/** * Marlin 3D Printer Firmware * Copyright (C) 2016 MarlinFirmware [https://github.com/MarlinFirmware/Marlin] * * Based on Sprinter and grbl. * Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see . * */ #include "ultralcd.h" #if ENABLED(ULTRA_LCD) #include "Marlin.h" #include "language.h" #include "cardreader.h" #include "temperature.h" #include "stepper.h" #include "configuration_store.h" #if ENABLED(PRINTCOUNTER) #include "printcounter.h" #endif int preheatHotendTemp1, preheatBedTemp1, preheatFanSpeed1, preheatHotendTemp2, preheatBedTemp2, preheatFanSpeed2; #if ENABLED(FILAMENT_LCD_DISPLAY) millis_t previous_lcd_status_ms = 0; #endif uint8_t lcd_status_message_level; char lcd_status_message[3 * (LCD_WIDTH) + 1] = WELCOME_MSG; // worst case is kana with up to 3*LCD_WIDTH+1 #if ENABLED(DOGLCD) #include "dogm_lcd_implementation.h" #else #include "ultralcd_implementation_hitachi_HD44780.h" #endif // The main status screen static void lcd_status_screen(); millis_t next_lcd_update_ms; enum LCDViewAction { LCDVIEW_NONE, LCDVIEW_REDRAW_NOW, LCDVIEW_CALL_REDRAW_NEXT, LCDVIEW_CLEAR_CALL_REDRAW, LCDVIEW_CALL_NO_REDRAW }; uint8_t lcdDrawUpdate = LCDVIEW_CLEAR_CALL_REDRAW; // Set when the LCD needs to draw, decrements after every draw. Set to 2 in LCD routines so the LCD gets at least 1 full redraw (first redraw is partial) #if ENABLED(ULTIPANEL) // place-holders for Ki and Kd edits float raw_Ki, raw_Kd; /** * REVERSE_MENU_DIRECTION * * To reverse the menu direction we need a general way to reverse * the direction of the encoder everywhere. So encoderDirection is * added to allow the encoder to go the other way. * * This behavior is limited to scrolling Menus and SD card listings, * and is disabled in other contexts. */ #if ENABLED(REVERSE_MENU_DIRECTION) int8_t encoderDirection = 1; #define ENCODER_DIRECTION_NORMAL() (encoderDirection = 1) #define ENCODER_DIRECTION_MENUS() (encoderDirection = -1) #else #define ENCODER_DIRECTION_NORMAL() ; #define ENCODER_DIRECTION_MENUS() ; #endif int8_t encoderDiff; // updated from interrupt context and added to encoderPosition every LCD update millis_t manual_move_start_time = 0; int8_t manual_move_axis = (int8_t)NO_AXIS; #if EXTRUDERS > 1 int8_t manual_move_e_index = 0; #else #define manual_move_e_index 0 #endif bool encoderRateMultiplierEnabled; int32_t lastEncoderMovementMillis; #if HAS_POWER_SWITCH extern bool powersupply; #endif const float manual_feedrate[] = MANUAL_FEEDRATE; static void lcd_main_menu(); static void lcd_tune_menu(); static void lcd_prepare_menu(); static void lcd_move_menu(); static void lcd_control_menu(); static void lcd_control_temperature_menu(); static void lcd_control_temperature_preheat_pla_settings_menu(); static void lcd_control_temperature_preheat_abs_settings_menu(); static void lcd_control_motion_menu(); static void lcd_control_volumetric_menu(); #if ENABLED(LCD_INFO_MENU) #if ENABLED(PRINTCOUNTER) static void lcd_info_stats_menu(); #endif static void lcd_info_thermistors_menu(); static void lcd_info_board_menu(); static void lcd_info_menu(); #endif // LCD_INFO_MENU #if ENABLED(FILAMENT_CHANGE_FEATURE) static void lcd_filament_change_option_menu(); static void lcd_filament_change_init_message(); static void lcd_filament_change_unload_message(); static void lcd_filament_change_insert_message(); static void lcd_filament_change_load_message(); static void lcd_filament_change_extrude_message(); static void lcd_filament_change_resume_message(); #endif #if HAS_LCD_CONTRAST static void lcd_set_contrast(); #endif #if ENABLED(FWRETRACT) static void lcd_control_retract_menu(); #endif #if ENABLED(DELTA_CALIBRATION_MENU) static void lcd_delta_calibrate_menu(); #endif #if ENABLED(MANUAL_BED_LEVELING) #include "mesh_bed_leveling.h" #endif // Function pointer to menu functions. typedef void (*screenFunc_t)(); // Different types of actions that can be used in menu items. static void menu_action_back(); static void menu_action_submenu(screenFunc_t data); static void menu_action_gcode(const char* pgcode); static void menu_action_function(screenFunc_t data); static void menu_action_setting_edit_bool(const char* pstr, bool* ptr); static void menu_action_setting_edit_int3(const char* pstr, int* ptr, int minValue, int maxValue); static void menu_action_setting_edit_float3(const char* pstr, float* ptr, float minValue, float maxValue); static void menu_action_setting_edit_float32(const char* pstr, float* ptr, float minValue, float maxValue); static void menu_action_setting_edit_float43(const char* pstr, float* ptr, float minValue, float maxValue); static void menu_action_setting_edit_float5(const char* pstr, float* ptr, float minValue, float maxValue); static void menu_action_setting_edit_float51(const char* pstr, float* ptr, float minValue, float maxValue); static void menu_action_setting_edit_float52(const char* pstr, float* ptr, float minValue, float maxValue); static void menu_action_setting_edit_long5(const char* pstr, unsigned long* ptr, unsigned long minValue, unsigned long maxValue); static void menu_action_setting_edit_callback_bool(const char* pstr, bool* ptr, screenFunc_t callbackFunc); static void menu_action_setting_edit_callback_int3(const char* pstr, int* ptr, int minValue, int maxValue, screenFunc_t callbackFunc); static void menu_action_setting_edit_callback_float3(const char* pstr, float* ptr, float minValue, float maxValue, screenFunc_t callbackFunc); static void menu_action_setting_edit_callback_float32(const char* pstr, float* ptr, float minValue, float maxValue, screenFunc_t callbackFunc); static void menu_action_setting_edit_callback_float43(const char* pstr, float* ptr, float minValue, float maxValue, screenFunc_t callbackFunc); static void menu_action_setting_edit_callback_float5(const char* pstr, float* ptr, float minValue, float maxValue, screenFunc_t callbackFunc); static void menu_action_setting_edit_callback_float51(const char* pstr, float* ptr, float minValue, float maxValue, screenFunc_t callbackFunc); static void menu_action_setting_edit_callback_float52(const char* pstr, float* ptr, float minValue, float maxValue, screenFunc_t callbackFunc); static void menu_action_setting_edit_callback_long5(const char* pstr, unsigned long* ptr, unsigned long minValue, unsigned long maxValue, screenFunc_t callbackFunc); #if ENABLED(SDSUPPORT) static void lcd_sdcard_menu(); static void menu_action_sdfile(const char* filename, char* longFilename); static void menu_action_sddirectory(const char* filename, char* longFilename); #endif #define ENCODER_FEEDRATE_DEADZONE 10 #if DISABLED(LCD_I2C_VIKI) #ifndef ENCODER_STEPS_PER_MENU_ITEM #define ENCODER_STEPS_PER_MENU_ITEM 5 #endif #ifndef ENCODER_PULSES_PER_STEP #define ENCODER_PULSES_PER_STEP 1 #endif #else #ifndef ENCODER_STEPS_PER_MENU_ITEM #define ENCODER_STEPS_PER_MENU_ITEM 2 // VIKI LCD rotary encoder uses a different number of steps per rotation #endif #ifndef ENCODER_PULSES_PER_STEP #define ENCODER_PULSES_PER_STEP 1 #endif #endif /* Helper macros for menus */ /** * START_SCREEN generates the init code for a screen function * * encoderLine is the position based on the encoder * encoderTopLine is the top menu line to display * _lcdLineNr is the index of the LCD line (e.g., 0-3) * _menuLineNr is the menu item to draw and process * _thisItemNr is the index of each MENU_ITEM or STATIC_ITEM */ #define _START_SCREEN(CODE, SKIP) \ ENCODER_DIRECTION_MENUS(); \ encoderRateMultiplierEnabled = false; \ if (encoderPosition > 0x8000) encoderPosition = 0; \ int8_t encoderLine = encoderPosition / ENCODER_STEPS_PER_MENU_ITEM; \ NOMORE(encoderTopLine, encoderLine); \ int8_t _menuLineNr = encoderTopLine, _thisItemNr; \ bool _skipStatic = SKIP; \ CODE; \ for (int8_t _lcdLineNr = 0; _lcdLineNr < LCD_HEIGHT; _lcdLineNr++, _menuLineNr++) { \ _thisItemNr = 0; #define START_SCREEN() _START_SCREEN(NOOP, false) /** * START_MENU generates the init code for a menu function * * wasClicked indicates the controller was clicked */ #define START_MENU() _START_SCREEN(bool wasClicked = LCD_CLICKED, true) /** * MENU_ITEM generates draw & handler code for a menu item, potentially calling: * * lcd_implementation_drawmenu_[type](sel, row, label, arg3...) * menu_action_[type](arg3...) * * Examples: * MENU_ITEM(back, MSG_WATCH) * lcd_implementation_drawmenu_back(sel, row, PSTR(MSG_WATCH)) * menu_action_back() * * MENU_ITEM(function, MSG_PAUSE_PRINT, lcd_sdcard_pause) * lcd_implementation_drawmenu_function(sel, row, PSTR(MSG_PAUSE_PRINT), lcd_sdcard_pause) * menu_action_function(lcd_sdcard_pause) * * MENU_ITEM_EDIT(int3, MSG_SPEED, &feedrate_multiplier, 10, 999) * MENU_ITEM(setting_edit_int3, MSG_SPEED, PSTR(MSG_SPEED), &feedrate_multiplier, 10, 999) * lcd_implementation_drawmenu_setting_edit_int3(sel, row, PSTR(MSG_SPEED), PSTR(MSG_SPEED), &feedrate_multiplier, 10, 999) * menu_action_setting_edit_int3(PSTR(MSG_SPEED), &feedrate_multiplier, 10, 999) * */ #define _MENU_ITEM_PART_1(TYPE, LABEL, ARGS...) \ if (_menuLineNr == _thisItemNr) { \ if (lcdDrawUpdate) \ lcd_implementation_drawmenu_ ## TYPE(encoderLine == _thisItemNr, _lcdLineNr, PSTR(LABEL), ## ARGS); \ if (wasClicked && encoderLine == _thisItemNr) { \ lcd_quick_feedback() #define _MENU_ITEM_PART_2(TYPE, ARGS...) \ menu_action_ ## TYPE(ARGS); \ return; \ } \ } \ _thisItemNr++ #define MENU_ITEM(TYPE, LABEL, ARGS...) do { \ _skipStatic = false; \ _MENU_ITEM_PART_1(TYPE, LABEL, ## ARGS); \ _MENU_ITEM_PART_2(TYPE, ## ARGS); \ } while(0) // Used to print static text with no visible cursor. #define STATIC_ITEM(LABEL, ARGS...) \ if (_menuLineNr == _thisItemNr) { \ if (_skipStatic && encoderLine <= _thisItemNr) { \ encoderPosition += ENCODER_STEPS_PER_MENU_ITEM; \ lcdDrawUpdate = LCDVIEW_CALL_REDRAW_NEXT; \ } \ if (lcdDrawUpdate) \ lcd_implementation_drawmenu_static(_lcdLineNr, PSTR(LABEL), ## ARGS); \ } \ _thisItemNr++ /** * * END_SCREEN Closing code for a screen having only static items. * Do simplified scrolling of the entire screen. * * END_MENU Closing code for a screen with menu items. * Scroll as-needed to keep the selected line in view. * * At this point _thisItemNr equals the total number of items. * */ // Simple-scroll by using encoderLine as encoderTopLine #define END_SCREEN() \ } \ NOMORE(encoderLine, _thisItemNr - LCD_HEIGHT); \ NOLESS(encoderLine, 0); \ encoderPosition = encoderLine * (ENCODER_STEPS_PER_MENU_ITEM); \ if (encoderTopLine != encoderLine) { \ encoderTopLine = encoderLine; \ lcdDrawUpdate = LCDVIEW_CALL_REDRAW_NEXT; \ } // Scroll through menu items, scrolling as-needed to stay in view #define END_MENU() \ } \ if (encoderLine >= _thisItemNr) { \ encoderLine = _thisItemNr - 1; \ encoderPosition = encoderLine * (ENCODER_STEPS_PER_MENU_ITEM); \ } \ if (encoderLine >= encoderTopLine + LCD_HEIGHT) { \ encoderTopLine = encoderLine - (LCD_HEIGHT - 1); \ lcdDrawUpdate = LCDVIEW_CALL_REDRAW_NEXT; \ } #if