcm |= _BV(LED_IND(x, y) & 0x07); } void Max7219::led_on(const uint8_t x, const uint8_t y, uint8_t * const rcm/*=nullptr*/) { if (x >= MAX7219_X_LEDS || y >= MAX7219_Y_LEDS) return error(F("led_on"), x, y); led_set(x, y, true, rcm); } void Max7219::led_off(const uint8_t x, const uint8_t y, uint8_t * const rcm/*=nullptr*/) { if (x >= MAX7219_X_LEDS || y >= MAX7219_Y_LEDS) return error(F("led_off"), x, y); led_set(x, y, false, rcm); } void Max7219::led_toggle(const uint8_t x, const uint8_t y, uint8_t * const rcm/*=nullptr*/) { if (x >= MAX7219_X_LEDS || y >= MAX7219_Y_LEDS) return error(F("led_toggle"), x, y); led_set(x, y, !BIT_7219(x, y), rcm); } void Max7219::send_row(const uint8_t row) { if (suspended) return; #if _ROT == 0 || _ROT == 180 // Native Lines are horizontal too #if MAX7219_X_LEDS <= 8 refresh_unit_line(LED_IND(0, row)); // A single unit line #else refresh_line(LED_IND(0, row)); // Same line, all units #endif #else // Native lines are vertical UNUSED(row); refresh(); // Actually a column #endif } void Max7219::send_column(const uint8_t col) { if (suspended) return; #if _ROT == 90 || _ROT == 270 // Native Lines are vertical too #if MAX7219_Y_LEDS <= 8 refresh_unit_line(LED_IND(col, 0)); // A single unit line #else refresh_line(LED_IND(col, 0)); // Same line, all units #endif #else // Native lines are horizontal UNUSED(col); refresh(); // Actually a row #endif } void Max7219::clear() { ZERO(led_line); refresh(); } void Max7219::fill() { memset(led_line, 0xFF, sizeof(led_line)); refresh(); } void Max7219::clear_row(const uint8_t row) { if (row >= MAX7219_Y_LEDS) return error(F("clear_row"), row); LOOP_L_N(x, MAX7219_X_LEDS) CLR_7219(x, row); send_row(row); } void Max7219::clear_column(const uint8_t col) { if (col >= MAX7219_X_LEDS) return error(F("set_column"), col); LOOP_L_N(y, MAX7219_Y_LEDS) CLR_7219(col, y); send_column(col); } /** * Plot the low order bits of val to the specified row of the matrix. * With 4 Max7219 units in the chain, it's possible to set 32 bits at * once with a single call to the function (if rotated 90° or 270°). */ void Max7219::set_row(const uint8_t row, const uint32_t val) { if (row >= MAX7219_Y_LEDS) return error(F("set_row"), row); uint32_t mask = _BV32(MAX7219_X_LEDS - 1); LOOP_L_N(x, MAX7219_X_LEDS) { if (val & mask) SET_7219(x, row); else CLR_7219(x, row); mask >>= 1; } send_row(row); } /** * Plot the low order bits of val to the specified column of the matrix. * With 4 Max7219 units in the chain, it's possible to set 32 bits at * once with a single call to the function (if rotated 0° or 180°). */ void Max7219::set_column(const uint8_t col, const uint32_t val) { if (col >= MAX7219_X_LEDS) return error(F("set_column"), col); uint32_t mask = _BV32(MAX7219_Y_LEDS - 1); LOOP_L_N(y, MAX7219_Y_LEDS) { if (val & mask) SET_7219(col, y); else CLR_7219(col, y); mask >>= 1; } send_column(col); } void Max7219::set_rows_16bits(const uint8_t y, uint32_t val) { #if MAX7219_X_LEDS == 8 if (y > MAX7219_Y_LEDS - 2) return error(F("set_rows_16bits"), y, val); set_row(y + 1, val); val >>= 8; set_row(y + 0, val); #else // at least 16 bits on each row if (y > MAX7219_Y_LEDS - 1) return error(F("set_rows_16bits"), y, val); set_row(y, val); #endif } void Max7219::set_rows_32bits(const uint8_t y, uint32_t val) { #if MAX7219_X_LEDS == 8 if (y > MAX7219_Y_LEDS - 4) return error(F("set_rows_32bits"), y, val); set_row(y + 3, val); val >>= 8; set_row(y + 