/** * Marlin 3D Printer Firmware * Copyright (c) 2020 MarlinFirmware [https://github.com/MarlinFirmware/Marlin] * * Based on Sprinter and grbl. * Copyright (c) 2011 Camiel Gubbels / Erik van der Zalm * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see . * */ /** * Arduino Sd2Card Library * Copyright (c) 2009 by William Greiman * Updated with backports of the latest SdFat library from the same author * * This file is part of the Arduino Sd2Card Library */ #include "../inc/MarlinConfig.h" #if ENABLED(SDSUPPORT) && NONE(USB_FLASH_DRIVE_SUPPORT, SDIO_SUPPORT) /* Enable FAST CRC computations - You can trade speed for FLASH space if * needed by disabling the following define */ #define FAST_CRC 1 #include "Sd2Card.h" #include "../MarlinCore.h" #if ENABLED(SD_CHECK_AND_RETRY) static bool crcSupported = true; #ifdef FAST_CRC static const uint8_t crctab7[] PROGMEM = { 0x00,0x09,0x12,0x1B,0x24,0x2D,0x36,0x3F,0x48,0x41,0x5A,0x53,0x6C,0x65,0x7E,0x77, 0x19,0x10,0x0B,0x02,0x3D,0x34,0x2F,0x26,0x51,0x58,0x43,0x4A,0x75,0x7C,0x67,0x6E, 0x32,0x3B,0x20,0x29,0x16,0x1F,0x04,0x0D,0x7A,0x73,0x68,0x61,0x5E,0x57,0x4C,0x45, 0x2B,0x22,0x39,0x30,0x0F,0x06,0x1D,0x14,0x63,0x6A,0x71,0x78,0x47,0x4E,0x55,0x5C, 0x64,0x6D,0x76,0x7F,0x40,0x49,0x52,0x5B,0x2C,0x25,0x3E,0x37,0x08,0x01,0x1A,0x13, 0x7D,0x74,0x6F,0x66,0x59,0x50,0x4B,0x42,0x35,0x3C,0x27,0x2E,0x11,0x18,0x03,0x0A, 0x56,0x5F,0x44,0x4D,0x72,0x7B,0x60,0x69,0x1E,0x17,0x0C,0x05,0x3A,0x33,0x28,0x21, 0x4F,0x46,0x5D,0x54,0x6B,0x62,0x79,0x70,0x07,0x0E,0x15,0x1C,0x23,0x2A,0x31,0x38, 0x41,0x48,0x53,0x5A,0x65,0x6C,0x77,0x7E,0x09,0x00,0x1B,0x12,0x2D,0x24,0x3F,0x36, 0x58,0x51,0x4A,0x43,0x7C,0x75,0x6E,0x67,0x10,0x19,0x02,0x0B,0x34,0x3D,0x26,0x2F, 0x73,0x7A,0x61,0x68,0x57,0x5E,0x45,0x4C,0x3B,0x32,0x29,0x20,0x1F,0x16,0x0D,0x04, 0x6A,0x63,0x78,0x71,0x4E,0x47,0x5C,0x55,0x22,0x2B,0x30,0x39,0x06,0x0F,0x14,0x1D, 0x25,0x2C,0x37,0x3E,0x01,0x08,0x13,0x1A,0x6D,0x64,0x7F,0x76,0x49,0x40,0x5B,0x52, 0x3C,0x35,0x2E,0x27,0x18,0x11,0x0A,0x03,0x74,0x7D,0x66,0x6F,0x50,0x59,0x42,0x4B, 0x17,0x1E,0x05,0x0C,0x33,0x3A,0x21,0x28,0x5F,0x56,0x4D,0x44,0x7B,0x72,0x69,0x60, 0x0E,0x07,0x1C,0x15,0x2A,0x23,0x38,0x31,0x46,0x4F,0x54,0x5D,0x62,0x6B,0x70,0x79 }; static uint8_t CRC7(const uint8_t* data, uint8_t n) { uint8_t crc = 0; while (n > 0) { crc = pgm_read_byte(&crctab7[ (crc << 1) ^ *data++ ]); n--; } return (crc << 1) | 1; } #else static uint8_t CRC7(const uint8_t* data, uint8_t n) { uint8_t crc = 0; LOOP_L_N(i, n) { uint8_t d = data[i]; d ^= crc << 1; if (d & 0x80) d ^= 9; crc = d ^ (crc & 0x78) ^ (crc << 4) ^ ((crc >> 3) & 15); crc &= 0x7F; } crc = (crc << 1) ^ (crc << 4) ^ (crc & 0x70) ^ ((crc >> 3) & 0x0F); return crc | 1; } #endif #endif // Send command and return error code. Return zero for OK uint8_t Sd2Card::cardCommand(const uint8_t cmd, const uint32_t arg) { // Select card chipSelect(); // Wait up to 300 ms if busy waitNotBusy(SD_WRITE_TIMEOUT); uint8_t *pa = (uint8_t *)(&arg); #if ENABLED(SD_CHECK_AND_RETRY) // Form message uint8_t d[6] = {(uint8_t) (cmd | 0x40), pa[3], pa[2], pa[1], pa[0] }; // Add crc d[5] = CRC7(d, 5); // Send message LOOP_L_N(k, 6) spiSend(d[k]); #else // Send command spiSend(cmd | 0x40); // Send argument for (int8_t i = 3; i >= 0; i--) spiSend(pa[i]); // Send CRC - correct for CMD0 with arg zero or CMD8 with arg 0X1AA spiSend(cmd == CMD0 ? 