/** * Marlin 3D Printer Firmware * Copyright (c) 2020 MarlinFirmware [https://github.com/MarlinFirmware/Marlin] * * Based on Sprinter and grbl. * Copyright (c) 2011 Camiel Gubbels / Erik van der Zalm * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see . * */ /** * scara.cpp */ #include "../inc/MarlinConfig.h" #if IS_SCARA #include "scara.h" #include "motion.h" #include "planner.h" #if ENABLED(AXEL_TPARA) #include "endstops.h" #include "../MarlinCore.h" #endif float segments_per_second = TERN(AXEL_TPARA, TPARA_SEGMENTS_PER_SECOND, SCARA_SEGMENTS_PER_SECOND); #if EITHER(MORGAN_SCARA, MP_SCARA) static constexpr xy_pos_t scara_offset = { SCARA_OFFSET_X, SCARA_OFFSET_Y }; /** * Morgan SCARA Forward Kinematics. Results in 'cartes'. * Maths and first version by QHARLEY. * Integrated into Marlin and slightly restructured by Joachim Cerny. */ void forward_kinematics(const_float_t a, const_float_t b) { const float a_sin = sin(RADIANS(a)) * L1, a_cos = cos(RADIANS(a)) * L1, b_sin = sin(RADIANS(SUM_TERN(MP_SCARA, b, a))) * L2, b_cos = cos(RADIANS(SUM_TERN(MP_SCARA, b, a))) * L2; cartes.x = a_cos + b_cos + scara_offset.x; // theta cartes.y = a_sin + b_sin + scara_offset.y; // phi /* DEBUG_ECHOLNPGM( "SCARA FK Angle a=", a, " b=", b, " a_sin=", a_sin, " a_cos=", a_cos, " b_sin=", b_sin, " b_cos=", b_cos ); DEBUG_ECHOLNPGM(" cartes (X,Y) = "(cartes.x, ", ", cartes.y, ")"); //*/ } #endif #if ENABLED(MORGAN_SCARA) void scara_set_axis_is_at_home(const AxisEnum axis) { if (axis == Z_AXIS) current_position.z = Z_HOME_POS; else { // MORGAN_SCARA uses a Cartesian XY home position xyz_pos_t homeposition = { X_HOME_POS, Y_HOME_POS, Z_HOME_POS }; //DEBUG_ECHOLNPGM_P(PSTR("homeposition X"), homeposition.x, SP_Y_LBL, homeposition.y); delta = homeposition; forward_kinematics(delta.a, delta.b); current_position[axis] = cartes[axis]; //DEBUG_ECHOLNPGM_P(PSTR("Cartesian X"), current_position.x, SP_Y_LBL, current_position.y); update_software_endstops(axis); } } /** * Morgan SCARA Inverse Kinematics. Results are stored in 'delta'. * * See https://reprap.org/forum/read.php?185,283327 * * Maths and first version by QHARLEY. * Integrated into Marlin and slightly restructured by Joachim Cerny. */ void inverse_kinematics(const xyz_pos_t &raw) { float C2, S2, SK1, SK2, THETA, PSI; // Translate SCARA to standard XY with scaling factor const xy_pos_t spos = raw - scara_offset; const float H2 = HYPOT2(spos.x, spos.y); if (L1 == L2) C2 = H2 / L1_2_2 - 1; else C2 = (H2 - (L1_2 + L2_2)) / (2.0f * L1 * L2); LIMIT(C2, -1, 1); S2 = SQRT(1.0f - sq(C2)); // Unrotated Arm1 plus rotated Arm2 gives the distance from Center to End SK1 = L1 + L2 * C2; // Rotated Arm2 gives the distance from Arm1 to Arm2 SK2 = L2 * S2; // Angle of Arm1 is the difference between Center-to-End angle and the Center-to-Elbow THETA = ATAN2(SK1, SK2) - ATAN2(spos.x, spos.y); // Angle