ENABLED(ENCODER_RATE_MULTIPLIER) //#define ENCODER_RATE_MULTIPLIER_DEBUG // If defined, output the encoder steps per second value /** * MENU_MULTIPLIER_ITEM generates drawing and handling code for a multiplier menu item */ #define MENU_MULTIPLIER_ITEM(type, label, args...) do { \ _MENU_ITEM_PART_1(type, label, ## args); \ encoderRateMultiplierEnabled = true; \ lastEncoderMovementMillis = 0; \ _MENU_ITEM_PART_2(type, ## args); \ } while(0) #endif //ENCODER_RATE_MULTIPLIER #define MENU_ITEM_DUMMY() do { _thisItemNr++; } while(0) #define MENU_ITEM_EDIT(type, label, args...) MENU_ITEM(setting_edit_ ## type, label, PSTR(label), ## args) #define MENU_ITEM_EDIT_CALLBACK(type, label, args...) MENU_ITEM(setting_edit_callback_ ## type, label, PSTR(label), ## args) #if ENABLED(ENCODER_RATE_MULTIPLIER) #define MENU_MULTIPLIER_ITEM_EDIT(type, label, args...) MENU_MULTIPLIER_ITEM(setting_edit_ ## type, label, PSTR(label), ## args) #define MENU_MULTIPLIER_ITEM_EDIT_CALLBACK(type, label, args...) MENU_MULTIPLIER_ITEM(setting_edit_callback_ ## type, label, PSTR(label), ## args) #else //!ENCODER_RATE_MULTIPLIER #define MENU_MULTIPLIER_ITEM_EDIT(type, label, args...) MENU_ITEM(setting_edit_ ## type, label, PSTR(label), ## args) #define MENU_MULTIPLIER_ITEM_EDIT_CALLBACK(type, label, args...) MENU_ITEM(setting_edit_callback_ ## type, label, PSTR(label), ## args) #endif //!ENCODER_RATE_MULTIPLIER /** Used variables to keep track of the menu */ volatile uint8_t buttons; //the last checked buttons in a bit array. #if ENABLED(REPRAPWORLD_KEYPAD) volatile uint8_t buttons_reprapworld_keypad; // to store the keypad shift register values #endif #if ENABLED(LCD_HAS_SLOW_BUTTONS) volatile uint8_t slow_buttons; // Bits of the pressed buttons. #endif int8_t encoderTopLine; /* scroll offset in the current menu */ millis_t next_button_update_ms; uint8_t lastEncoderBits; uint32_t encoderPosition; #if PIN_EXISTS(SD_DETECT) uint8_t lcd_sd_status; #endif typedef struct { screenFunc_t menu_function; uint32_t encoder_position; } menuPosition; screenFunc_t currentScreen = lcd_status_screen; // pointer to the currently active menu handler menuPosition screen_history[10]; uint8_t screen_history_depth = 0; bool ignore_click = false; bool wait_for_unclick; bool defer_return_to_status = false; // Variables used when editing values. const char* editLabel; void* editValue; int32_t minEditValue, maxEditValue; screenFunc_t callbackFunc; // call this after editing /** * General function to go directly to a menu * Remembers the previous position */ static void lcd_goto_screen(screenFunc_t screen, const bool feedback = false, const uint32_t encoder = 0) { if (currentScreen != screen) { currentScreen = screen; lcdDrawUpdate = LCDVIEW_CLEAR_CALL_REDRAW; encoderPosition = encoder; if (feedback) lcd_quick_feedback(); if (screen == lcd_status_screen) { defer_return_to_status = false; screen_history_depth = 0; } #if ENABLED(LCD_PROGRESS_BAR) // For LCD_PROGRESS_BAR re-initialize custom characters lcd_set_custom_characters(screen == lcd_status_screen); #endif } } static void lcd_return_to_status() { lcd_goto_screen(lcd_status_screen); } inline void lcd_save_previous_menu() { if (screen_history_depth < COUNT(screen_history)) { screen_history[screen_history_depth].menu_function = currentScreen; screen_history[screen_history_depth].encoder_position = encoderPosition; ++screen_history_depth; } } static void lcd_goto_previous_menu(bool feedback=false) { if (screen_history_depth > 0) { --screen_history_depth; lcd_goto_screen( screen_history[screen_history_depth].menu_function, feedback, screen_history[screen_history_depth].encoder_position ); } else lcd_return_to_status(); } void lcd_ignore_click(bool b) { ignore_click = b; wait_for_unclick = false; } #endif // ULTIPANEL /** * * "Info Screen" * * This is very display-dependent, so the lcd implementation draws this. */ static void lcd_status_screen() { #if ENABLED(ULTIPANEL) ENCODER_DIRECTION_NORMAL(); encoderRateMultiplierEnabled = false; #endif #if ENABLED(LCD_PROGRESS_BAR) millis_t ms = millis(); #if DISABLED(PROGRESS_MSG_ONCE) if (ELAPSED(ms, progress_bar_ms + PROGRESS_BAR_MSG_TIME + PROGRESS_BAR_BAR_TIME)) { progress_bar_ms = ms; } #endif #if PROGRESS_MSG_EXPIRE > 0 // Handle message expire if (expire_status_ms > 0) { #if ENABLED(SDSUPPORT) if (card.isFileOpen()) { // Expire the message when printing is active if (IS_SD_PRINTING) { if (ELAPSED(ms, expire_status_ms)) { lcd_status_message[0] = '\0'; expire_status_ms = 0; } } else { expire_status_ms += LCD_UPDATE_INTERVAL; } } else { expire_status_ms = 0; } #else expire_status_ms = 0; #endif //SDSUPPORT } #endif #endif //LCD_PROGRESS_BAR lcd_implementation_status_screen(); #if ENABLED(ULTIPANEL) bool current_click = LCD_CLICKED; if (ignore_click) { if (wait_for_unclick) { if (!current_click) ignore_click = wait_for_unclick = false; else current_click = false; } else if (current_click) { lcd_quick_feedback(); wait_for_unclick = true; current_click = false; } } if (current_click) { lcd_goto_screen(lcd_main_menu, true); lcd_implementation_init( // to maybe revive the LCD if static electricity killed it. #if ENABLED(LCD_PROGRESS_BAR) && ENABLED(ULTIPANEL) currentScreen == lcd_status_screen #endif ); #if ENABLED(FILAMENT_LCD_DISPLAY) previous_lcd_status_ms = millis(); // get status message to show up for a while #endif } #if ENABLED(ULTIPANEL_FEEDMULTIPLY) int new_frm = feedrate_multiplier + (int32_t)encoderPosition; // Dead zone at 100% feedrate if ((feedrate_multiplier < 100 && new_frm > 100) || (feedrate_multiplier > 100 && new_frm < 100)) { feedrate_multiplier = 100; encoderPosition = 0; } else if (feedrate_multiplier == 100) { if ((int32_t)encoderPosition > ENCODER_FEEDRATE_DEADZONE) { feedrate_multiplier += (int32_t)encoderPosition - (ENCODER_FEEDRATE_DEADZONE); encoderPosition = 0; } else if ((int32_t)encoderPosition < -(ENCODER_FEEDRATE_DEADZONE)) { feedrate_multiplier += (int32_t)encoderPosition + ENCODER_FEEDRATE_DEADZONE; encoderPosition = 0; } } else { feedrate_multiplier = new_frm; encoderPosition = 0; } #endif // ULTIPANEL_FEEDMULTIPLY feedrate_multiplier = constrain(feedrate_multiplier, 10, 999); #endif //ULTIPANEL } /** * * draw the kill screen * */ void kill_screen(const char* lcd_msg) { lcd_init(); lcd_setalertstatuspgm(lcd_msg); #if ENABLED(DOGLCD) u8g.firstPage(); do { lcd_kill_screen(); } while (u8g.nextPage()); #else lcd_kill_screen(); #endif } #if ENABLED(ULTIPANEL) inline void line_to_current(AxisEnum axis) { #if ENABLED(DELTA) calculate_delta(current_position); planner.buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], current_position[E_AXIS], manual_feedrate[axis]/60, active_extruder); #else // !DELTA planner.buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], manual_feedrate[axis]/60, active_extruder); #endif // !DELTA } #if ENABLED(SDSUPPORT) static void lcd_sdcard_pause() { card.pauseSDPrint(); print_job_timer.pause(); } static void lcd_sdcard_resume() { card.startFileprint(); print_job_timer.start(); } static void lcd_sdcard_stop() { card.stopSDPrint(); clear_command_queue(); quickstop_stepper(); print_job_timer.stop(); thermalManager.autotempShutdown(); wait_for_heatup = false; lcd_setstatus(MSG_PRINT_ABORTED, true); } #endif //SDSUPPORT /** * * "Main" menu * */ static void lcd_main_menu() { START_MENU(); MENU_ITEM(back, MSG_WATCH); if (planner.movesplanned() || IS_SD_PRINTING) { MENU_ITEM(submenu, MSG_TUNE, lcd_tune_menu); } else { MENU_ITEM(submenu, MSG_PREPARE, lcd_prepare_menu); #if ENABLED(DELTA_CALIBRATION_MENU) MENU_ITEM(submenu, MSG_DELTA_CALIBRATE, lcd_delta_calibrate_menu); #endif } MENU_ITEM(submenu, MSG_CONTROL, lcd_control_menu); #if ENABLED(SDSUPPORT) if (card.cardOK) { if (card.isFileOpen()) { if (card.sdprinting) MENU_ITEM(function, MSG_PAUSE_PRINT, lcd_sdcard_pause); else MENU_ITEM(function, MSG_RESUME_PRINT, lcd_sdcard_resume); MENU_ITEM(function, MSG_STOP_PRINT, lcd_sdcard_stop); } else { MENU_ITEM(submenu, MSG_CARD_MENU, lcd_sdcard_menu); #if !PIN_EXISTS(SD_DETECT) MENU_ITEM(gcode, MSG_CNG_SDCARD, PSTR("M21")); // SD-card changed by user #endif } } else { MENU_ITEM(submenu, MSG_NO_CARD, lcd_sdcard_menu); #if !PIN_EXISTS(SD_DETECT) MENU_ITEM(gcode, MSG_INIT_SDCARD, PSTR("M21")); // Manually initialize the SD-card via user interface #endif } #endif //SDSUPPORT #if ENABLED(LCD_INFO_MENU) MENU_ITEM(submenu, MSG_INFO_MENU, lcd_info_menu); #endif END_MENU(); } /** * * "Tune" submenu items * */ /** * Set the home offset based on the current_position */ void lcd_set_home_offsets() { // M428 Command enqueue_and_echo_commands_P(PSTR("M428")); lcd_return_to_status(); } #if ENABLED(BABYSTEPPING) long babysteps_done = 0; static void _lcd_babystep(const AxisEnum axis, const char* msg) { if (LCD_CLICKED) { lcd_goto_previous_menu(true); return; } ENCODER_DIRECTION_NORMAL(); if (encoderPosition) { int babystep_increment = (int32_t)encoderPosition * BABYSTEP_MULTIPLICATOR; encoderPosition = 0; lcdDrawUpdate = LCDVIEW_REDRAW_NOW; thermalManager.babystep_axis(axis, babystep_increment); babysteps_done += babystep_increment; } if (lcdDrawUpdate) lcd_implementation_drawedit(msg, ftostr43sign( ((1000 * babysteps_done) / planner.axis_steps_per_mm[axis]) * 0.001f )); } #if ENABLED(BABYSTEP_XY) static void _lcd_babystep_x() { _lcd_babystep(X_AXIS, PSTR(MSG_BABYSTEPPING_X)); } static void _lcd_babystep_y() { _lcd_babystep(Y_AXIS, PSTR(MSG_BABYSTEPPING_Y)); } static void lcd_babystep_x() { babysteps_done = 0; lcd_goto_screen(_lcd_babystep_x); } static void lcd_babystep_y() { babysteps_done = 0; lcd_goto_screen(_lcd_babystep_y); } #endif static void _lcd_babystep_z() { _lcd_babystep(Z_AXIS, PSTR(MSG_BABYSTEPPING_Z)); } static void lcd_babystep_z() { babysteps_done = 0; lcd_goto_screen(_lcd_babystep_z); } #endif //BABYSTEPPING /** * Watch temperature callbacks */ #if ENABLED(THERMAL_PROTECTION_HOTENDS) && WATCH_TEMP_PERIOD > 0 #if TEMP_SENSOR_0 != 0 void watch_temp_callback_E0() { thermalManager.start_watching_heater(0); } #endif #if HOTENDS > 1 && TEMP_SENSOR_1 != 0 void watch_temp_callback_E1() { thermalManager.start_watching_heater(1); } #endif // HOTENDS > 1 #if HOTENDS > 2 && TEMP_SENSOR_2 != 0 void watch_temp_callback_E2() { thermalManager.start_watching_heater(2); } #endif // HOTENDS > 2 #if HOTENDS > 3 && TEMP_SENSOR_3 != 0 void watch_temp_callback_E3() { thermalManager.start_watching_heater(3); } #endif // HOTENDS > 3 #else #if TEMP_SENSOR_0 != 0 void watch_temp_callback_E0() {} #endif #if HOTENDS > 1 && TEMP_SENSOR_1 != 0 void watch_temp_callback_E1() {} #endif // HOTENDS > 1 #if HOTENDS > 2 && TEMP_SENSOR_2 != 0 void watch_temp_callback_E2() {} #endif // HOTENDS > 2 #if HOTENDS > 3 && TEMP_SENSOR_3 != 0 void watch_temp_callback_E3() {} #endif // HOTENDS > 3 #endif #if ENABLED(THERMAL_PROTECTION_BED) && WATCH_BED_TEMP_PERIOD > 0 #if TEMP_SENSOR_BED != 0 void watch_temp_callback_bed() { thermalManager.start_watching_bed(); } #endif #else #if TEMP_SENSOR_BED != 0 void watch_temp_callback_bed() {} #endif #endif /** * * "Tune" submenu * */ static void lcd_tune_menu() { START_MENU(); // // ^ Main // MENU_ITEM(back, MSG_MAIN); // // Speed: // MENU_ITEM_EDIT(int3, MSG_SPEED, &feedrate_multiplier, 10, 999); // Manual bed leveling, Bed Z: #if ENABLED(MANUAL_BED_LEVELING) MENU_ITEM_EDIT(float43, MSG_BED_Z, &mbl.z_offset, -1, 1); #endif // // Nozzle: // Nozzle [1-4]: // #if HOTENDS == 1 #if TEMP_SENSOR_0 != 0 MENU_MULTIPLIER_ITEM_EDIT_CALLBACK(int3, MSG_NOZZLE, &thermalManager.target_temperature[0], 0, HEATER_0_MAXTEMP - 15, watch_temp_callback_E0); #endif #else //HOTENDS > 1 #if TEMP_SENSOR_0 != 0 MENU_MULTIPLIER_ITEM_EDIT_CALLBACK(int3, MSG_NOZZLE MSG_N1, &thermalManager.target_temperature[0], 0, HEATER_0_MAXTEMP - 15, watch_temp_callback_E0); #endif #if TEMP_SENSOR_1 != 0 MENU_MULTIPLIER_ITEM_EDIT_CALLBACK(int3, MSG_NOZZLE MSG_N2, &thermalManager.target_temperature[1], 0, HEATER_1_MAXTEMP - 15, watch_temp_callback_E1); #endif #if HOTENDS > 2 #if TEMP_SENSOR_2 != 0 MENU_MULTIPLIER_ITEM_EDIT_CALLBACK(int3, MSG_NOZZLE MSG_N3, &thermalManager.target_temperature[2], 0, HEATER_2_MAXTEMP - 15, watch_temp_callback_E2); #endif #if HOTENDS > 3 #if TEMP_SENSOR_3 != 0 MENU_MULTIPLIER_ITEM_EDIT_CALLBACK(int3, MSG_NOZZLE MSG_N4, &thermalManager.target_temperature[3], 0, HEATER_3_MAXTEMP - 15, watch_temp_callback_E3); #endif #endif // HOTENDS > 3 #endif // HOTENDS > 2 #endif // HOTENDS > 1 // // Bed: // #if TEMP_SENSOR_BED != 0 MENU_MULTIPLIER_ITEM_EDIT_CALLBACK(int3, MSG_BED, &thermalManager.target_temperature_bed, 0, BED_MAXTEMP - 15, watch_temp_callback_bed); #endif // // Fan Speed: // #if FAN_COUNT > 0 #if HAS_FAN0 #if FAN_COUNT > 1 #define MSG_1ST_FAN_SPEED MSG_FAN_SPEED " 1" #else #define MSG_1ST_FAN_SPEED MSG_FAN_SPEED #endif MENU_MULTIPLIER_ITEM_EDIT(int3, MSG_1ST_FAN_SPEED, &fanSpeeds[0], 0, 255); #endif #if HAS_FAN1 MENU_MULTIPLIER_ITEM_EDIT(int3, MSG_FAN_SPEED " 2", &fanSpeeds[1], 0, 255); #endif #if HAS_FAN2 MENU_MULTIPLIER_ITEM_EDIT(int3, MSG_FAN_SPEED " 3", &fanSpeeds[2], 0, 255); #endif #endif // FAN_COUNT > 0 // // Flow: // Flow 1: // Flow 2: // Flow 3: // Flow 4: // #if EXTRUDERS == 1 MENU_ITEM_EDIT(int3, MSG_FLOW, &extruder_multiplier[0], 10, 999); #else // EXTRUDERS > 1 MENU_ITEM_EDIT(int3, MSG_FLOW, &extruder_multiplier[active_extruder], 10, 999); MENU_ITEM_EDIT(int3, MSG_FLOW MSG_N1, &extruder_multiplier[0], 10, 999); MENU_ITEM_EDIT(int3, MSG_FLOW MSG_N2, &extruder_multiplier[1], 10, 999); #if EXTRUDERS > 2 MENU_ITEM_EDIT(int3, MSG_FLOW MSG_N3, &extruder_multiplier[2], 10, 999); #if EXTRUDERS > 3 MENU_ITEM_EDIT(int3, MSG_FLOW MSG_N4, &extruder_multiplier[3], 10, 999); #endif //EXTRUDERS > 3 #endif //EXTRUDERS > 2 #endif //EXTRUDERS > 1 // // Babystep X: // Babystep Y: // Babystep Z: // #if ENABLED(BABYSTEPPING) #if ENABLED(BABYSTEP_XY) MENU_ITEM(submenu, MSG_BABYSTEP_X, lcd_babystep_x); MENU_ITEM(submenu, MSG_BABYSTEP_Y, lcd_babystep_y); #endif //BABYSTEP_XY MENU_ITEM(submenu, MSG_BABYSTEP_Z, lcd_babystep_z); #endif // // Change filament // #if ENABLED(FILAMENT_CHANGE_FEATURE) MENU_ITEM(gcode, MSG_FILAMENTCHANGE, PSTR("M600")); #endif END_MENU(); } /** * * "Prepare" submenu items * */ void _lcd_preheat(int endnum, const float temph, const float tempb, const int fan) { if (temph > 0) thermalManager.setTargetHotend(temph, endnum); #if TEMP_SENSOR_BED != 0 thermalManager.setTargetBed(tempb); #else UNUSED(tempb); #endif #if FAN_COUNT > 0 #if FAN_COUNT > 1 fanSpeeds[active_extruder < FAN_COUNT ? active_extruder : 0] = fan; #else fanSpeeds[0] = fan; #endif #else UNUSED(fan); #endif lcd_return_to_status(); } #if TEMP_SENSOR_0 != 0 void lcd_preheat_pla0() { _lcd_preheat(0, preheatHotendTemp1, preheatBedTemp1, preheatFanSpeed1); } void lcd_preheat_abs0() { _lcd_preheat(0, preheatHotendTemp2, preheatBedTemp2, preheatFanSpeed2); } #endif #if HOTENDS > 1 void lcd_preheat_pla1() { _lcd_preheat(1, preheatHotendTemp1, preheatBedTemp1, preheatFanSpeed1); } void lcd_preheat_abs1() { _lcd_preheat(1, preheatHotendTemp2, preheatBedTemp2, preheatFanSpeed2); } #if HOTENDS > 2 void lcd_preheat_pla2() { _lcd_preheat(2, preheatHotendTemp1, preheatBedTemp1, preheatFanSpeed1); } void lcd_preheat_abs2() { _lcd_preheat(2, preheatHotendTemp2, preheatBedTemp2, preheatFanSpeed2); } #if HOTENDS > 3 void lcd_preheat_pla3() { _lcd_preheat(3, preheatHotendTemp1, preheatBedTemp1, preheatFanSpeed1); } void lcd_preheat_abs3() { _lcd_preheat(3, preheatHotendTemp2, preheatBedTemp2, preheatFanSpeed2); } #endif #endif void lcd_preheat_pla0123() { #if HOTENDS > 1 thermalManager.setTargetHotend(preheatHotendTemp1, 1); #if HOTENDS > 2 thermalManager.setTargetHotend(preheatHotendTemp1, 2); #if HOTENDS > 3 thermalManager.setTargetHotend(preheatHotendTemp1, 3); #endif #endif #endif lcd_preheat_pla0(); } void lcd_preheat_abs0123() { #if HOTENDS > 1 thermalManager.setTargetHotend(preheatHotendTemp2, 1); #if HOTENDS > 2 thermalManager.setTargetHotend(preheatHotendTemp2, 2); #if HOTENDS > 3 thermalManager.setTargetHotend(preheatHotendTemp2, 3); #endif #endif #endif lcd_preheat_abs0(); } #endif // HOTENDS > 1 #if TEMP_SENSOR_BED != 0 void lcd_preheat_pla_bedonly() { _lcd_preheat(0, 0, preheatBedTemp1, preheatFanSpeed1); } void lcd_preheat_abs_bedonly() { _lcd_preheat(0, 0, preheatBedTemp2, preheatFanSpeed2); } #endif #if TEMP_SENSOR_0 != 0 && (TEMP_SENSOR_1 != 0 || TEMP_SENSOR_2 != 0 || TEMP_SENSOR_3 != 0 || TEMP_SENSOR_BED != 0) static void lcd_preheat_pla_menu() { START_MENU(); MENU_ITEM(back, MSG_PREPARE); #if HOTENDS == 1 MENU_ITEM(function, MSG_PREHEAT_1, lcd_preheat_pla0); #else MENU_ITEM(function, MSG_PREHEAT_1_N MSG_H1, lcd_preheat_pla0); MENU_ITEM(function, MSG_PREHEAT_1_N MSG_H2, lcd_preheat_pla1); #if HOTENDS > 2 MENU_ITEM(function, MSG_PREHEAT_1_N MSG_H3, lcd_preheat_pla2); #if HOTENDS > 3 MENU_ITEM(function, MSG_PREHEAT_1_N MSG_H4, lcd_preheat_pla3); #endif #endif MENU_ITEM(function, MSG_PREHEAT_1_ALL, lcd_preheat_pla0123); #endif #if TEMP_SENSOR_BED != 0 MENU_ITEM(function, MSG_PREHEAT_1_BEDONLY, lcd_preheat_pla_bedonly); #endif END_MENU(); } static void lcd_preheat_abs_menu() { START_MENU(); MENU_ITEM(back, MSG_PREPARE); #if HOTENDS == 1 MENU_ITEM(function, MSG_PREHEAT_2, lcd_preheat_abs0); #else MENU_ITEM(function, MSG_PREHEAT_2_N MSG_H1, lcd_preheat_abs0); MENU_ITEM(function, MSG_PREHEAT_2_N MSG_H2, lcd_preheat_abs1); #if HOTENDS > 2 MENU_ITEM(function, MSG_PREHEAT_2_N MSG_H3, lcd_preheat_abs2); #if HOTENDS > 3 MENU_ITEM(function, MSG_PREHEAT_2_N MSG_H4, lcd_preheat_abs3); #endif #endif MENU_ITEM(function, MSG_PREHEAT_2_ALL, lcd_preheat_abs0123); #endif #if TEMP_SENSOR_BED != 0 MENU_ITEM(function, MSG_PREHEAT_2_BEDONLY, lcd_preheat_abs_bedonly); #endif END_MENU(); } #endif // TEMP_SENSOR_0 && (TEMP_SENSOR_1 || TEMP_SENSOR_2 || TEMP_SENSOR_3 || TEMP_SENSOR_BED) void lcd_cooldown() { #if FAN_COUNT > 0 for (uint8_t i = 0; i < FAN_COUNT; i++) fanSpeeds[i] = 0; #endif thermalManager.disable_all_heaters(); lcd_return_to_status(); } #if ENABLED(SDSUPPORT) && ENABLED(MENU_ADDAUTOSTART) static void lcd_autostart_sd() { card.autostart_index = 0; card.setroot(); card.checkautostart(true); } #endif #if ENABLED(MANUAL_BED_LEVELING) /** * * "Prepare" > "Bed Leveling" handlers * */ static uint8_t _lcd_level_bed_position; // Utility to go to the next mesh point // A raise is added between points if MIN_Z_HEIGHT_FOR_HOMING is in use // Note: During Manual Bed Leveling the homed Z position is MESH_HOME_SEARCH_Z // Z position will be restored with the final action, a G28 inline void _mbl_goto_xy(float x, float y) { current_position[Z_AXIS] = MESH_HOME_SEARCH_Z + MIN_Z_HEIGHT_FOR_HOMING; line_to_current(Z_AXIS); current_position[X_AXIS] = x + home_offset[X_AXIS]; current_position[Y_AXIS] = y + home_offset[Y_AXIS]; line_to_current(manual_feedrate[X_AXIS] <= manual_feedrate[Y_AXIS] ? X_AXIS : Y_AXIS); #if MIN_Z_HEIGHT_FOR_HOMING > 0 current_position[Z_AXIS] = MESH_HOME_SEARCH_Z; // How do condition and action match? line_to_current(Z_AXIS); #endif stepper.synchronize(); } static void _lcd_level_goto_next_point(); static void _lcd_level_bed_done() { if (lcdDrawUpdate) lcd_implementation_drawedit(PSTR(MSG_LEVEL_BED_DONE)); lcdDrawUpdate = #if ENABLED(DOGLCD) LCDVIEW_CALL_REDRAW_NEXT #else LCDVIEW_CALL_NO_REDRAW #endif ; } /** * Step 7: Get the Z coordinate, then goto next point or exit */ static void _lcd_level_bed_get_z() { ENCODER_DIRECTION_NORMAL(); // Encoder wheel adjusts the Z position if (encoderPosition) { refresh_cmd_timeout(); current_position[Z_AXIS] += float((int32_t)encoderPosition) * (MBL_Z_STEP); NOLESS(current_position[Z_AXIS], 0); NOMORE(current_position[Z_AXIS], MESH_HOME_SEARCH_Z * 2); line_to_current(Z_AXIS); lcdDrawUpdate = #if ENABLED(DOGLCD) LCDVIEW_CALL_REDRAW_NEXT #else LCDVIEW_REDRAW_NOW #endif ; encoderPosition = 0; } static bool debounce_click = false; if (LCD_CLICKED) { if (!debounce_click) { debounce_click = true; // ignore multiple "clicks" in a row mbl.set_zigzag_z(_lcd_level_bed_position++, current_position[Z_AXIS]); if (_lcd_level_bed_position == (MESH_NUM_X_POINTS) * (MESH_NUM_Y_POINTS)) { lcd_goto_screen(_lcd_level_bed_done, true); current_position[Z_AXIS] = MESH_HOME_SEARCH_Z + MIN_Z_HEIGHT_FOR_HOMING; line_to_current(Z_AXIS); stepper.synchronize(); mbl.set_has_mesh(true); enqueue_and_echo_commands_P(PSTR("G28")); lcd_return_to_status(); //LCD_MESSAGEPGM(MSG_LEVEL_BED_DONE); #if HAS_BUZZER buzzer.tone(200, 659); buzzer.tone(200, 698); #endif } else { lcd_goto_screen(_lcd_level_goto_next_point, true); } } } else { debounce_click = false; } // Update on first display, then only on updates to Z position // Show message above on clicks instead if (lcdDrawUpdate) { float v = current_position[Z_AXIS] - MESH_HOME_SEARCH_Z; lcd_implementation_drawedit(PSTR(MSG_MOVE_Z), ftostr43sign(v + (v < 0 ? -0.0001 : 0.0001), '+')); } } /** * Step 6: Display "Next point: 1 / 9" while waiting for move to finish */ static void _lcd_level_bed_moving() { if (lcdDrawUpdate) { char msg[10]; sprintf_P(msg, PSTR("%i / %u"), (int)(_lcd_level_bed_position + 1), (MESH_NUM_X_POINTS) * (MESH_NUM_Y_POINTS)); lcd_implementation_drawedit(PSTR(MSG_LEVEL_BED_NEXT_POINT), msg); } lcdDrawUpdate = #if ENABLED(DOGLCD) LCDVIEW_CALL_REDRAW_NEXT #else LCDVIEW_CALL_NO_REDRAW #endif ; } /** * Step 5: Initiate a move to the next point */ static void _lcd_level_goto_next_point() { // Set the menu to display ahead of blocking call lcd_goto_screen(_lcd_level_bed_moving); // _mbl_goto_xy runs the menu loop until the move is done int8_t px, py; mbl.zigzag(_lcd_level_bed_position, px, py); _mbl_goto_xy(mbl.get_probe_x(px), mbl.get_probe_y(py)); // After the blocking function returns, change menus lcd_goto_screen(_lcd_level_bed_get_z); } /** * Step 4: Display "Click to Begin", wait for click * Move to the first probe position */ static void _lcd_level_bed_homing_done() { if (lcdDrawUpdate) lcd_implementation_drawedit(PSTR(MSG_LEVEL_BED_WAITING)); if (LCD_CLICKED) { _lcd_level_bed_position = 0; current_position[Z_AXIS] = MESH_HOME_SEARCH_Z #if Z_HOME_DIR > 0 + Z_MAX_POS #endif ; planner.set_position_mm(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]); lcd_goto_screen(_lcd_level_goto_next_point, true); } } /** * Step 3: Display "Homing XYZ" - Wait for homing to finish */ static void _lcd_level_bed_homing() { if (lcdDrawUpdate) lcd_implementation_drawedit(PSTR(MSG_LEVEL_BED_HOMING), NULL); lcdDrawUpdate = #if ENABLED(DOGLCD) LCDVIEW_CALL_REDRAW_NEXT #else LCDVIEW_CALL_NO_REDRAW #endif ; if (axis_homed[X_AXIS] && axis_homed[Y_AXIS] && axis_homed[Z_AXIS]) lcd_goto_screen(_lcd_level_bed_homing_done); } /** * Step 2: Continue Bed Leveling... */ static void _lcd_level_bed_continue() { defer_return_to_status = true; axis_homed[X_AXIS] = axis_homed[Y_AXIS] = axis_homed[Z_AXIS] = false; mbl.reset(); enqueue_and_echo_commands_P(PSTR("G28")); lcd_goto_screen(_lcd_level_bed_homing); } /** * Step 1: MBL entry-point: "Cancel" or "Level Bed" */ static void lcd_level_bed() { START_MENU(); MENU_ITEM(back, MSG_LEVEL_BED_CANCEL); MENU_ITEM(submenu, MSG_LEVEL_BED, _lcd_level_bed_continue); END_MENU(); } #endif // MANUAL_BED_LEVELING /** * * "Prepare" submenu * */ static void lcd_prepare_menu() { START_MENU(); // // ^ Main // MENU_ITEM(back, MSG_MAIN); // // Auto Home // MENU_ITEM(gcode, MSG_AUTO_HOME, PSTR("G28")); #if ENABLED(INDIVIDUAL_AXIS_HOMING_MENU) MENU_ITEM(gcode, MSG_AUTO_HOME_X, PSTR("G28 X")); MENU_ITEM(gcode, MSG_AUTO_HOME_Y, PSTR("G28 Y")); MENU_ITEM(gcode, MSG_AUTO_HOME_Z, PSTR("G28 Z")); #endif // // Set Home Offsets // MENU_ITEM(function, MSG_SET_HOME_OFFSETS, lcd_set_home_offsets); //MENU_ITEM(gcode, MSG_SET_ORIGIN, PSTR("G92 X0 Y0 Z0")); // // Level Bed // #if ENABLED(AUTO_BED_LEVELING_FEATURE) MENU_ITEM(gcode, MSG_LEVEL_BED, axis_homed[X_AXIS] && axis_homed[Y_AXIS] ? PSTR("G29") : PSTR("G28\nG29") ); #elif ENABLED(MANUAL_BED_LEVELING) MENU_ITEM(submenu, MSG_LEVEL_BED, lcd_level_bed); #endif // // Move Axis // MENU_ITEM(submenu, MSG_MOVE_AXIS, lcd_move_menu); // // Disable Steppers // MENU_ITEM(gcode, MSG_DISABLE_STEPPERS, PSTR("M84")); // // Preheat PLA // Preheat ABS // #if TEMP_SENSOR_0 != 0 #if TEMP_SENSOR_1 != 0 || TEMP_SENSOR_2 != 0 || TEMP_SENSOR_3 != 0 || TEMP_SENSOR_BED != 0 MENU_ITEM(submenu, MSG_PREHEAT_1, lcd_preheat_pla_menu); MENU_ITEM(submenu, MSG_PREHEAT_2, lcd_preheat_abs_menu); #else MENU_ITEM(function, MSG_PREHEAT_1, lcd_preheat_pla0); MENU_ITEM(function, MSG_PREHEAT_2, lcd_preheat_abs0); #endif #endif // // Cooldown // MENU_ITEM(function, MSG_COOLDOWN, lcd_cooldown); // // Switch power on/off // #if HAS_POWER_SWITCH if (powersupply) MENU_ITEM(gcode, MSG_SWITCH_PS_OFF, PSTR("M81")); else MENU_ITEM(gcode, MSG_SWITCH_PS_ON, PSTR("M80")); #endif // // Autostart // #if ENABLED(SDSUPPORT) && ENABLED(MENU_ADDAUTOSTART) MENU_ITEM(function, MSG_AUTOSTART, lcd_autostart_sd); #endif END_MENU(); } #if ENABLED(DELTA_CALIBRATION_MENU) static void lcd_delta_calibrate_menu() { START_MENU(); MENU_ITEM(back, MSG_MAIN); MENU_ITEM(gcode, MSG_AUTO_HOME, PSTR("G28")); MENU_ITEM(gcode, MSG_DELTA_CALIBRATE_X, PSTR("G0 F8000 X-77.94 Y-45 Z0")); MENU_ITEM(gcode, MSG_DELTA_CALIBRATE_Y, PSTR("G0 F8000 X77.94 Y-45 Z0")); MENU_ITEM(gcode, MSG_DELTA_CALIBRATE_Z, PSTR("G0 F8000 X0 Y90 Z0")); MENU_ITEM(gcode, MSG_DELTA_CALIBRATE_CENTER, PSTR("G0 F8000 X0 Y0 Z0")); END_MENU(); } #endif // DELTA_CALIBRATION_MENU float move_menu_scale; /** * If the most recent manual move hasn't been fed to the planner yet, * and the planner can accept one, send immediately */ inline void manage_manual_move() { if (manual_move_axis != (int8_t)NO_AXIS && ELAPSED(millis(), manual_move_start_time) && !planner.is_full()) { #if ENABLED(DELTA) calculate_delta(current_position); planner.buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], current_position[E_AXIS], manual_feedrate[manual_move_axis]/60, manual_move_e_index); #else planner.buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], manual_feedrate[manual_move_axis]/60, manual_move_e_index); #endif manual_move_axis = (int8_t)NO_AXIS; } } /** * Set a flag that lcd_update() should start a move * to "current_position" after a short delay. */ inline void manual_move_to_current(AxisEnum axis #if EXTRUDERS > 1 , int8_t eindex=-1 #endif ) { #if EXTRUDERS > 1 if (axis == E_AXIS) manual_move_e_index = eindex >= 0 ? eindex : active_extruder; #endif manual_move_start_time = millis() + (move_menu_scale < 0.99 ? 0UL : 250UL); // delay for bigger moves manual_move_axis = (int8_t)axis; } /** * * "Prepare" > "Move Axis" submenu * */ static void _lcd_move_xyz(const char* name, AxisEnum axis, float min, float max) { if (LCD_CLICKED) { lcd_goto_previous_menu(true); return; } ENCODER_DIRECTION_NORMAL(); if (encoderPosition) { refresh_cmd_timeout(); current_position[axis] += float((int32_t)encoderPosition) * move_menu_scale; if (min_software_endstops) NOLESS(current_position[axis], min); if (max_software_endstops) NOMORE(current_position[axis], max); encoderPosition = 0; manual_move_to_current(axis); lcdDrawUpdate = LCDVIEW_REDRAW_NOW; } if (lcdDrawUpdate) lcd_implementation_drawedit(name, ftostr41sign(current_position[axis])); } #if ENABLED(DELTA) static float delta_clip_radius_2 = (DELTA_PRINTABLE_RADIUS) * (DELTA_PRINTABLE_RADIUS); static int delta_clip( float a ) { return sqrt(delta_clip_radius_2 - a*a); } static void lcd_move_x() { int clip = delta_clip(current_position[Y_AXIS]); _lcd_move_xyz(PSTR(MSG_MOVE_X), X_AXIS, max(sw_endstop_min[X_AXIS], -clip), min(sw_endstop_max[X_AXIS], clip)); } static void lcd_move_y() { int clip = delta_clip(current_position[X_AXIS]); _lcd_move_xyz(PSTR(MSG_MOVE_Y), Y_AXIS, max(sw_endstop_min[Y_AXIS], -clip), min(sw_endstop_max[Y_AXIS], clip)); } #else static void lcd_move_x() { _lcd_move_xyz(PSTR(MSG_MOVE_X), X_AXIS, sw_endstop_min[X_AXIS], sw_endstop_max[X_AXIS]); } static void lcd_move_y() { _lcd_move_xyz(PSTR(MSG_MOVE_Y), Y_AXIS, sw_endstop_min[Y_AXIS], sw_endstop_max[Y_AXIS]); } #endif static void lcd_move_z() { _lcd_move_xyz(PSTR(MSG_MOVE_Z), Z_AXIS, sw_endstop_min[Z_AXIS], sw_endstop_max[Z_AXIS]); } static void lcd_move_e( #if EXTRUDERS > 1 int8_t eindex = -1 #endif ) { if (LCD_CLICKED) { lcd_goto_previous_menu(true); return; } ENCODER_DIRECTION_NORMAL(); if (encoderPosition) { current_position[E_AXIS] += float((int32_t)encoderPosition) * move_menu_scale; encoderPosition = 0; manual_move_to_current(E_AXIS #if EXTRUDERS > 1 , eindex #endif ); lcdDrawUpdate = LCDVIEW_REDRAW_NOW; } if (lcdDrawUpdate) { PGM_P pos_label; #if EXTRUDERS == 1 pos_label = PSTR(MSG_MOVE_E); #else switch (eindex) { case 0: pos_label = PSTR(MSG_MOVE_E MSG_MOVE_E1); break; case 1: pos_label = PSTR(MSG_MOVE_E MSG_MOVE_E2); break; #if EXTRUDERS > 2 case 2: pos_label = PSTR(MSG_MOVE_E MSG_MOVE_E3); break; #if EXTRUDERS > 3 case 3: pos_label = PSTR(MSG_MOVE_E MSG_MOVE_E4); break; #endif //EXTRUDERS > 3 #endif //EXTRUDERS > 2 } #endif //EXTRUDERS > 1 lcd_implementation_drawedit(pos_label, ftostr41sign(current_position[E_AXIS])); } } #if EXTRUDERS > 1 static void lcd_move_e0() { lcd_move_e(0); } static void lcd_move_e1() { lcd_move_e(1); } #if EXTRUDERS > 2 static void lcd_move_e2() { lcd_move_e(2); } #if EXTRUDERS > 3 static void lcd_move_e3() { lcd_move_e(3); } #endif #endif #endif // EXTRUDERS > 1 /** * * "Prepare" > "Move Xmm" > "Move XYZ" submenu * */ #if ENABLED(DELTA) || ENABLED(SCARA) #define _MOVE_XYZ_ALLOWED (axis_homed[X_AXIS] && axis_homed[Y_AXIS] && axis_homed[Z_AXIS]) #else #define _MOVE_XYZ_ALLOWED true #endif static void _lcd_move_menu_axis() { START_MENU(); MENU_ITEM(back, MSG_MOVE_AXIS); if (_MOVE_XYZ_ALLOWED) { MENU_ITEM(submenu, MSG_MOVE_X, lcd_move_x); MENU_ITEM(submenu, MSG_MOVE_Y, lcd_move_y); } if (move_menu_scale < 10.0) { if (_MOVE_XYZ_ALLOWED) MENU_ITEM(submenu, MSG_MOVE_Z, lcd_move_z); #if EXTRUDERS == 1 MENU_ITEM(submenu, MSG_MOVE_E, lcd_move_e); #else MENU_ITEM(submenu, MSG_MOVE_E MSG_MOVE_E1, lcd_move_e0); MENU_ITEM(submenu, MSG_MOVE_E MSG_MOVE_E2, lcd_move_e1); #if EXTRUDERS > 2 MENU_ITEM(submenu, MSG_MOVE_E MSG_MOVE_E3, lcd_move_e2); #if EXTRUDERS > 3 MENU_ITEM(submenu, MSG_MOVE_E MSG_MOVE_E4, lcd_move_e3); #endif #endif #endif // EXTRUDERS > 1 } END_MENU(); } static void lcd_move_menu_10mm() { move_menu_scale = 10.0; _lcd_move_menu_axis(); } static void lcd_move_menu_1mm() { move_menu_scale = 1.0; _lcd_move_menu_axis(); } static void lcd_move_menu_01mm() { move_menu_scale = 0.1; _lcd_move_menu_axis(); } /** * * "Prepare" > "Move Axis" submenu * */ static void lcd_move_menu() { START_MENU(); MENU_ITEM(back, MSG_PREPARE); if (_MOVE_XYZ_ALLOWED) MENU_ITEM(submenu, MSG_MOVE_10MM, lcd_move_menu_10mm); MENU_ITEM(submenu, MSG_MOVE_1MM, lcd_move_menu_1mm); MENU_ITEM(submenu, MSG_MOVE_01MM, lcd_move_menu_01mm); //TODO:X,Y,Z,E END_MENU(); } /** * * "Control" submenu * */ static void lcd_control_menu() { START_MENU(); MENU_ITEM(back, MSG_MAIN); MENU_ITEM(submenu, MSG_TEMPERATURE, lcd_control_temperature_menu); MENU_ITEM(submenu, MSG_MOTION, lcd_control_motion_menu); MENU_ITEM(submenu, MSG_VOLUMETRIC, lcd_control_volumetric_menu); #if HAS_LCD_CONTRAST //MENU_ITEM_EDIT(int3, MSG_CONTRAST, &lcd_contrast, 0, 63); MENU_ITEM(submenu, MSG_CONTRAST, lcd_set_contrast); #endif #if ENABLED(FWRETRACT) MENU_ITEM(submenu, MSG_RETRACT, lcd_control_retract_menu); #endif #if ENABLED(EEPROM_SETTINGS) MENU_ITEM(function, MSG_STORE_EPROM, Config_StoreSettings); MENU_ITEM(function, MSG_LOAD_EPROM, Config_RetrieveSettings); #endif MENU_ITEM(function, MSG_RESTORE_FAILSAFE, Config_ResetDefault); END_MENU(); } /** * * "Temperature" submenu * */ #if ENABLED(PID_AUTOTUNE_MENU) #if ENABLED(PIDTEMP) int autotune_temp[HOTENDS] = ARRAY_BY_HOTENDS1(150); const int heater_maxtemp[HOTENDS] = ARRAY_BY_HOTENDS(HEATER_0_MAXTEMP, HEATER_1_MAXTEMP, HEATER_2_MAXTEMP, HEATER_3_MAXTEMP); #endif #if ENABLED(PIDTEMPBED) int autotune_temp_bed = 70; #endif static void _lcd_autotune(int e) { char cmd[30]; sprintf_P(cmd, PSTR("M303 U1 E%i S%i"), e, #if HAS_PID_FOR_BOTH e < 0 ? autotune_temp_bed : autotune_temp[e] #elif ENABLED(PIDTEMPBED) autotune_temp_bed #else autotune_temp[e] #endif ); enqueue_and_echo_command(cmd); } #endif //PID_AUTOTUNE_MENU #if ENABLED(PIDTEMP) // Helpers for editing PID Ki & Kd values // grab the PID value out of the temp variable; scale it; then update the PID driver void copy_and_scalePID_i(int e) { #if DISABLED(PID_PARAMS_PER_HOTEND) UNUSED(e); #endif PID_PARAM(Ki, e) = scalePID_i(raw_Ki); thermalManager.updatePID(); } void copy_and_scalePID_d(int e) { #if DISABLED(PID_PARAMS_PER_HOTEND) UNUSED(e); #endif PID_PARAM(Kd, e) = scalePID_d(raw_Kd); thermalManager.updatePID(); } #define _PIDTEMP_BASE_FUNCTIONS(eindex) \ void copy_and_scalePID_i_E ## eindex() { copy_and_scalePID_i(eindex); } \ void copy_and_scalePID_d_E ## eindex() { copy_and_scalePID_d(eindex); } #if ENABLED(PID_AUTOTUNE_MENU) #define _PIDTEMP_FUNCTIONS(eindex) \ _PIDTEMP_BASE_FUNCTIONS(eindex); \ void lcd_autotune_callback_E ## eindex() { _lcd_autotune(eindex); } #else #define _PIDTEMP_FUNCTIONS(eindex) _PIDTEMP_BASE_FUNCTIONS(eindex) #endif _PIDTEMP_FUNCTIONS(0); #if ENABLED(PID_PARAMS_PER_HOTEND) #if HOTENDS > 1 _PIDTEMP_FUNCTIONS(1); #if HOTENDS > 2 _PIDTEMP_FUNCTIONS(2); #if HOTENDS > 3 _PIDTEMP_FUNCTIONS(3); #endif //HOTENDS > 3 #endif //HOTENDS > 2 #endif //HOTENDS > 1 #endif //PID_PARAMS_PER_HOTEND #endif //PIDTEMP /** * * "Control" > "Temperature" submenu * */ static void lcd_control_temperature_menu() { START_MENU(); // // ^ Control // MENU_ITEM(back, MSG_CONTROL); // // Nozzle: // Nozzle [1-4]: // #if HOTENDS == 1 #if TEMP_SENSOR_0 != 0 MENU_MULTIPLIER_ITEM_EDIT_CALLBACK(int3, MSG_NOZZLE, &thermalManager.target_temperature[0], 0, HEATER_0_MAXTEMP - 15, watch_temp_callback_E0); #endif #else //HOTENDS > 1 #if TEMP_SENSOR_0 != 0 MENU_MULTIPLIER_ITEM_EDIT_CALLBACK(int3, MSG_NOZZLE MSG_N1, &thermalManager.target_temperature[0], 0, HEATER_0_MAXTEMP - 15, watch_temp_callback_E0); #endif #if TEMP_SENSOR_1 != 0 MENU_MULTIPLIER_ITEM_EDIT_CALLBACK(int3, MSG_NOZZLE MSG_N2, &thermalManager.target_temperature[1], 0, HEATER_1_MAXTEMP - 15, watch_temp_callback_E1); #endif #if HOTENDS > 2 #if TEMP_SENSOR_2 != 0 MENU_MULTIPLIER_ITEM_EDIT_CALLBACK(int3, MSG_NOZZLE MSG_N3, &thermalManager.target_temperature[2], 0, HEATER_2_MAXTEMP - 15, watch_temp_callback_E2); #endif #if HOTENDS > 3 #if TEMP_SENSOR_3 != 0 MENU_MULTIPLIER_ITEM_EDIT_CALLBACK(int3, MSG_NOZZLE MSG_N4, &thermalManager.target_temperature[3], 0, HEATER_3_MAXTEMP - 15, watch_temp_callback_E3); #endif #endif // HOTENDS > 3 #endif // HOTENDS > 2 #endif // HOTENDS > 1 // // Bed: // #if TEMP_SENSOR_BED != 0 MENU_MULTIPLIER_ITEM_EDIT(int3, MSG_BED, &thermalManager.target_temperature_bed, 0, BED_MAXTEMP - 15); #endif // // Fan Speed: // #if FAN_COUNT > 0 #if HAS_FAN0 #if FAN_COUNT > 1 #define MSG_1ST_FAN_SPEED MSG_FAN_SPEED " 1" #else #define MSG_1ST_FAN_SPEED MSG_FAN_SPEED #endif MENU_MULTIPLIER_ITEM_EDIT(int3, MSG_1ST_FAN_SPEED, &fanSpeeds[0], 0, 255); #endif #if HAS_FAN1 MENU_MULTIPLIER_ITEM_EDIT(int3, MSG_FAN_SPEED " 2", &fanSpeeds[1], 0, 255); #endif #if HAS_FAN2 MENU_MULTIPLIER_ITEM_EDIT(int3, MSG_FAN_SPEED " 3", &fanSpeeds[2], 0, 255); #endif #endif // FAN_COUNT > 0 // // Autotemp, Min, Max, Fact // #if ENABLED(AUTOTEMP) && (TEMP_SENSOR_0 != 0) MENU_ITEM_EDIT(bool, MSG_AUTOTEMP, &planner.autotemp_enabled); MENU_ITEM_EDIT(float3, MSG_MIN, &planner.autotemp_min, 0, HEATER_0_MAXTEMP - 15); MENU_ITEM_EDIT(float3, MSG_MAX, &planner.autotemp_max, 0, HEATER_0_MAXTEMP - 15); MENU_ITEM_EDIT(float32, MSG_FACTOR, &planner.autotemp_factor, 0.0, 1.0); #endif // // PID-P, PID-I, PID-D, PID-C, PID Autotune // PID-P E1, PID-I E1, PID-D E1, PID-C E1, PID Autotune E1 // PID-P E2, PID-I E2, PID-D E2, PID-C E2, PID Autotune E2 // PID-P E3, PID-I E3, PID-D E3, PID-C E3, PID Autotune E3 // PID-P E4, PID-I E4, PID-D E4, PID-C E4, PID Autotune E4 // #if ENABLED(PIDTEMP) #define _PID_BASE_MENU_ITEMS(ELABEL, eindex) \ raw_Ki = unscalePID_i(PID_PARAM(Ki, eindex)); \ raw_Kd = unscalePID_d(PID_PARAM(Kd, eindex)); \ MENU_ITEM_EDIT(float52, MSG_PID_P ELABEL, &PID_PARAM(Kp, eindex), 1, 9990); \ MENU_ITEM_EDIT_CALLBACK(float52, MSG_PID_I ELABEL, &raw_Ki, 0.01, 9990, copy_and_scalePID_i_E ## eindex); \ MENU_ITEM_EDIT_CALLBACK(float52, MSG_PID_D ELABEL, &raw_Kd, 1, 9990, copy_and_scalePID_d_E ## eindex) #if ENABLED(PID_ADD_EXTRUSION_RATE) #define _PID_MENU_ITEMS(ELABEL, eindex) \ _PID_BASE_MENU_ITEMS(ELABEL, eindex); \ MENU_ITEM_EDIT(float3, MSG_PID_C ELABEL, &PID_PARAM(Kc, eindex), 1, 9990) #else #define _PID_MENU_ITEMS(ELABEL, eindex) _PID_BASE_MENU_ITEMS(ELABEL, eindex) #endif #if ENABLED(PID_AUTOTUNE_MENU) #define PID_MENU_ITEMS(ELABEL, eindex) \ _PID_MENU_ITEMS(ELABEL, eindex); \ MENU_MULTIPLIER_ITEM_EDIT_CALLBACK(int3, MSG_PID_AUTOTUNE ELABEL, &autotune_temp[eindex], 150, heater_maxtemp[eindex] - 15, lcd_autotune_callback_E ## eindex) #else #define PID_MENU_ITEMS(ELABEL, eindex) _PID_MENU_ITEMS(ELABEL, eindex) #endif #if ENABLED(PID_PARAMS_PER_HOTEND) && HOTENDS > 1 PID_MENU_ITEMS(MSG_E1, 0); PID_MENU_ITEMS(MSG_E2, 1); #if HOTENDS > 2 PID_MENU_ITEMS(MSG_E3, 2); #if HOTENDS > 3 PID_MENU_ITEMS(MSG_E4, 3); #endif //HOTENDS > 3 #endif //HOTENDS > 2 #else //!PID_PARAMS_PER_HOTEND || HOTENDS == 1 PID_MENU_ITEMS("", 0); #endif //!PID_PARAMS_PER_HOTEND || HOTENDS == 1 #endif //PIDTEMP // // Preheat PLA conf // MENU_ITEM(submenu, MSG_PREHEAT_1_SETTINGS, lcd_control_temperature_preheat_pla_settings_menu); // // Preheat ABS conf // MENU_ITEM(submenu, MSG_PREHEAT_2_SETTINGS, lcd_control_temperature_preheat_abs_settings_menu); END_MENU(); } /** * * "Temperature" > "Preheat PLA conf" submenu * */ static void lcd_control_temperature_preheat_pla_settings_menu() { START_MENU(); MENU_ITEM(back, MSG_TEMPERATURE); MENU_ITEM_EDIT(int3, MSG_FAN_SPEED, &preheatFanSpeed1, 0, 255); #if TEMP_SENSOR_0 != 0 MENU_ITEM_EDIT(int3, MSG_NOZZLE, &preheatHotendTemp1, HEATER_0_MINTEMP, HEATER_0_MAXTEMP - 15); #endif #if TEMP_SENSOR_BED != 0 MENU_ITEM_EDIT(int3, MSG_BED, &preheatBedTemp1, BED_MINTEMP, BED_MAXTEMP - 15); #endif #if ENABLED(EEPROM_SETTINGS) MENU_ITEM(function, MSG_STORE_EPROM, Config_StoreSettings); #endif END_MENU(); } /** * * "Temperature" > "Preheat ABS conf" submenu * */ static void lcd_control_temperature_preheat_abs_settings_menu() { START_MENU(); MENU_ITEM(back, MSG_TEMPERATURE); MENU_ITEM_EDIT(int3, MSG_FAN_SPEED, &preheatFanSpeed2, 0, 255); #if TEMP_SENSOR_0 != 0 MENU_ITEM_EDIT(int3, MSG_NOZZLE, &preheatHotendTemp2, HEATER_0_MINTEMP, HEATER_0_MAXTEMP - 15); #endif #if TEMP_SENSOR_BED != 0 MENU_ITEM_EDIT(int3, MSG_BED, &preheatBedTemp2, BED_MINTEMP, BED_MAXTEMP - 15); #endif #if ENABLED(EEPROM_SETTINGS) MENU_ITEM(function, MSG_STORE_EPROM, Config_StoreSettings); #endif END_MENU(); } static void _reset_acceleration_rates() { planner.reset_acceleration_rates(); } /** * * "Control" > "Motion" submenu * */ static void lcd_control_motion_menu() { START_MENU(); MENU_ITEM(back, MSG_CONTROL); #if HAS_BED_PROBE MENU_ITEM_EDIT(float32, MSG_ZPROBE_ZOFFSET, &zprobe_zoffset, Z_PROBE_OFFSET_RANGE_MIN, Z_PROBE_OFFSET_RANGE_MAX); #endif // Manual bed leveling, Bed Z: #if ENABLED(MANUAL_BED_LEVELING) MENU_ITEM_EDIT(float43, MSG_BED_Z, &mbl.z_offset, -1, 1); #endif MENU_ITEM_EDIT(float5, MSG_ACC, &planner.acceleration, 10, 99000); MENU_ITEM_EDIT(float3, MSG_VXY_JERK, &planner.max_xy_jerk, 1, 990); #if ENABLED(DELTA) MENU_ITEM_EDIT(float3, MSG_VZ_JERK, &planner.max_z_jerk, 1, 990); #else MENU_ITEM_EDIT(float52, MSG_VZ_JERK, &planner.max_z_jerk, 0.1, 990); #endif MENU_ITEM_EDIT(float3, MSG_VE_JERK, &planner.max_e_jerk, 1, 990); MENU_ITEM_EDIT(float3, MSG_VMAX MSG_X, &planner.max_feedrate[X_AXIS], 1, 999); MENU_ITEM_EDIT(float3, MSG_VMAX MSG_Y, &planner.max_feedrate[Y_AXIS], 1, 999); MENU_ITEM_EDIT(float3, MSG_VMAX MSG_Z, &planner.max_feedrate[Z_AXIS], 1, 999); MENU_ITEM_EDIT(float3, MSG_VMAX MSG_E, &planner.max_feedrate[E_AXIS], 1, 999); MENU_ITEM_EDIT(float3, MSG_VMIN, &planner.min_feedrate, 0, 999); MENU_ITEM_EDIT(float3, MSG_VTRAV_MIN, &planner.min_travel_feedrate, 0, 999); MENU_ITEM_EDIT_CALLBACK(long5, MSG_AMAX MSG_X, &planner.max_acceleration_mm_per_s2[X_AXIS], 100, 99000, _reset_acceleration_rates); MENU_ITEM_EDIT_CALLBACK(long5, MSG_AMAX MSG_Y, &planner.max_acceleration_mm_per_s2[Y_AXIS], 100, 99000, _reset_acceleration_rates); MENU_ITEM_EDIT_CALLBACK(long5, MSG_AMAX MSG_Z, &planner.max_acceleration_mm_per_s2[Z_AXIS], 10, 99000, _reset_acceleration_rates); MENU_ITEM_EDIT_CALLBACK(long5, MSG_AMAX MSG_E, &planner.max_acceleration_mm_per_s2[E_AXIS], 100, 99000, _reset_acceleration_rates); MENU_ITEM_EDIT(float5, MSG_A_RETRACT, &planner.retract_acceleration, 100, 99000); MENU_ITEM_EDIT(float5, MSG_A_TRAVEL, &planner.travel_acceleration, 100, 99000); MENU_ITEM_EDIT(float52, MSG_XSTEPS, &planner.axis_steps_per_mm[X_AXIS], 5, 9999); MENU_ITEM_EDIT(float52, MSG_YSTEPS, &planner.axis_steps_per_mm[Y_AXIS], 5, 9999); #if ENABLED(DELTA) MENU_ITEM_EDIT(float52, MSG_ZSTEPS, &planner.axis_steps_per_mm[Z_AXIS], 5, 9999); #else MENU_ITEM_EDIT(float51, MSG_ZSTEPS, &planner.axis_steps_per_mm[Z_AXIS], 5, 9999); #endif MENU_ITEM_EDIT(float51, MSG_ESTEPS, &planner.axis_steps_per_mm[E_AXIS], 5, 9999); #if ENABLED(ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED) MENU_ITEM_EDIT(bool, MSG_ENDSTOP_ABORT, &stepper.abort_on_endstop_hit); #endif #if ENABLED(SCARA) MENU_ITEM_EDIT(float74, MSG_XSCALE, &axis_scaling[X_AXIS], 0.5, 2); MENU_ITEM_EDIT(float74, MSG_YSCALE, &axis_scaling[Y_AXIS], 0.5, 2); #endif END_MENU(); } /** * * "Control" > "Filament" submenu * */ static void lcd_control_volumetric_menu() { START_MENU(); MENU_ITEM(back, MSG_CONTROL); MENU_ITEM_EDIT_CALLBACK(bool, MSG_VOLUMETRIC_ENABLED, &volumetric_enabled, calculate_volumetric_multipliers); if (volumetric_enabled) { #if EXTRUDERS == 1 MENU_MULTIPLIER_ITEM_EDIT_CALLBACK(float43, MSG_FILAMENT_DIAM, &filament_size[0], 1.5, 3.25, calculate_volumetric_multipliers); #else //EXTRUDERS > 1 MENU_MULTIPLIER_ITEM_EDIT_CALLBACK(float43, MSG_FILAMENT_DIAM MSG_DIAM_E1, &filament_size[0], 1.5, 3.25, calculate_volumetric_multipliers); MENU_MULTIPLIER_ITEM_EDIT_CALLBACK(float43, MSG_FILAMENT_DIAM MSG_DIAM_E2, &filament_size[1], 1.5, 3.25, calculate_volumetric_multipliers); #if EXTRUDERS > 2 MENU_MULTIPLIER_ITEM_EDIT_CALLBACK(float43, MSG_FILAMENT_DIAM MSG_DIAM_E3, &filament_size[2], 1.5, 3.25, calculate_volumetric_multipliers); #if EXTRUDERS > 3 MENU_MULTIPLIER_ITEM_EDIT_CALLBACK(float43, MSG_FILAMENT_DIAM MSG_DIAM_E4, &filament_size[3], 1.5, 3.25, calculate_volumetric_multipliers); #endif //EXTRUDERS > 3 #endif //EXTRUDERS > 2 #endif //EXTRUDERS > 1 } END_MENU(); } /** * * "Control" > "Contrast" submenu * */ #if HAS_LCD_CONTRAST static void lcd_set_contrast() { if (LCD_CLICKED) { lcd_goto_previous_menu(true); return; } ENCODER_DIRECTION_NORMAL(); if (encoderPosition) { set_lcd_contrast(lcd_contrast + encoderPosition); encoderPosition = 0; lcdDrawUpdate = LCDVIEW_REDRAW_NOW; } if (lcdDrawUpdate) { lcd_implementation_drawedit(PSTR(MSG_CONTRAST), #if LCD_CONTRAST_MAX >= 100 itostr3(lcd_contrast) #else itostr2(lcd_contrast) #endif ); } } #endif // HAS_LCD_CONTRAST /** * * "Control" > "Retract" submenu * */ #if ENABLED(FWRETRACT) static void lcd_control_retract_menu() { START_MENU(); MENU_ITEM(back, MSG_CONTROL); MENU_ITEM_EDIT(bool, MSG_AUTORETRACT, &autoretract_enabled); MENU_ITEM_EDIT(float52, MSG_CONTROL_RETRACT, &retract_length, 0, 100); #if EXTRUDERS > 1 MENU_ITEM_EDIT(float52, MSG_CONTROL_RETRACT_SWAP, &retract_length_swap, 0, 100); #endif MENU_ITEM_EDIT(float3, MSG_CONTROL_RETRACTF, &retract_feedrate_mm_s, 1, 