0X95 : 0X87); #endif // Skip stuff byte for stop read if (cmd == CMD12) spiRec(); // Wait for response for (uint8_t i = 0; ((status_ = spiRec()) & 0x80) && i != 0xFF; i++) { /* Intentionally left empty */ } return status_; } /** * Determine the size of an SD flash memory card. * * \return The number of 512 byte data blocks in the card * or zero if an error occurs. */ uint32_t Sd2Card::cardSize() { csd_t csd; if (!readCSD(&csd)) return 0; if (csd.v1.csd_ver == 0) { uint8_t read_bl_len = csd.v1.read_bl_len; uint16_t c_size = (csd.v1.c_size_high << 10) | (csd.v1.c_size_mid << 2) | csd.v1.c_size_low; uint8_t c_size_mult = (csd.v1.c_size_mult_high << 1) | csd.v1.c_size_mult_low; return (uint32_t)(c_size + 1) << (c_size_mult + read_bl_len - 7); } else if (csd.v2.csd_ver == 1) { uint32_t c_size = ((uint32_t)csd.v2.c_size_high << 16) | (csd.v2.c_size_mid << 8) | csd.v2.c_size_low; return (c_size + 1) << 10; } else { error(SD_CARD_ERROR_BAD_CSD); return 0; } } void Sd2Card::chipDeselect() { extDigitalWrite(chipSelectPin_, HIGH); spiSend(0xFF); // Ensure MISO goes high impedance } void Sd2Card::chipSelect() { spiInit(spiRate_); extDigitalWrite(chipSelectPin_, LOW); } /** * Erase a range of blocks. * * \param[in] firstBlock The address of the first block in the range. * \param[in] lastBlock The address of the last block in the range. * * \note This function requests the SD card to do a flash erase for a * range of blocks. The data on the card after an erase operation is * either 0 or 1, depends on the card vendor. The card must support * single block erase. * * \return true for success, false for failure. */ bool Sd2Card::erase(uint32_t firstBlock, uint32_t lastBlock) { csd_t csd; if (!readCSD(&csd)) goto FAIL; // check for single block erase if (!csd.v1.erase_blk_en) { // erase size mask uint8_t m = (csd.v1.sector_size_high << 1) | csd.v1.sector_size_low; if ((firstBlock & m) != 0 || ((lastBlock + 1) & m) != 0) { // error card can't erase specified area error(SD_CARD_ERROR_ERASE_SINGLE_BLOCK); goto FAIL; } } if (type_ != SD_CARD_TYPE_SDHC) { firstBlock <<= 9; lastBlock <<= 9; } if (cardCommand(CMD32, firstBlock) || cardCommand(CMD33, lastBlock) || cardCommand(CMD38, 0)) { error(SD_CARD_ERROR_ERASE); goto FAIL; } if (!waitNotBusy(SD_ERASE_TIMEOUT)) { error(SD_CARD_ERROR_ERASE_TIMEOUT); goto FAIL; } chipDeselect(); return true; FAIL: chipDeselect(); return false; } /** * Determine if card supports single block erase. * * \return true if single block erase is supported. * false if single block erase is not supported. */ bool