of Arm2 PSI = ATAN2(S2, C2); delta.set(DEGREES(THETA), DEGREES(SUM_TERN(MORGAN_SCARA, PSI, THETA)), raw.z); /* DEBUG_POS("SCARA IK", raw); DEBUG_POS("SCARA IK", delta); DEBUG_ECHOLNPGM(" SCARA (x,y) ", sx, ",", sy, " C2=", C2, " S2=", S2, " Theta=", THETA, " Psi=", PSI); //*/ } #elif ENABLED(MP_SCARA) void scara_set_axis_is_at_home(const AxisEnum axis) { if (axis == Z_AXIS) current_position.z = Z_HOME_POS; else { // MP_SCARA uses arm angles for AB home position #ifndef SCARA_OFFSET_THETA1 #define SCARA_OFFSET_THETA1 12 // degrees #endif #ifndef SCARA_OFFSET_THETA2 #define SCARA_OFFSET_THETA2 131 // degrees #endif ab_float_t homeposition = { SCARA_OFFSET_THETA1, SCARA_OFFSET_THETA2 }; //DEBUG_ECHOLNPGM("homeposition A:", homeposition.a, " B:", homeposition.b); inverse_kinematics(homeposition); forward_kinematics(delta.a, delta.b); current_position[axis] = cartes[axis]; //DEBUG_ECHOLNPGM_P(PSTR("Cartesian X"), current_position.x, SP_Y_LBL, current_position.y); update_software_endstops(axis); } } void inverse_kinematics(const xyz_pos_t &raw) { const float x = raw.x, y = raw.y, c = HYPOT(x, y), THETA3 = ATAN2(y, x), THETA1 = THETA3 + ACOS((sq(c) + sq(L1) - sq(L2)) / (2.0f * c * L1)), THETA2 = THETA3 - ACOS((sq(c) + sq(L2) - sq(L1)) / (2.0f * c * L2)); delta.set(DEGREES(THETA1), DEGREES(THETA2), raw.z); /* DEBUG_POS("SCARA IK", raw); DEBUG_POS("SCARA IK", delta); SERIAL_ECHOLNPGM(" SCARA (x,y) ", x, ",", y," Theta1=", THETA1, " Theta2=", THETA2); //*/ } #elif ENABLED(AXEL_TPARA) static constexpr xyz_pos_t robot_offset = { TPARA_OFFSET_X, TPARA_OFFSET_Y, TPARA_OFFSET_Z }; void scara_set_axis_is_at_home(const AxisEnum axis) { if (axis == Z_AXIS) current_position.z = Z_HOME_POS; else { xyz_pos_t homeposition = { X_HOME_POS, Y_HOME_POS, Z_HOME_POS }; //DEBUG_ECHOLNPGM_P(PSTR("homeposition X"), homeposition.x, SP_Y_LBL, homeposition.y, SP_Z_LBL, homeposition.z); inverse_kinematics(homeposition); forward_kinematics(delta.a, delta.b, delta.c); current_position[axis] = cartes[axis]; //DEBUG_ECHOLNPGM_P(PSTR("Cartesian X"), current_position.x, SP_Y_LBL, current_position.y); update_software_endstops(axis); } } // Convert ABC inputs in degrees to XYZ outputs in mm void forward_kinematics(const_float_t a, const_float_t b, const_float_t c) { const float w = c - b, r = L1 * cos(RADIANS(b)) + L2 * sin(RADIANS(w - (90 - b))), x = r * cos(RADIANS(a)), y = r * sin(RADIANS(a)), rho2 = L1_2 + L2_2 - 2.0f * L1 * L2 * cos(RADIANS(w)); cartes = robot_offset + xyz_pos_t({ x, y, SQRT(rho2 - sq(x) - sq(y)) }); } // Home YZ together, then X (or all at once). Based on quick_home_xy & home_delta void home_TPARA() { // Init the current position of all carriages to 0,0,0 current_position.reset(); destination.reset(); sync_plan_position(); // Disable stealthChop if used. Enable diag1 pin on driver. #if ENABLED(SENSORLESS_HOMING) TERN_(X_SENSORLESS, sensorless_t