999); MENU_ITEM_EDIT(float52, MSG_CONTROL_RETRACT_ZLIFT, &retract_zlift, 0, 999); MENU_ITEM_EDIT(float52, MSG_CONTROL_RETRACT_RECOVER, &retract_recover_length, 0, 100); #if EXTRUDERS > 1 MENU_ITEM_EDIT(float52, MSG_CONTROL_RETRACT_RECOVER_SWAP, &retract_recover_length_swap, 0, 100); #endif MENU_ITEM_EDIT(float3, MSG_CONTROL_RETRACT_RECOVERF, &retract_recover_feedrate, 1, 999); END_MENU(); } #endif // FWRETRACT #if ENABLED(SDSUPPORT) #if !PIN_EXISTS(SD_DETECT) static void lcd_sd_refresh() { card.initsd(); encoderTopLine = 0; } #endif static void lcd_sd_updir() { card.updir(); encoderTopLine = 0; } /** * * "Print from SD" submenu * */ void lcd_sdcard_menu() { ENCODER_DIRECTION_MENUS(); if (lcdDrawUpdate == 0 && LCD_CLICKED == 0) return; // nothing to do (so don't thrash the SD card) uint16_t fileCnt = card.getnrfilenames(); START_MENU(); MENU_ITEM(back, MSG_MAIN); card.getWorkDirName(); if (card.filename[0] == '/') { #if !PIN_EXISTS(SD_DETECT) MENU_ITEM(function, LCD_STR_REFRESH MSG_REFRESH, lcd_sd_refresh); #endif } else { MENU_ITEM(function, LCD_STR_FOLDER "..", lcd_sd_updir); } for (uint16_t i = 0; i < fileCnt; i++) { if (_menuLineNr == _thisItemNr) { card.getfilename( #if ENABLED(SDCARD_RATHERRECENTFIRST) fileCnt-1 - #endif i ); if (card.filenameIsDir) MENU_ITEM(sddirectory, MSG_CARD_MENU, card.filename, card.longFilename); else MENU_ITEM(sdfile, MSG_CARD_MENU, card.filename, card.longFilename); } else { MENU_ITEM_DUMMY(); } } END_MENU(); } #endif //SDSUPPORT #if ENABLED(LCD_INFO_MENU) #if ENABLED(PRINTCOUNTER) /** * * About Printer > Statistics submenu * */ static void lcd_info_stats_menu() { if (LCD_CLICKED) { lcd_goto_previous_menu(true); return; } PrintCounter print_job_counter = PrintCounter(); print_job_counter.loadStats(); printStatistics stats = print_job_counter.getStats(); char timeString[14]; sprintf_P(timeString, PSTR("%i" MSG_SHORT_DAY " %i" MSG_SHORT_HOUR " %i" MSG_SHORT_MINUTE), int(stats.printTime / 60 / 60 / 24), int((stats.printTime / 60 / 60) % 24), int((stats.printTime / 60) % 60) ); START_SCREEN(); // 12345678901234567890 STATIC_ITEM(MSG_INFO_PRINT_COUNT ": ", false, false, itostr3left(stats.totalPrints)); // Print Count: 999 STATIC_ITEM(MSG_INFO_COMPLETED_PRINTS": ", false, false, itostr3left(stats.finishedPrints)); // Completed : 666 STATIC_ITEM(MSG_INFO_PRINT_TIME ": ", false, false); // Total Time : STATIC_ITEM(" ", false, false, timeString); // 12345d 12h 34m END_SCREEN(); } #endif // PRINTCOUNTER /** * * About Printer > Thermistors * */ static void lcd_info_thermistors_menu() { if (LCD_CLICKED) { lcd_goto_previous_menu(true); return; } START_SCREEN(); #define THERMISTOR_ID TEMP_SENSOR_0 #include "thermistornames.h" STATIC_ITEM("T0: " THERMISTOR_NAME, false, true); STATIC_ITEM(MSG_INFO_MIN_TEMP ": " STRINGIFY(HEATER_0_MINTEMP), false); STATIC_ITEM(MSG_INFO_MAX_TEMP ": " STRINGIFY(HEATER_0_MAXTEMP), false); #if TEMP_SENSOR_1 != 0 #undef THERMISTOR_ID #define THERMISTOR_ID TEMP_SENSOR_1 #include "thermistornames.h" STATIC_ITEM("T1: " THERMISTOR_NAME, false, true); STATIC_ITEM(MSG_INFO_MIN_TEMP ": " STRINGIFY(HEATER_1_MINTEMP), false); STATIC_ITEM(MSG_INFO_MAX_TEMP ": " STRINGIFY(HEATER_1_MAXTEMP), false); #endif #if TEMP_SENSOR_2 != 0 #undef THERMISTOR_ID #define THERMISTOR_ID TEMP_SENSOR_2 #include "thermistornames.h" STATIC_ITEM("T2: " THERMISTOR_NAME, false, true); STATIC_ITEM(MSG_INFO_MIN_TEMP ": " STRINGIFY(HEATER_2_MINTEMP), false); STATIC_ITEM(MSG_INFO_MAX_TEMP ": " STRINGIFY(HEATER_2_MAXTEMP), false); #endif #if TEMP_SENSOR_3 != 0 #undef THERMISTOR_ID #define THERMISTOR_ID TEMP_SENSOR_3 #include "thermistornames.h" STATIC_ITEM("T3: " THERMISTOR_NAME, false, true); STATIC_ITEM(MSG_INFO_MIN_TEMP ": " STRINGIFY(HEATER_3_MINTEMP), false); STATIC_ITEM(MSG_INFO_MAX_TEMP ": " STRINGIFY(HEATER_3_MAXTEMP), false); #endif #if TEMP_SENSOR_BED != 0 #undef THERMISTOR_ID #define THERMISTOR_ID TEMP_SENSOR_BED #include "thermistornames.h" STATIC_ITEM("TBed:" THERMISTOR_NAME, false, true); STATIC_ITEM(MSG_INFO_MIN_TEMP ": " STRINGIFY(BED_MINTEMP), false); STATIC_ITEM(MSG_INFO_MAX_TEMP ": " STRINGIFY(BED_MAXTEMP), false); #endif END_SCREEN(); } /** * * About Printer > Board Info * */ static void lcd_info_board_menu() { if (LCD_CLICKED) { lcd_goto_previous_menu(true); return; } START_SCREEN(); STATIC_ITEM(BOARD_NAME, true, true); // MyPrinterController STATIC_ITEM(MSG_INFO_BAUDRATE ": " STRINGIFY(BAUDRATE)); // Baud: 250000 STATIC_ITEM(MSG_INFO_PROTOCOL ": " PROTOCOL_VERSION); // Protocol: 1.0 #ifdef POWER_SUPPLY #if (POWER_SUPPLY == 1) STATIC_ITEM(MSG_INFO_PSU ": ATX"); // Power Supply: ATX #elif (POWER_SUPPLY == 2) STATIC_ITEM(MSG_INFO_PSU ": XBox"); // Power Supply: XBox #endif #endif // POWER_SUPPLY END_SCREEN(); } /** * * About Printer > Printer Info * */ static void lcd_info_printer_menu() { if (LCD_CLICKED) { lcd_goto_previous_menu(true); return; } START_SCREEN(); STATIC_ITEM(MSG_MARLIN, true, true); // Marlin STATIC_ITEM(SHORT_BUILD_VERSION); // x.x.x-Branch STATIC_ITEM(STRING_DISTRIBUTION_DATE); // YYYY-MM-DD HH:MM STATIC_ITEM(MACHINE_NAME); // My3DPrinter STATIC_ITEM(WEBSITE_URL); // www.my3dprinter.com STATIC_ITEM(MSG_INFO_EXTRUDERS ": " STRINGIFY(EXTRUDERS)); // Extruders: 2 END_SCREEN(); } /** * * "About Printer" submenu * */ static void lcd_info_menu() { START_MENU(); MENU_ITEM(back, MSG_MAIN); MENU_ITEM(submenu, MSG_INFO_PRINTER_MENU, lcd_info_printer_menu); // Printer Info > MENU_ITEM(submenu, MSG_INFO_BOARD_MENU, lcd_info_board_menu); // Board Info > MENU_ITEM(submenu, MSG_INFO_THERMISTOR_MENU, lcd_info_thermistors_menu); // Thermistors > #if ENABLED(PRINTCOUNTER) MENU_ITEM(submenu, MSG_INFO_STATS_MENU, lcd_info_stats_menu); // Printer Statistics > #endif END_MENU(); } #endif // LCD_INFO_MENU #if ENABLED(FILAMENT_CHANGE_FEATURE) static void lcd_filament_change_resume_print() { filament_change_menu_response = FILAMENT_CHANGE_RESPONSE_RESUME_PRINT; lcdDrawUpdate = 2; lcd_goto_screen(lcd_status_screen); } static void lcd_filament_change_extrude_more() { filament_change_menu_response = FILAMENT_CHANGE_RESPONSE_EXTRUDE_MORE; } static void lcd_filament_change_option_menu() { START_MENU(); #if LCD_HEIGHT > 2 STATIC_ITEM(MSG_FILAMENT_CHANGE_OPTION_HEADER, true, false); #endif MENU_ITEM(function, MSG_FILAMENT_CHANGE_OPTION_RESUME, lcd_filament_change_resume_print); MENU_ITEM(function, MSG_FILAMENT_CHANGE_OPTION_EXTRUDE, lcd_filament_change_extrude_more); END_MENU(); } static void lcd_filament_change_init_message() { START_SCREEN(); STATIC_ITEM(MSG_FILAMENT_CHANGE_HEADER, true, true); STATIC_ITEM(MSG_FILAMENT_CHANGE_INIT_1); #ifdef MSG_FILAMENT_CHANGE_INIT_2 STATIC_ITEM(MSG_FILAMENT_CHANGE_INIT_2); #endif #ifdef MSG_FILAMENT_CHANGE_INIT_3 STATIC_ITEM(MSG_FILAMENT_CHANGE_INIT_3); #endif END_SCREEN(); } static void lcd_filament_change_unload_message() { START_SCREEN(); STATIC_ITEM(MSG_FILAMENT_CHANGE_HEADER, true, true); STATIC_ITEM(MSG_FILAMENT_CHANGE_UNLOAD_1); #ifdef MSG_FILAMENT_CHANGE_UNLOAD_2 STATIC_ITEM(MSG_FILAMENT_CHANGE_UNLOAD_2); #endif #ifdef MSG_FILAMENT_CHANGE_UNLOAD_3 STATIC_ITEM(MSG_FILAMENT_CHANGE_UNLOAD_3); #endif END_SCREEN(); } static void lcd_filament_change_insert_message() { START_SCREEN(); STATIC_ITEM(MSG_FILAMENT_CHANGE_HEADER, true, true); STATIC_ITEM(MSG_FILAMENT_CHANGE_INSERT_1); #ifdef MSG_FILAMENT_CHANGE_INSERT_2 STATIC_ITEM(MSG_FILAMENT_CHANGE_INSERT_2); #endif #ifdef MSG_FILAMENT_CHANGE_INSERT_3 STATIC_ITEM(MSG_FILAMENT_CHANGE_INSERT_3); #endif END_SCREEN(); } static void lcd_filament_change_load_message() { START_SCREEN(); STATIC_ITEM(MSG_FILAMENT_CHANGE_HEADER, true, true); STATIC_ITEM(MSG_FILAMENT_CHANGE_LOAD_1); #ifdef MSG_FILAMENT_CHANGE_LOAD_2 STATIC_ITEM(MSG_FILAMENT_CHANGE_LOAD_2); #endif #ifdef MSG_FILAMENT_CHANGE_LOAD_3 STATIC_ITEM(MSG_FILAMENT_CHANGE_LOAD_3); #endif END_SCREEN(); } static void lcd_filament_change_extrude_message() { START_SCREEN(); STATIC_ITEM(MSG_FILAMENT_CHANGE_HEADER, true, true); STATIC_ITEM(MSG_FILAMENT_CHANGE_EXTRUDE_1); #ifdef MSG_FILAMENT_CHANGE_EXTRUDE_2 STATIC_ITEM(MSG_FILAMENT_CHANGE_EXTRUDE_2); #endif #ifdef MSG_FILAMENT_CHANGE_EXTRUDE_3 STATIC_ITEM(MSG_FILAMENT_CHANGE_EXTRUDE_3); #endif END_SCREEN(); } static void lcd_filament_change_resume_message() { START_SCREEN(); STATIC_ITEM(MSG_FILAMENT_CHANGE_HEADER, true, true); STATIC_ITEM(MSG_FILAMENT_CHANGE_RESUME_1); #ifdef MSG_FILAMENT_CHANGE_RESUME_2 STATIC_ITEM(MSG_FILAMENT_CHANGE_RESUME_2); #endif #ifdef MSG_FILAMENT_CHANGE_RESUME_3 STATIC_ITEM(MSG_FILAMENT_CHANGE_RESUME_3); #endif END_SCREEN(); } void lcd_filament_change_show_message(FilamentChangeMessage message) { switch (message) { case FILAMENT_CHANGE_MESSAGE_INIT: defer_return_to_status = true; lcd_goto_screen(lcd_filament_change_init_message); break; case FILAMENT_CHANGE_MESSAGE_UNLOAD: lcd_goto_screen(lcd_filament_change_unload_message); break; case FILAMENT_CHANGE_MESSAGE_INSERT: lcd_goto_screen(lcd_filament_change_insert_message); break; case FILAMENT_CHANGE_MESSAGE_LOAD: lcd_goto_screen(lcd_filament_change_load_message); break; case FILAMENT_CHANGE_MESSAGE_EXTRUDE: lcd_goto_screen(lcd_filament_change_extrude_message); break; case FILAMENT_CHANGE_MESSAGE_OPTION: filament_change_menu_response = FILAMENT_CHANGE_RESPONSE_WAIT_FOR; lcd_goto_screen(lcd_filament_change_option_menu); break; case FILAMENT_CHANGE_MESSAGE_RESUME: lcd_goto_screen(lcd_filament_change_resume_message); break; case FILAMENT_CHANGE_MESSAGE_STATUS: lcd_return_to_status(); break; } } #endif // FILAMENT_CHANGE_FEATURE /** * * Functions for editing single values * * The "menu_edit_type" macro generates the functions needed to edit a numerical value. * * For example, menu_edit_type(int, int3, itostr3, 1) expands into these functions: * * bool _menu_edit_int3(); * void menu_edit_int3(); // edit int (interactively) * void menu_edit_callback_int3(); // edit int (interactively) with callback on completion * static void _menu_action_setting_edit_int3(const char* pstr, int* ptr, int minValue, int maxValue); * static void menu_action_setting_edit_int3(const char* pstr, int* ptr, int minValue, int maxValue); * static void menu_action_setting_edit_callback_int3(const char* pstr, int* ptr, int minValue, int maxValue, screenFunc_t callback); // edit int with callback * * You can then use one of the menu macros to present the edit interface: * MENU_ITEM_EDIT(int3, MSG_SPEED, &feedrate_multiplier, 10, 999) * * This expands into a more primitive menu item: * MENU_ITEM(setting_edit_int3, MSG_SPEED, PSTR(MSG_SPEED), &feedrate_multiplier, 10, 999) * * * Also: MENU_MULTIPLIER_ITEM_EDIT, MENU_ITEM_EDIT_CALLBACK, and MENU_MULTIPLIER_ITEM_EDIT_CALLBACK * * menu_action_setting_edit_int3(PSTR(MSG_SPEED), &feedrate_multiplier, 10, 999) */ #define menu_edit_type(_type, _name, _strFunc, scale) \ bool _menu_edit_ ## _name () { \ ENCODER_DIRECTION_NORMAL(); \ bool isClicked = LCD_CLICKED; \ if ((int32_t)encoderPosition < 