Sd2Card::eraseSingleBlockEnable() { csd_t csd; return readCSD(&csd) ? csd.v1.erase_blk_en : false; } /** * Initialize an SD flash memory card. * * \param[in] sckRateID SPI clock rate selector. See setSckRate(). * \param[in] chipSelectPin SD chip select pin number. * * \return true for success, false for failure. * The reason for failure can be determined by calling errorCode() and errorData(). */ bool Sd2Card::init(const uint8_t sckRateID, const pin_t chipSelectPin) { errorCode_ = type_ = 0; chipSelectPin_ = chipSelectPin; // 16-bit init start time allows over a minute const millis_t init_timeout = millis() + SD_INIT_TIMEOUT; uint32_t arg; watchdog_refresh(); // In case init takes too long // Set pin modes extDigitalWrite(chipSelectPin_, HIGH); // For some CPUs pinMode can write the wrong data so init desired data value first pinMode(chipSelectPin_, OUTPUT); // Solution for #8746 by @benlye spiBegin(); // Set SCK rate for initialization commands spiRate_ = SPI_SD_INIT_RATE; spiInit(spiRate_); // Must supply min of 74 clock cycles with CS high. LOOP_L_N(i, 10) spiSend(0xFF); watchdog_refresh(); // In case init takes too long // Command to go idle in SPI mode while ((status_ = cardCommand(CMD0, 0)) != R1_IDLE_STATE) { if (ELAPSED(millis(), init_timeout)) { error(SD_CARD_ERROR_CMD0); goto FAIL; } } #if ENABLED(SD_CHECK_AND_RETRY) crcSupported = (cardCommand(CMD59, 1) == R1_IDLE_STATE); #endif watchdog_refresh(); // In case init takes too long // check SD version for (;;) { if (cardCommand(CMD8, 0x1AA) == (R1_ILLEGAL_COMMAND | R1_IDLE_STATE)) { type(SD_CARD_TYPE_SD1); break; } // Get the last byte of r7 response LOOP_L_N(i, 4) status_ = spiRec(); if (status_ == 0xAA) { type(SD_CARD_TYPE_SD2); break; } if (ELAPSED(millis(), init_timeout)) { error(SD_CARD_ERROR_CMD8); goto FAIL; } } watchdog_refresh(); // In case init takes too long // Initialize card and send host supports SDHC if SD2 arg = type() == SD_CARD_TYPE_SD2 ? 0x40000000 : 0; while ((status_ = cardAcmd(ACMD41, arg)) != R1_READY_STATE) { // Check for timeout if (ELAPSED(millis(), init_timeout)) { error(SD_CARD_ERROR_ACMD41); goto FAIL; } } // If SD2 read OCR register to check for SDHC card if (type() == SD_CARD_TYPE_SD2) { if (cardCommand(CMD58, 0)) { error(SD_CARD_ERROR_CMD58); goto FAIL; } if ((spiRec() & 0xC0) == 0xC0) type(SD_CARD_TYPE_SDHC); // Discard rest of ocr - contains allowed voltage range LOOP_L_N(i, 3) spiRec(); } chipDeselect(); return setSckRate(sckRateID); FAIL: chipDeselect(); return false; } /** * Read a 512 byte block from an SD card. * * \param[in] blockNumber Logical block to be read. * \param[out] dst Pointer to the location that will receive the data. * \return true for success, false for failure. */ bool Sd2Card::readBlock(uint32_t blockNumber, uint8_t* dst) { if (type() != SD_CARD_TYPE_SDHC) blockNumber <<= 9; // Use address if not SDHC card #if ENABLED(SD_CHECK_AND_RETRY) uint8_t retryCnt = 3; for (;;) { if (cardCommand(CMD17, blockNumber)) error(SD_CARD_ERROR_CMD17); else if (readData(dst, 512)) return true; chipDeselect(); if (!