2, val); val >>= 8; set_row(y + 1, val); val >>= 8; set_row(y + 0, val); #elif MAX7219_X_LEDS == 16 if (y > MAX7219_Y_LEDS - 2) return error(F("set_rows_32bits"), y, val); set_row(y + 1, val); val >>= 16; set_row(y + 0, val); #else // at least 24 bits on each row. In the 3 matrix case, just display the low 24 bits if (y > MAX7219_Y_LEDS - 1) return error(F("set_rows_32bits"), y, val); set_row(y, val); #endif } void Max7219::set_columns_16bits(const uint8_t x, uint32_t val) { #if MAX7219_Y_LEDS == 8 if (x > MAX7219_X_LEDS - 2) return error(F("set_columns_16bits"), x, val); set_column(x + 0, val); val >>= 8; set_column(x + 1, val); #else // at least 16 bits in each column if (x > MAX7219_X_LEDS - 1) return error(F("set_columns_16bits"), x, val); set_column(x, val); #endif } void Max7219::set_columns_32bits(const uint8_t x, uint32_t val) { #if MAX7219_Y_LEDS == 8 if (x > MAX7219_X_LEDS - 4) return error(F("set_rows_32bits"), x, val); set_column(x + 3, val); val >>= 8; set_column(x + 2, val); val >>= 8; set_column(x + 1, val); val >>= 8; set_column(x + 0, val); #elif MAX7219_Y_LEDS == 16 if (x > MAX7219_X_LEDS - 2) return error(F("set_rows_32bits"), x, val); set_column(x + 1, val); val >>= 16; set_column(x + 0, val); #else // at least 24 bits on each row. In the 3 matrix case, just display the low 24 bits if (x > MAX7219_X_LEDS - 1) return error(F("set_rows_32bits"), x, val); set_column(x, val); #endif } // Initialize the Max7219 void Max7219::register_setup() { LOOP_L_N(i, MAX7219_NUMBER_UNITS) send(max7219_reg_scanLimit, 0x07); pulse_load(); // Tell the chips to load the clocked out data LOOP_L_N(i, MAX7219_NUMBER_UNITS) send(max7219_reg_decodeMode, 0x00); // Using an led matrix (not digits) pulse_load(); // Tell the chips to load the clocked out data LOOP_L_N(i, MAX7219_NUMBER_UNITS) send(max7219_reg_shutdown, 0x01); // Not in shutdown mode pulse_load(); // Tell the chips to load the clocked out data LOOP_L_N(i, MAX7219_NUMBER_UNITS) send(max7219_reg_displayTest, 0x00); // No display test pulse_load(); // Tell the chips to load the clocked out data LOOP_L_N(i, MAX7219_NUMBER_UNITS) send(max7219_reg_intensity, 0x01 & 0x0F); // The first 0x0F is the value you can set // Range: 0x00 to 0x0F pulse_load(); // Tell the chips to load the clocked out data } #if MAX7219_INIT_TEST uint8_t test_mode = 0; millis_t next_patt_ms; bool patt_on; #if MAX7219_INIT_TEST == 2 #define MAX7219_LEDS (MAX7219_X_LEDS * MAX7219_Y_LEDS) constexpr millis_t pattern_delay = 4; int8_t spiralx, spiraly, spiral_dir; IF<(MAX7219_LEDS > 255), uint16_t, uint8_t>::type spiral_count; void Max7219::test_pattern() { constexpr int8_t way[][2] = { { 1, 0 }, { 0, 1 }, { -1, 0 }, { 0, -1 } }; led_set(spiralx, spiraly, patt_on); const int8_t x = spiralx + way[spiral_dir][0], y = spiraly + way[spiral_dir][1]; if (!WITHIN(x, 0, MAX7219_X_LEDS - 1) || !WITHIN(y, 0, MAX7219_Y_LEDS - 1) || BIT_7219(x, y) == patt_on) spiral_dir = (spiral_dir + 1) & 0x3; spiralx += way[spiral_dir][0]; spiraly += way[spiral_dir][1]; if (!spiral_count--) { if (!patt_on) test_mode = 0; else { spiral_count = MAX7219_LEDS; spiralx = spiraly = spiral_dir = 0; patt_on = false; } } } #else constexpr millis_t pattern_delay = 20; int8_t sweep_count, sweepx, sweep_dir; void Max7219::test_pattern() { set_column(sweepx, patt_on ? 