stealth_states_x = start_sensorless_homing_per_axis(X_AXIS)); TERN_(Y_SENSORLESS, sensorless_t stealth_states_y = start_sensorless_homing_per_axis(Y_AXIS)); TERN_(Z_SENSORLESS, sensorless_t stealth_states_z = start_sensorless_homing_per_axis(Z_AXIS)); #endif //const int x_axis_home_dir = TOOL_X_HOME_DIR(active_extruder); //const xy_pos_t pos { max_length(X_AXIS) , max_length(Y_AXIS) }; //const float mlz = max_length(X_AXIS), // Move all carriages together linearly until an endstop is hit. //do_blocking_move_to_xy_z(pos, mlz, homing_feedrate(Z_AXIS)); current_position.x = 0 ; current_position.y = 0 ; current_position.z = max_length(Z_AXIS) ; line_to_current_position(homing_feedrate(Z_AXIS)); planner.synchronize(); // Re-enable stealthChop if used. Disable diag1 pin on driver. #if ENABLED(SENSORLESS_HOMING) TERN_(X_SENSORLESS, end_sensorless_homing_per_axis(X_AXIS, stealth_states_x)); TERN_(Y_SENSORLESS, end_sensorless_homing_per_axis(Y_AXIS, stealth_states_y)); TERN_(Z_SENSORLESS, end_sensorless_homing_per_axis(Z_AXIS, stealth_states_z)); #endif endstops.validate_homing_move(); // At least one motor has reached its endstop. // Now re-home each motor separately. homeaxis(A_AXIS); homeaxis(C_AXIS); homeaxis(B_AXIS); // Set all carriages to their home positions // Do this here all at once for Delta, because // XYZ isn't ABC. Applying this per-tower would // give the impression that they are the same. LOOP_NUM_AXES(i) set_axis_is_at_home((AxisEnum)i); sync_plan_position(); } void inverse_kinematics(const xyz_pos_t &raw) { const xyz_pos_t spos = raw - robot_offset; const float RXY = SQRT(HYPOT2(spos.x, spos.y)), RHO2 = NORMSQ(spos.x, spos.y, spos.z), //RHO = SQRT(RHO2), LSS = L1_2 + L2_2, LM = 2.0f * L1 * L2, CG = (LSS - RHO2) / LM, SG = SQRT(1 - POW(CG, 2)), // Method 2 K1 = L1 - L2 * CG, K2 = L2 * SG, // Angle of Body Joint THETA = ATAN2(spos.y, spos.x), // Angle of Elbow Joint //GAMMA = ACOS(CG), GAMMA = ATAN2(SG, CG), // Method 2 // Angle of Shoulder Joint, elevation angle measured from horizontal (r+) //PHI = asin(spos.z/RHO) + asin(L2 * sin(GAMMA) / RHO), PHI = ATAN2(spos.z, RXY) + ATAN2(K2, K1), // Method 2 // Elbow motor angle measured from horizontal, same frame as shoulder (r+) PSI = PHI + GAMMA; delta.set(DEGREES(THETA), DEGREES(PHI), DEGREES(PSI)); //SERIAL_ECHOLNPGM(" SCARA (x,y,z) ", spos.x , ",", spos.y, ",", spos.z, " Rho=", RHO, " Rho2=", RHO2, " Theta=", THETA, " Phi=", PHI, " Psi=", PSI, " Gamma=", GAMMA); } #endif void scara_report_positions() { SERIAL_ECHOLNPGM("SCARA Theta:", planner.get_axis_position_degrees(A_AXIS) #if ENABLED(AXEL_TPARA) , " Phi:", planner.get_axis_position_degrees(B_AXIS) , " Psi:", planner.get_axis_position_degrees(C_AXIS) #else , " Psi" TERN_(MORGAN_SCARA, "+Theta") ":", planner.get_axis_position_degrees(B_AXIS) #endif ); SERIAL_EOL(); } #endif // IS_SCARA