--retryCnt) break; cardCommand(CMD12, 0); // Try sending a stop command, ignore the result. errorCode_ = 0; } return false; #else if (cardCommand(CMD17, blockNumber)) { error(SD_CARD_ERROR_CMD17); chipDeselect(); return false; } else return readData(dst, 512); #endif } /** * Read one data block in a multiple block read sequence * * \param[in] dst Pointer to the location for the data to be read. * * \return true for success, false for failure. */ bool Sd2Card::readData(uint8_t* dst) { chipSelect(); return readData(dst, 512); } #if ENABLED(SD_CHECK_AND_RETRY) #ifdef FAST_CRC static const uint16_t crctab16[] PROGMEM = { 0x0000, 0x1021, 0x2042, 0x3063, 0x4084, 0x50A5, 0x60C6, 0x70E7, 0x8108, 0x9129, 0xA14A, 0xB16B, 0xC18C, 0xD1AD, 0xE1CE, 0xF1EF, 0x1231, 0x0210, 0x3273, 0x2252, 0x52B5, 0x4294, 0x72F7, 0x62D6, 0x9339, 0x8318, 0xB37B, 0xA35A, 0xD3BD, 0xC39C, 0xF3FF, 0xE3DE, 0x2462, 0x3443, 0x0420, 0x1401, 0x64E6, 0x74C7, 0x44A4, 0x5485, 0xA56A, 0xB54B, 0x8528, 0x9509, 0xE5EE, 0xF5CF, 0xC5AC, 0xD58D, 0x3653, 0x2672, 0x1611, 0x0630, 0x76D7, 0x66F6, 0x5695, 0x46B4, 0xB75B, 0xA77A, 0x9719, 0x8738, 0xF7DF, 0xE7FE, 0xD79D, 0xC7BC, 0x48C4, 0x58E5, 0x6886, 0x78A7, 0x0840, 0x1861, 0x2802, 0x3823, 0xC9CC, 0xD9ED, 0xE98E, 0xF9AF, 0x8948, 0x9969, 0xA90A, 0xB92B, 0x5AF5, 0x4AD4, 0x7AB7, 0x6A96, 0x1A71, 0x0A50, 0x3A33, 0x2A12, 0xDBFD, 0xCBDC, 0xFBBF, 0xEB9E, 0x9B79, 0x8B58, 0xBB3B, 0xAB1A, 0x6CA6, 0x7C87, 0x4CE4, 0x5CC5, 0x2C22, 0x3C03, 0x0C60, 0x1C41, 0xEDAE, 0xFD8F, 0xCDEC, 0xDDCD, 0xAD2A, 0xBD0B, 0x8D68, 0x9D49, 0x7E97, 0x6EB6, 0x5ED5, 0x4EF4, 0x3E13, 0x2E32, 0x1E51, 0x0E70, 0xFF9F, 0xEFBE, 0xDFDD, 0xCFFC, 0xBF1B, 0xAF3A, 0x9F59, 0x8F78, 0x9188, 0x81A9, 0xB1CA, 0xA1EB, 0xD10C, 0xC12D, 0xF14E, 0xE16F, 0x1080, 0x00A1, 0x30C2, 0x20E3, 0x5004, 0x4025, 0x7046, 0x6067, 0x83B9, 0x9398, 0xA3FB, 0xB3DA, 0xC33D, 0xD31C, 0xE37F, 0xF35E, 0x02B1, 0x1290, 0x22F3, 0x32D2, 0x4235, 0x5214, 0x6277, 0x7256, 0xB5EA, 0xA5CB, 0x95A8, 0x8589, 0xF56E, 0xE54F, 0xD52C, 0xC50D, 0x34E2, 0x24C3, 0x14A0, 0x0481, 0x7466, 0x6447, 0x5424, 0x4405, 0xA7DB, 0xB7FA, 0x8799, 0x97B8, 0xE75F, 0xF77E, 0xC71D, 0xD73C, 0x26D3, 0x36F2, 0x0691, 0x16B0, 0x6657, 0x7676, 0x4615, 0x5634, 0xD94C, 0xC96D, 0xF90E, 0xE92F, 0x99C8, 0x89E9, 0xB98A, 0xA9AB, 0x5844, 0x4865, 0x7806, 0x6827, 0x18C0, 0x08E1, 0x3882, 0x28A3, 0xCB7D, 0xDB5C, 0xEB3F, 0xFB1E, 0x8BF9, 0x9BD8, 0xABBB, 0xBB9A, 0x4A75, 0x5A54, 0x6A37, 0x7A16, 0x0AF1, 0x1AD0, 0x2AB3, 0x3A92, 0xFD2E, 0xED0F, 0xDD6C, 0xCD4D, 0xBDAA, 0xAD8B, 0x9DE8, 0x8DC9, 0x7C26, 0x6C07, 0x5C64, 0x4C45, 0x3CA2, 0x2C83, 0x1CE0, 0x0CC1, 0xEF1F, 0xFF3E, 0xCF5D, 0xDF7C, 0xAF9B, 0xBFBA, 0x8FD9, 0x9FF8, 0x6E17, 0x7E36, 0x4E55, 0x5E74, 0x2E93, 0x3EB2, 0x0ED1, 0x1EF0 }; // faster CRC-CCITT // uses the x^16,x^12,x^5,x^1 polynomial. static uint16_t CRC_CCITT(const uint8_t* data, size_t n) { uint16_t crc = 0; for (size_t i = 0; i < n; i++) { crc = pgm_read_word(&crctab16[(crc >> 8 ^ data[i]) & 0xFF]) ^ (crc << 8); } return crc; } #else // slower CRC-CCITT // uses the x^16,x^12,x^5,x^1 polynomial. static uint16_t CRC_CCITT(const uint8_t* data, size_t n) { uint16_t crc = 0; for (size_t i = 0; i < n; i++) { crc = (uint8_t)(crc >> 8) | (crc << 8); crc ^= data[i]; crc ^= (uint8_t)(crc & 0xFF) >> 4; crc ^= crc << 12; crc ^= (crc & 0xFF) << 5; } return crc; } #endif #endif // SD_CHECK_AND_RETRY bool Sd2Card::readData(uint8_t* dst, const uint16_t count) { bool success = false; const millis_t read_timeout = millis() + SD_READ_TIMEOUT; while ((status_ = spiRec()) == 0xFF) { // Wait for start block token if (ELAPSED(millis(), read_timeout)) { error(SD_CARD_ERROR_READ_TIMEOUT); goto FAIL; } } if (status_ == DATA_START_BLOCK) { spiRead(dst, count); // Transfer data const uint16_t recvCrc = (spiRec() << 8) | spiRec(); #if ENABLED(SD_CHECK_AND_RETRY) success = !crcSupported || recvCrc == CRC_CCITT(dst, count); if (!success) error(SD_CARD_ERROR_READ_CRC); #else success = true; UNUSED(recvCrc); #endif } else error(SD_CARD_ERROR_READ); FAIL: chipDeselect(); return success; } /** read CID or CSR register */ bool Sd2Card::readRegister(const uint8_t cmd, void* buf) { uint8_t* dst = reinterpret_cast(buf); if (cardCommand(cmd, 0)) { error(SD_CARD_ERROR_READ_REG); chipDeselect(); return false; } return readData(dst, 16); } /** * Start a read multiple blocks sequence. * * \param[in] blockNumber Address of first block in sequence. * * \note This function is used with readData() and readStop() for optimized * multiple block reads. SPI chipSelect must be low for the entire sequence. * * \return true for success, false for failure. */ bool Sd2Card::readStart(uint32_t blockNumber) { if (type() != SD_CARD_TYPE_SDHC) blockNumber <<= 9; const bool success = !cardCommand(CMD18, blockNumber); if (!success) error(SD_CARD_ERROR_CMD18); chipDeselect(); return success; } /** * End a read multiple blocks sequence. * * \return true for success, false for failure. */ bool Sd2Card::readStop() { chipSelect(); const bool success = !cardCommand(CMD12, 0); if (!success) error(SD_CARD_ERROR_CMD12); chipDeselect(); return success; } /** * Set the SPI clock rate. * * \param[in] sckRateID A value in the range [0, 6]. * * The SPI clock will be set to F_CPU/pow(2, 1 + sckRateID). The maximum * SPI rate is F_CPU/2 for \a sckRateID = 0 and the minimum rate is F_CPU/128 * for \a scsRateID = 6. * * \return The value one, true, is returned for success and the value zero, * false, is returned for an invalid value of \a sckRateID. */ bool Sd2Card::setSckRate(const uint8_t sckRateID) { const bool success = (sckRateID <= 6); if (success) spiRate_ = sckRateID; else error(SD_CARD_ERROR_SCK_RATE); return success; } /** * Wait for card to become not-busy * \param[in] timeout_ms Timeout to abort. * \return true for success, false for timeout. */ bool Sd2Card::waitNotBusy(const millis_t timeout_ms) { const