0xFFFFFFFF : 0x00000000); sweepx += sweep_dir; if (!WITHIN(sweepx, 0, MAX7219_X_LEDS - 1)) { if (!patt_on) { sweep_dir *= -1; sweepx += sweep_dir; } else sweepx -= MAX7219_X_LEDS * sweep_dir; patt_on ^= true; next_patt_ms += 100; if (++test_mode > 4) test_mode = 0; } } #endif void Max7219::run_test_pattern() { const millis_t ms = millis(); if (PENDING(ms, next_patt_ms)) return; next_patt_ms = ms + pattern_delay; test_pattern(); } void Max7219::start_test_pattern() { clear(); test_mode = 1; patt_on = true; #if MAX7219_INIT_TEST == 2 spiralx = spiraly = spiral_dir = 0; spiral_count = MAX7219_LEDS; #else sweep_dir = 1; sweepx = 0; sweep_count = MAX7219_X_LEDS; #endif } #endif // MAX7219_INIT_TEST void Max7219::init() { SET_OUTPUT(MAX7219_DIN_PIN); SET_OUTPUT(MAX7219_CLK_PIN); OUT_WRITE(MAX7219_LOAD_PIN, HIGH); delay(1); register_setup(); clear(); #if MAX7219_INIT_TEST start_test_pattern(); #endif } /** * This code demonstrates some simple debugging using a single 8x8 LED Matrix. If your feature could * benefit from matrix display, add its code here. Very little processing is required, so the 7219 is * ideal for debugging when realtime feedback is important but serial output can't be used. */ // Apply changes to update a marker void Max7219::mark16(const uint8_t pos, const uint8_t v1, const uint8_t v2, uint8_t * const rcm/*=nullptr*/) { #if MAX7219_X_LEDS > 8 // At least 16 LEDs on the X-Axis. Use single line. led_off(v1 & 0xF, pos, rcm); led_on(v2 & 0xF, pos, rcm); #elif MAX7219_Y_LEDS > 8 // At least 16 LEDs on the Y-Axis. Use a single column. led_off(pos, v1 & 0xF, rcm); led_on(pos, v2 & 0xF, rcm); #else // Single 8x8 LED matrix. Use two lines to get 16 LEDs. led_off(v1 & 0x7, pos + (v1 >= 8), rcm); led_on(v2 & 0x7, pos + (v2 >= 8), rcm); #endif } // Apply changes to update a tail-to-head range void Max7219::range16(const uint8_t y, const uint8_t ot, const uint8_t nt, const uint8_t oh, const uint8_t nh, uint8_t * const rcm/*=nullptr*/) { #if MAX7219_X_LEDS > 8 // At least 16 LEDs on the X-Axis. Use single line. if (ot != nt) for (uint8_t n = ot & 0xF; n != (nt & 0xF) && n != (nh & 0xF); n = (n + 1) & 0xF) led_off(n & 0xF, y, rcm); if (oh != nh) for (uint8_t n = (oh + 1) & 0xF; n != ((nh + 1) & 0xF); n = (n + 1) & 0xF) led_on(n & 0xF, y, rcm); #elif MAX7219_Y_LEDS > 8 // At least 16 LEDs on the Y-Axis. Use a single column. if (ot != nt) for (uint8_t n = ot & 0xF; n != (nt & 0xF) && n != (nh & 0xF); n = (n + 1) & 0xF) led_off(y, n & 0xF, rcm); if (oh != nh) for (uint8_t n = (oh + 1) & 0xF; n != ((nh + 1) & 0xF); n = (n + 1) & 0xF) led_on(y, n & 0xF, rcm); #else // Single 8x8 LED matrix. Use two lines to get 16 LEDs. if (ot != nt) for (uint8_t n = ot & 0xF; n != (nt & 0xF) && n != (nh & 0xF); n = (n + 1) & 0xF) led_off(n & 0x7, y + (n >= 8), rcm); if (oh != nh) for (uint8_t n = (oh + 1) & 0xF; n != ((nh + 1) & 0xF); n = (n + 1) & 0xF) led_on(n & 0x7, y + (n >= 8), rcm); #endif } // Apply changes to update a quantity void Max7219::quantity(const uint8_t pos, const uint8_t ov, const uint8_t nv, uint8_t * const rcm/*=nullptr*/) { for (uint8_t i = _MIN(nv, ov); i < _MAX(nv, ov); i++) led_set( #if MAX7219_X_LEDS >= MAX7219_Y_LEDS i, pos // Single matrix or multiple matrices in Landscape #else pos, i // Multiple matrices in Portrait #endif , nv >= ov , rcm ); } void Max7219::quantity16(const uint8_t pos, const uint8_t ov, const uint8_t nv, uint8_t * const rcm/*=nullptr*/) { for (uint8_t i = _MIN(nv, ov); i < _MAX(nv, ov); i++) led_set( #if MAX7219_X_LEDS > 8 // At least 16 LEDs on the X-Axis. Use single