millis_t wait_timeout = millis() + timeout_ms; while (spiRec() != 0xFF) if (ELAPSED(millis(), wait_timeout)) return false; return true; } /** * Write a 512 byte block to an SD card. * * \param[in] blockNumber Logical block to be written. * \param[in] src Pointer to the location of the data to be written. * \return true for success, false for failure. */ bool Sd2Card::writeBlock(uint32_t blockNumber, const uint8_t* src) { if (type() != SD_CARD_TYPE_SDHC) blockNumber <<= 9; // Use address if not SDHC card bool success = false; if (!cardCommand(CMD24, blockNumber)) { if (writeData(DATA_START_BLOCK, src)) { if (waitNotBusy(SD_WRITE_TIMEOUT)) { // Wait for flashing to complete success = !(cardCommand(CMD13, 0) || spiRec()); // Response is r2 so get and check two bytes for nonzero if (!success) error(SD_CARD_ERROR_WRITE_PROGRAMMING); } else error(SD_CARD_ERROR_WRITE_TIMEOUT); } } else error(SD_CARD_ERROR_CMD24); chipDeselect(); return success; } /** * Write one data block in a multiple block write sequence * \param[in] src Pointer to the location of the data to be written. * \return true for success, false for failure. */ bool Sd2Card::writeData(const uint8_t* src) { bool success = true; chipSelect(); // Wait for previous write to finish if (!waitNotBusy(SD_WRITE_TIMEOUT) || !writeData(WRITE_MULTIPLE_TOKEN, src)) { error(SD_CARD_ERROR_WRITE_MULTIPLE); success = false; } chipDeselect(); return success; } // Send one block of data for write block or write multiple blocks bool Sd2Card::writeData(const uint8_t token, const uint8_t* src) { uint16_t crc = #if ENABLED(SD_CHECK_AND_RETRY) CRC_CCITT(src, 512) #else 0xFFFF #endif ; spiSendBlock(token, src); spiSend(crc >> 8); spiSend(crc & 0xFF); status_ = spiRec(); if ((status_ & DATA_RES_MASK) != DATA_RES_ACCEPTED) { error(SD_CARD_ERROR_WRITE); chipDeselect(); return false; } return true; } /** * Start a write multiple blocks sequence. * * \param[in] blockNumber Address of first block in sequence. * \param[in] eraseCount The number of blocks to be pre-erased. * * \note This function is used with writeData() and writeStop() * for optimized multiple block writes. * * \return true for success, false for failure. */ bool Sd2Card::writeStart(uint32_t blockNumber, const uint32_t eraseCount) { bool success = false; if (!cardAcmd(ACMD23, eraseCount)) { // Send pre-erase count if (type() != SD_CARD_TYPE_SDHC) blockNumber <<= 9; // Use address if not SDHC card success = !cardCommand(CMD25, blockNumber); if (!success) error(SD_CARD_ERROR_CMD25); } else error(SD_CARD_ERROR_ACMD23); chipDeselect(); return success; } /** * End a write multiple blocks sequence. * * \return true for success, false for failure. */ bool Sd2Card::writeStop() { bool success = false; chipSelect(); if (waitNotBusy(SD_WRITE_TIMEOUT)) { spiSend(STOP_TRAN_TOKEN); success = waitNotBusy(SD_WRITE_TIMEOUT); } else error(SD_CARD_ERROR_STOP_TRAN); chipDeselect(); return success; } #endif // SDSUPPORT