line. i, pos #elif MAX7219_Y_LEDS > 8 // At least 16 LEDs on the Y-Axis. Use a single column. pos, i #else // Single 8x8 LED matrix. Use two lines to get 16 LEDs. i >> 1, pos + (i & 1) #endif , nv >= ov , rcm ); } void Max7219::idle_tasks() { #define MAX7219_USE_HEAD (defined(MAX7219_DEBUG_PLANNER_HEAD) || defined(MAX7219_DEBUG_PLANNER_QUEUE)) #define MAX7219_USE_TAIL (defined(MAX7219_DEBUG_PLANNER_TAIL) || defined(MAX7219_DEBUG_PLANNER_QUEUE)) #if MAX7219_USE_HEAD || MAX7219_USE_TAIL CRITICAL_SECTION_START(); #if MAX7219_USE_HEAD const uint8_t head = planner.block_buffer_head; #endif #if MAX7219_USE_TAIL const uint8_t tail = planner.block_buffer_tail; #endif CRITICAL_SECTION_END(); #endif #if ENABLED(MAX7219_DEBUG_PRINTER_ALIVE) static uint8_t refresh_cnt; // = 0 constexpr uint16_t refresh_limit = 5; static millis_t next_blink = 0; const millis_t ms = millis(); const bool do_blink = ELAPSED(ms, next_blink); #else static uint16_t refresh_cnt; // = 0 constexpr bool do_blink = true; constexpr uint16_t refresh_limit = 50000; #endif // Some Max7219 units are vulnerable to electrical noise, especially // with long wires next to high current wires. If the display becomes // corrupted, this will fix it within a couple seconds. if (do_blink && ++refresh_cnt >= refresh_limit) { refresh_cnt = 0; register_setup(); } #if MAX7219_INIT_TEST if (test_mode) { run_test_pattern(); return; } #endif // suspend updates and record which lines have changed for batching later suspended++; uint8_t row_change_mask = 0x00; #if ENABLED(MAX7219_DEBUG_PRINTER_ALIVE) if (do_blink) { led_toggle(MAX7219_X_LEDS - 1, MAX7219_Y_LEDS - 1, &row_change_mask); next_blink = ms + 1000; } #endif #if defined(MAX7219_DEBUG_PLANNER_HEAD) && defined(MAX7219_DEBUG_PLANNER_TAIL) && MAX7219_DEBUG_PLANNER_HEAD == MAX7219_DEBUG_PLANNER_TAIL static int16_t last_head_cnt = 0xF, last_tail_cnt = 0xF; if (last_head_cnt != head || last_tail_cnt != tail) { range16(MAX7219_DEBUG_PLANNER_HEAD, last_tail_cnt, tail, last_head_cnt, head, &row_change_mask); last_head_cnt = head; last_tail_cnt = tail; } #else #ifdef MAX7219_DEBUG_PLANNER_HEAD static int16_t last_head_cnt = 0x1; if (last_head_cnt != head) { mark16(MAX7219_DEBUG_PLANNER_HEAD, last_head_cnt, head, &row_change_mask); last_head_cnt = head; } #endif #ifdef MAX7219_DEBUG_PLANNER_TAIL static int16_t last_tail_cnt = 0x1; if (last_tail_cnt != tail) { mark16(MAX7219_DEBUG_PLANNER_TAIL, last_tail_cnt, tail, &row_change_mask); last_tail_cnt = tail; } #endif #endif #ifdef MAX7219_DEBUG_PLANNER_QUEUE static int16_t last_depth = 0; const int16_t current_depth = (head - tail + BLOCK_BUFFER_SIZE) & (BLOCK_BUFFER_SIZE - 1) & 0xF; if (current_depth != last_depth) { quantity16(MAX7219_DEBUG_PLANNER_QUEUE, last_depth, current_depth, &row_change_mask); last_depth = current_depth; } #endif #ifdef MAX7219_DEBUG_PROFILE static uint8_t last_time_fraction = 0; const uint8_t current_time_fraction = (uint16_t(CodeProfiler::get_time_fraction()) * MAX7219_NUMBER_UNITS + 8) / 16; if (current_time_fraction != last_time_fraction) { quantity(MAX7219_DEBUG_PROFILE, last_time_fraction, current_time_fraction, &row_change_mask); last_time_fraction = current_time_fraction; } #endif // batch line updates suspended--; if (!suspended) LOOP_L_N(i, 8) if (row_change_mask & _BV(i)) refresh_line(i); // After resume() automatically do a refresh() if (suspended == 0x80) { suspended = 0; refresh(); } } #endif // MAX7219_DEBUG