0) encoderPosition = 0; \ if ((int32_t)encoderPosition > maxEditValue) encoderPosition = maxEditValue; \ if (lcdDrawUpdate) \ lcd_implementation_drawedit(editLabel, _strFunc(((_type)((int32_t)encoderPosition + minEditValue)) / scale)); \ if (isClicked) { \ *((_type*)editValue) = ((_type)((int32_t)encoderPosition + minEditValue)) / scale; \ lcd_goto_previous_menu(true); \ } \ return isClicked; \ } \ void menu_edit_ ## _name () { _menu_edit_ ## _name(); } \ void menu_edit_callback_ ## _name () { if (_menu_edit_ ## _name ()) (*callbackFunc)(); } \ static void _menu_action_setting_edit_ ## _name (const char* pstr, _type* ptr, _type minValue, _type maxValue) { \ lcd_save_previous_menu(); \ \ lcdDrawUpdate = LCDVIEW_CLEAR_CALL_REDRAW; \ \ editLabel = pstr; \ editValue = ptr; \ minEditValue = minValue * scale; \ maxEditValue = maxValue * scale - minEditValue; \ encoderPosition = (*ptr) * scale - minEditValue; \ } \ static void menu_action_setting_edit_ ## _name (const char* pstr, _type* ptr, _type minValue, _type maxValue) { \ _menu_action_setting_edit_ ## _name(pstr, ptr, minValue, maxValue); \ currentScreen = menu_edit_ ## _name; \ }\ static void menu_action_setting_edit_callback_ ## _name (const char* pstr, _type* ptr, _type minValue, _type maxValue, screenFunc_t callback) { \ _menu_action_setting_edit_ ## _name(pstr, ptr, minValue, maxValue); \ currentScreen = menu_edit_callback_ ## _name; \ callbackFunc = callback; \ } menu_edit_type(int, int3, itostr3, 1); menu_edit_type(float, float3, ftostr3, 1); menu_edit_type(float, float32, ftostr32, 100); menu_edit_type(float, float43, ftostr43sign, 1000); menu_edit_type(float, float5, ftostr5rj, 0.01); menu_edit_type(float, float51, ftostr51sign, 10); menu_edit_type(float, float52, ftostr52sign, 100); menu_edit_type(unsigned long, long5, ftostr5rj, 0.01); /** * * Handlers for RepRap World Keypad input * */ #if ENABLED(REPRAPWORLD_KEYPAD) static void reprapworld_keypad_move_z_up() { encoderPosition = 1; move_menu_scale = REPRAPWORLD_KEYPAD_MOVE_STEP; lcd_move_z(); } static void reprapworld_keypad_move_z_down() { encoderPosition = -1; move_menu_scale = REPRAPWORLD_KEYPAD_MOVE_STEP; lcd_move_z(); } static void reprapworld_keypad_move_x_left() { encoderPosition = -1; move_menu_scale = REPRAPWORLD_KEYPAD_MOVE_STEP; lcd_move_x(); } static void reprapworld_keypad_move_x_right() { encoderPosition = 1; move_menu_scale = REPRAPWORLD_KEYPAD_MOVE_STEP; lcd_move_x(); } static void reprapworld_keypad_move_y_down() { encoderPosition = 1; move_menu_scale = REPRAPWORLD_KEYPAD_MOVE_STEP; lcd_move_y(); } static void reprapworld_keypad_move_y_up() { encoderPosition = -1; move_menu_scale = REPRAPWORLD_KEYPAD_MOVE_STEP; lcd_move_y(); } static void reprapworld_keypad_move_home() { enqueue_and_echo_commands_P(PSTR("G28")); // move all axes home } #endif // REPRAPWORLD_KEYPAD /** * * Audio feedback for controller clicks * */ #if ENABLED(LCD_USE_I2C_BUZZER) void lcd_buzz(long duration, uint16_t freq) { // called from buzz() in Marlin_main.cpp where lcd is unknown lcd.buzz(duration, freq); } #endif void lcd_quick_feedback() { lcdDrawUpdate = LCDVIEW_CLEAR_CALL_REDRAW; next_button_update_ms = millis() + 500; // Buzz and wait. The delay is needed for buttons to settle! #if ENABLED(LCD_USE_I2C_BUZZER) lcd.buzz(LCD_FEEDBACK_FREQUENCY_DURATION_MS, LCD_FEEDBACK_FREQUENCY_HZ); delay(10); #elif PIN_EXISTS(BEEPER) buzzer.tone(LCD_FEEDBACK_FREQUENCY_DURATION_MS, LCD_FEEDBACK_FREQUENCY_HZ); for (int8_t i = 5; i--;) { buzzer.tick(); delay(2); } #endif } /** * * Menu actions * */ static void menu_action_back() { lcd_goto_previous_menu(); } static void menu_action_submenu(screenFunc_t func) { lcd_save_previous_menu(); lcd_goto_screen(func); } static void menu_action_gcode(const char* pgcode) { enqueue_and_echo_commands_P(pgcode); } static void menu_action_function(screenFunc_t func) { (*func)(); } #if ENABLED(SDSUPPORT) static void menu_action_sdfile(const char* filename, char* longFilename) { UNUSED(longFilename); card.openAndPrintFile(filename); lcd_return_to_status(); } static void menu_action_sddirectory(const char* filename, char* longFilename) { UNUSED(longFilename); card.chdir(filename); encoderPosition = 0; } #endif //SDSUPPORT static void menu_action_setting_edit_bool(const char* pstr, bool* ptr) {UNUSED(pstr); *ptr = !(*ptr); } static void menu_action_setting_edit_callback_bool(const char* pstr, bool* ptr, screenFunc_t callback) { menu_action_setting_edit_bool(pstr, ptr); (*callback)(); } #endif //ULTIPANEL /** LCD API **/ void lcd_init() { lcd_implementation_init(); #if ENABLED(NEWPANEL) #if BUTTON_EXISTS(EN1) SET_INPUT(BTN_EN1); WRITE(BTN_EN1, HIGH); #endif #if BUTTON_EXISTS(EN2) SET_INPUT(BTN_EN2); WRITE(BTN_EN2, HIGH); #endif #if BUTTON_EXISTS(ENC) SET_INPUT(BTN_ENC); WRITE(BTN_ENC, HIGH); #endif #if ENABLED(REPRAPWORLD_KEYPAD) pinMode(SHIFT_CLK, OUTPUT); pinMode(SHIFT_LD, OUTPUT); pinMode(SHIFT_OUT, INPUT); WRITE(SHIFT_OUT, HIGH); WRITE(SHIFT_LD, HIGH); #endif #if BUTTON_EXISTS(UP) SET_INPUT(BTN_UP); #endif #if BUTTON_EXISTS(DWN) SET_INPUT(BTN_DWN); #endif #if BUTTON_EXISTS(LFT) SET_INPUT(BTN_LFT); #endif #if BUTTON_EXISTS(RT) SET_INPUT(BTN_RT); #endif #else // !NEWPANEL #if ENABLED(SR_LCD_2W_NL) // Non latching 2 wire shift register pinMode(SR_DATA_PIN, OUTPUT); pinMode(SR_CLK_PIN, OUTPUT); #elif defined(SHIFT_CLK) pinMode(SHIFT_CLK, OUTPUT); pinMode(SHIFT_LD, OUTPUT); pinMode(SHIFT_EN, OUTPUT); pinMode(SHIFT_OUT, INPUT); WRITE(SHIFT_OUT, HIGH); WRITE(SHIFT_LD, HIGH); WRITE(SHIFT_EN, LOW); #endif // SR_LCD_2W_NL #endif // !NEWPANEL #if ENABLED(SDSUPPORT) && PIN_EXISTS(SD_DETECT) SET_INPUT(SD_DETECT_PIN); WRITE(SD_DETECT_PIN, HIGH); lcd_sd_status = 2; // UNKNOWN #endif #if ENABLED(LCD_HAS_SLOW_BUTTONS) slow_buttons = 0; #endif lcd_buttons_update(); #if ENABLED(ULTIPANEL) encoderDiff = 0; #endif } int lcd_strlen(const char* s) { int i = 0, j = 0; while (s[i]) { #ifdef MAPPER_NON j++; #else if ((s[i] & 0xc0) != 0x80) j++; #endif i++; } return j; } int lcd_strlen_P(const char* s) { int j = 0; while (pgm_read_byte(s)) { #ifdef MAPPER_NON j++; #else if ((pgm_read_byte(s) & 0xc0) != 0x80) j++; #endif s++; } return j; } bool lcd_blink() { static uint8_t blink = 0; static millis_t next_blink_ms = 0; millis_t ms = millis(); if (ELAPSED(ms, next_blink_ms)) { blink ^= 0xFF; next_blink_ms = ms + 1000 - LCD_UPDATE_INTERVAL / 2; } return blink != 0; } /** * Update the LCD, read encoder buttons, etc. * - Read button states * - Check the SD Card slot state * - Act on RepRap World keypad input * - Update the encoder position * - Apply acceleration to the encoder position * - Set lcdDrawUpdate = LCDVIEW_CALL_REDRAW_NOW on controller events * - Reset the Info Screen timeout if there's any input * - Update status indicators, if any * * Run the current LCD menu handler callback function: * - Call the handler only if lcdDrawUpdate != LCDVIEW_NONE * - Before calling the handler, LCDVIEW_CALL_NO_REDRAW => LCDVIEW_NONE * - Call the menu handler. Menu handlers should do the following: * - If a value changes, set lcdDrawUpdate to LCDVIEW_REDRAW_NOW and draw the value * (Encoder events automatically set lcdDrawUpdate for you.) * - if (lcdDrawUpdate) { redraw } * - Before exiting the handler set lcdDrawUpdate to: * - LCDVIEW_CLEAR_CALL_REDRAW to clear screen and set LCDVIEW_CALL_REDRAW_NEXT. * - LCDVIEW_REDRAW_NOW or LCDVIEW_NONE to keep drawingm but only in this loop. * - LCDVIEW_REDRAW_NEXT to keep drawing and draw on the next loop also. * - LCDVIEW_CALL_NO_REDRAW to keep drawing (or start drawing) with no redraw on the next loop. * - NOTE: For graphical displays menu handlers may be called 2 or more times per loop, * so don't change lcdDrawUpdate without considering this. * * After the menu handler callback runs (or not): * - Clear the LCD if lcdDrawUpdate == LCDVIEW_CLEAR_CALL_REDRAW * - Update lcdDrawUpdate for the next loop (i.e., move one state down, usually) * * No worries. This function is only called from the main thread. */ void lcd_update() { #if ENABLED(ULTIPANEL) static millis_t return_to_status_ms = 0; manage_manual_move(); #endif lcd_buttons_update(); #if ENABLED(SDSUPPORT) && PIN_EXISTS(SD_DETECT) bool sd_status = IS_SD_INSERTED; if (sd_status != lcd_sd_status && lcd_detected()) { lcdDrawUpdate = LCDVIEW_CLEAR_CALL_REDRAW; lcd_implementation_init( // to maybe revive the LCD if static electricity killed it. #if ENABLED(LCD_PROGRESS_BAR) && ENABLED(ULTIPANEL) currentScreen == lcd_status_screen #endif ); if (sd_status) { card.initsd(); if (lcd_sd_status != 2) LCD_MESSAGEPGM(MSG_SD_INSERTED); } else { card.release(); if (lcd_sd_status != 2) LCD_MESSAGEPGM(MSG_SD_REMOVED); } lcd_sd_status = sd_status; } #endif //SDSUPPORT && SD_DETECT_PIN millis_t ms = millis(); if (ELAPSED(ms, next_lcd_update_ms)) { next_lcd_update_ms = ms + LCD_UPDATE_INTERVAL; #if ENABLED(LCD_HAS_STATUS_INDICATORS) lcd_implementation_update_indicators(); #endif #if ENABLED(LCD_HAS_SLOW_BUTTONS) slow_buttons = lcd_implementation_read_slow_buttons(); // buttons which take too long to read in interrupt context #endif #if ENABLED(ULTIPANEL) #if ENABLED(REPRAPWORLD_KEYPAD) #if ENABLED(DELTA) || ENABLED(SCARA) #define _KEYPAD_MOVE_ALLOWED (axis_homed[X_AXIS] && axis_homed[Y_AXIS] && axis_homed[Z_AXIS]) #else #define _KEYPAD_MOVE_ALLOWED true #endif if (REPRAPWORLD_KEYPAD_MOVE_HOME) reprapworld_keypad_move_home(); if (_KEYPAD_MOVE_ALLOWED) { if (REPRAPWORLD_KEYPAD_MOVE_Z_UP) reprapworld_keypad_move_z_up(); if (REPRAPWORLD_KEYPAD_MOVE_Z_DOWN) reprapworld_keypad_move_z_down(); if (REPRAPWORLD_KEYPAD_MOVE_X_LEFT) reprapworld_keypad_move_x_left(); if (REPRAPWORLD_KEYPAD_MOVE_X_RIGHT) reprapworld_keypad_move_x_right(); if (REPRAPWORLD_KEYPAD_MOVE_Y_DOWN) reprapworld_keypad_move_y_down(); if (REPRAPWORLD_KEYPAD_MOVE_Y_UP) reprapworld_keypad_move_y_up(); } #endif bool encoderPastThreshold = (abs(encoderDiff) >= ENCODER_PULSES_PER_STEP); if (encoderPastThreshold || LCD_CLICKED) { if (encoderPastThreshold) { int32_t encoderMultiplier = 1; #if ENABLED(ENCODER_RATE_MULTIPLIER) if (encoderRateMultiplierEnabled) { int32_t encoderMovementSteps = abs(encoderDiff) / ENCODER_PULSES_PER_STEP; if (lastEncoderMovementMillis != 0) { // Note that the rate is always calculated between to passes through the // loop and that the abs of the encoderDiff value is tracked. float encoderStepRate = (float)(encoderMovementSteps) / ((float)(ms - lastEncoderMovementMillis)) * 1000.0; if (encoderStepRate >= ENCODER_100X_STEPS_PER_SEC) encoderMultiplier = 100; else if (encoderStepRate >= ENCODER_10X_STEPS_PER_SEC) encoderMultiplier = 10; #if ENABLED(ENCODER_RATE_MULTIPLIER_DEBUG) SERIAL_ECHO_START; SERIAL_ECHOPAIR("Enc Step Rate: ", encoderStepRate); SERIAL_ECHOPAIR(" Multiplier: ", encoderMultiplier); SERIAL_ECHOPAIR(" ENCODER_10X_STEPS_PER_SEC: ", ENCODER_10X_STEPS_PER_SEC); SERIAL_ECHOPAIR(" ENCODER_100X_STEPS_PER_SEC: ", ENCODER_100X_STEPS_PER_SEC); SERIAL_EOL; #endif //ENCODER_RATE_MULTIPLIER_DEBUG } lastEncoderMovementMillis = ms; } // encoderRateMultiplierEnabled #endif //ENCODER_RATE_MULTIPLIER encoderPosition += (encoderDiff * encoderMultiplier) / ENCODER_PULSES_PER_STEP; encoderDiff = 0; } return_to_status_ms = ms + LCD_TIMEOUT_TO_STATUS; lcdDrawUpdate = LCDVIEW_REDRAW_NOW; } #endif //ULTIPANEL // We arrive here every ~100ms when idling often enough. // Instead of tracking the changes simply redraw the Info Screen ~1 time a second. static int8_t lcd_status_update_delay = 1; // first update one loop delayed if ( #if ENABLED(ULTIPANEL) currentScreen == lcd_status_screen && #endif !lcd_status_update_delay--) { lcd_status_update_delay = 9; lcdDrawUpdate = LCDVIEW_REDRAW_NOW; } if (lcdDrawUpdate) { switch (lcdDrawUpdate) { case LCDVIEW_CALL_NO_REDRAW: lcdDrawUpdate = LCDVIEW_NONE; break; case LCDVIEW_CLEAR_CALL_REDRAW: // set by handlers, then altered after (rarely occurs here) case LCDVIEW_CALL_REDRAW_NEXT: // set by handlers, then altered after (never occurs here?) lcdDrawUpdate = LCDVIEW_REDRAW_NOW; case LCDVIEW_REDRAW_NOW: // set above, or by a handler through LCDVIEW_CALL_REDRAW_NEXT case LCDVIEW_NONE: break; } #if ENABLED(DOGLCD) // Changes due to different driver architecture of the DOGM display static int8_t dot_color = 0; dot_color = 1 - dot_color; u8g.firstPage(); do { lcd_setFont(FONT_MENU); u8g.setPrintPos(125, 0); u8g.setColorIndex(dot_color); // Set color for the alive dot u8g.drawPixel(127, 63); // draw alive dot u8g.setColorIndex(1); // black on white (*currentScreen)(); } while (u8g.nextPage()); #elif ENABLED(ULTIPANEL) (*currentScreen)(); #else lcd_status_screen(); #endif } #if ENABLED(ULTIPANEL) // Return to Status Screen after a timeout if (currentScreen == lcd_status_screen || defer_return_to_status) return_to_status_ms = ms + LCD_TIMEOUT_TO_STATUS; else if (ELAPSED(ms, return_to_status_ms)) lcd_return_to_status(); #endif // ULTIPANEL switch (lcdDrawUpdate) { case LCDVIEW_CLEAR_CALL_REDRAW: lcd_implementation_clear(); case LCDVIEW_CALL_REDRAW_NEXT: lcdDrawUpdate = LCDVIEW_REDRAW_NOW; break; case LCDVIEW_REDRAW_NOW: lcdDrawUpdate = LCDVIEW_NONE; break; case LCDVIEW_NONE: break; } } } void lcd_finishstatus(bool persist=false) { #if !(ENABLED(LCD_PROGRESS_BAR) && (PROGRESS_MSG_EXPIRE > 0)) UNUSED(persist); #endif #if ENABLED(LCD_PROGRESS_BAR) progress_bar_ms = millis(); #if PROGRESS_MSG_EXPIRE > 0 expire_status_ms = persist ? 0 : progress_bar_ms + PROGRESS_MSG_EXPIRE; #endif #endif lcdDrawUpdate = LCDVIEW_CLEAR_CALL_REDRAW; #if ENABLED(FILAMENT_LCD_DISPLAY) previous_lcd_status_ms = millis(); //get status message to show up for a while #endif } #if ENABLED(LCD_PROGRESS_BAR) && PROGRESS_MSG_EXPIRE > 0 void dontExpireStatus() { expire_status_ms = 0; } #endif void set_utf_strlen(char* s, uint8_t n) { uint8_t i = 0, j = 0; while (s[i] && (j < n)) { if ((s[i] & 0xc0u) != 0x80u) j++; i++; } while (j++ < n) s[i++] = ' '; s[i] = '\0'; } bool lcd_hasstatus() { return (lcd_status_message[0] != '\0'); } void lcd_setstatus(const char* message, bool persist) { if (lcd_status_message_level > 0) return; strncpy(lcd_status_message, message, 3 * (LCD_WIDTH)); set_utf_strlen(lcd_status_message, LCD_WIDTH); lcd_finishstatus(persist); } void lcd_setstatuspgm(const char* message, uint8_t level) { if (level >= lcd_status_message_level) { strncpy_P(lcd_status_message, message, 3 * (LCD_WIDTH)); set_utf_strlen(lcd_status_message, LCD_WIDTH); lcd_status_message_level = level; lcd_finishstatus(level > 0); } } void lcd_setalertstatuspgm(const char* message) { lcd_setstatuspgm(message, 1); #if ENABLED(ULTIPANEL) lcd_return_to_status(); #endif } void lcd_reset_alert_level() { lcd_status_message_level = 0; } #if HAS_LCD_CONTRAST void set_lcd_contrast(int value) { lcd_contrast = constrain(value, LCD_CONTRAST_MIN, LCD_CONTRAST_MAX); u8g.setContrast(lcd_contrast); } #endif #if ENABLED(ULTIPANEL) /** * Setup Rotary Encoder Bit Values (for two pin encoders to indicate movement) * These values are independent of which pins are used for EN_A and EN_B indications * The rotary encoder part is also independent to the chipset used for the LCD */ #if defined(EN_A) && defined(EN_B) #define encrot0 0 #define encrot1 2 #define encrot2 3 #define encrot3 1 #endif #define GET_BUTTON_STATES(DST) \ uint8_t new_##DST = 0; \ WRITE(SHIFT_LD, LOW); \ WRITE(SHIFT_LD, HIGH); \ for (int8_t i = 0; i < 8; i++) { \ new_##DST >>= 1; \ if (READ(SHIFT_OUT)) SBI(new_##DST, 7); \ WRITE(SHIFT_CLK, HIGH); \ WRITE(SHIFT_CLK, LOW); \ } \ DST = ~new_##DST; //invert it, because a pressed switch produces a logical 0 /** * Read encoder buttons from the hardware registers * Warning: This function is called from interrupt context! */ void lcd_buttons_update() { #if ENABLED(NEWPANEL) uint8_t newbutton = 0; #if BUTTON_EXISTS(EN1) if (BUTTON_PRESSED(EN1)) newbutton |= EN_A; #endif #if BUTTON_EXISTS(EN2) if (BUTTON_PRESSED(EN2)) newbutton |= EN_B; #endif #if LCD_HAS_DIRECTIONAL_BUTTONS || BUTTON_EXISTS(ENC) millis_t now = millis(); #endif #if LCD_HAS_DIRECTIONAL_BUTTONS if (ELAPSED(now, next_button_update_ms)) { if (false) { // for the else-ifs below } #if BUTTON_EXISTS(UP) else if (BUTTON_PRESSED(UP)) { encoderDiff = -(ENCODER_STEPS_PER_MENU_ITEM); next_button_update_ms = now + 300; } #endif #if BUTTON_EXISTS(DWN) else if (BUTTON_PRESSED(DWN)) { encoderDiff = ENCODER_STEPS_PER_MENU_ITEM; next_button_update_ms = now + 300; } #endif #if BUTTON_EXISTS(LFT) else if (BUTTON_PRESSED(LFT)) { encoderDiff = -(ENCODER_PULSES_PER_STEP); next_button_update_ms = now + 300; } #endif #if BUTTON_EXISTS(RT) else if (BUTTON_PRESSED(RT)) { encoderDiff = ENCODER_PULSES_PER_STEP; next_button_update_ms = now + 300; } #endif } #endif #if BUTTON_EXISTS(ENC) if (ELAPSED(now, next_button_update_ms) && BUTTON_PRESSED(ENC)) newbutton |= EN_C; #endif buttons = newbutton; #if ENABLED(LCD_HAS_SLOW_BUTTONS) buttons |= slow_buttons; #endif #if ENABLED(REPRAPWORLD_KEYPAD) GET_BUTTON_STATES(buttons_reprapworld_keypad); #endif #else GET_BUTTON_STATES(buttons); #endif //!NEWPANEL // Manage encoder rotation #if ENABLED(REVERSE_MENU_DIRECTION) && ENABLED(REVERSE_ENCODER_DIRECTION) #define ENCODER_DIFF_CW (encoderDiff -= encoderDirection) #define ENCODER_DIFF_CCW (encoderDiff += encoderDirection) #elif ENABLED(REVERSE_MENU_DIRECTION) #define ENCODER_DIFF_CW (encoderDiff += encoderDirection) #define ENCODER_DIFF_CCW (encoderDiff -= encoderDirection) #elif ENABLED(REVERSE_ENCODER_DIRECTION) #define ENCODER_DIFF_CW (encoderDiff--) #define ENCODER_DIFF_CCW (encoderDiff++) #else #define ENCODER_DIFF_CW (encoderDiff++) #define ENCODER_DIFF_CCW (encoderDiff--) #endif #define ENCODER_SPIN(_E1, _E2) switch (lastEncoderBits) { case _E1: ENCODER_DIFF_CW; break; case _E2: ENCODER_DIFF_CCW; } uint8_t enc = 0; if (buttons & EN_A) enc |= B01; if (buttons & EN_B) enc |= B10; if (enc != lastEncoderBits) { switch (enc) { case encrot0: ENCODER_SPIN(encrot3, encrot1); break; case encrot1: ENCODER_SPIN(encrot0, encrot2); break; case encrot2: ENCODER_SPIN(encrot1, encrot3); break; case encrot3: ENCODER_SPIN(encrot2, encrot0); break; } } lastEncoderBits = enc; } bool lcd_detected(void) { #if (ENABLED(LCD_I2C_TYPE_MCP23017) || ENABLED(LCD_I2C_TYPE_MCP23008)) && ENABLED(DETECT_DEVICE) return lcd.LcdDetected() == 1; #else return true; #endif } bool lcd_clicked() { return LCD_CLICKED; } #endif // ULTIPANEL /*********************************/ /** Number to string conversion **/ /*********************************/ #define DIGIT(n) ('0' + (n)) #define DIGIMOD(n) DIGIT((n) % 10) char conv[8]; // Convert float to rj string with 123 or -12 format char *ftostr3(const float& x) { return itostr3((int)x); } // Convert float to rj string with _123, -123, _-12, or __-1 format char *ftostr4sign(const float& x) { return itostr4sign((int)x); } // Convert unsigned int to string with 12 format char* itostr2(const uint8_t& x) { int xx = x; conv[0] = DIGIMOD(xx / 10); conv[1] = DIGIMOD(xx); conv[2] = '\0'; return conv; } // Convert float to string with +123.4 / -123.4 format char* ftostr41sign(const float& x) { int xx = int(abs(x * 10)) % 10000; conv[0] = x >= 0 ? '+' : '-'; conv[1] = DIGIMOD(xx / 1000); conv[2] = DIGIMOD(xx / 100); conv[3] = DIGIMOD(xx / 10); conv[4] = '.'; conv[5] = DIGIMOD(xx); conv[6] = '\0'; return conv; } // Convert signed float to string with 023.45 / -23.45 format char *ftostr32(const float& x) { long xx = abs(x * 100); conv[0] = x >= 0 ? DIGIMOD(xx / 10000) : '-'; conv[1] = DIGIMOD(xx / 1000); conv[2] = DIGIMOD(xx / 100); conv[3] = '.'; conv[4] = DIGIMOD(xx / 10); conv[5] = DIGIMOD(xx); conv[6] = '\0'; return conv; } // Convert signed float to string (6 digit) with -1.234 / _0.000 / +1.234 format char* ftostr43sign(const float& x, char plus/*=' '*/) { long xx = x * 1000; if (xx == 0) conv[0] = ' '; else if (xx > 0) conv[0] = plus; else { xx = -xx; conv[0] = '-'; } conv[1] = DIGIMOD(xx / 1000); conv[2] = '.'; conv[3] = DIGIMOD(xx / 100); conv[4] = DIGIMOD(xx / 10); conv[5] = DIGIMOD(xx); conv[6] = '\0'; return conv; } // Convert unsigned float to string with 1.23 format char* ftostr12ns(const float& x) { long xx = x * 100; xx = abs(xx); conv[0] = DIGIMOD(xx / 100); conv[1] = '.'; conv[2] = DIGIMOD(xx / 10); conv[3] = DIGIMOD(xx); conv[4] = '\0'; return conv; } // Convert signed int to lj string with +012 / -012 format char* itostr3sign(const int& x) { int xx; if (x >= 0) { conv[0] = '+'; xx = x; } else { conv[0] = '-'; xx = -x; } conv[1] = DIGIMOD(xx / 100); conv[2] = DIGIMOD(xx / 10); conv[3] = DIGIMOD(xx); conv[4] = '.'; conv[5] = '0'; conv[6] = '\0'; return conv; } // Convert signed int to rj string with 123 or -12 format char* itostr3(const int& x) { int xx = x; if (xx < 0) { conv[0] = '-'; xx = -xx; } else conv[0] = xx >= 100 ? DIGIMOD(xx / 100) : ' '; conv[1] = xx >= 10 ? DIGIMOD(xx / 10) : ' '; conv[2] = DIGIMOD(xx); conv[3] = '\0'; return conv; } // Convert unsigned int to lj string with 123 format char* itostr3left(const int& xx) { if (xx >= 100) { conv[0] = DIGIMOD(xx / 100); conv[1] = DIGIMOD(xx / 10); conv[2] = DIGIMOD(xx); conv[3] = '\0'; } else if (xx >= 10) { conv[0] = DIGIMOD(xx / 10); conv[1] = DIGIMOD(xx); conv[2] = '\0'; } else { conv[0] = DIGIMOD(xx); conv[1] = '\0'; } return conv; } // Convert signed int to rj string with _123, -123, _-12, or __-1 format char *itostr4sign(const int& x) { int xx = abs(x); int sign = 0; if (xx >= 100) { conv[1] = DIGIMOD(xx / 100); conv[2] = DIGIMOD(xx / 10); } else if (xx >= 10) { conv[0] = ' '; sign = 1; conv[2] = DIGIMOD(xx / 10); } else { conv[0] = ' '; conv[1] = ' '; sign = 2; } conv[sign] = x < 0 ? '-' : ' '; conv[3] = DIGIMOD(xx); conv[4] = '\0'; return conv; } // Convert unsigned float to rj string with 12345 format char* ftostr5rj(const float& x) { long xx = abs(x); conv[0] = xx >= 10000 ? DIGIMOD(xx / 10000) : ' '; conv[1] = xx >= 1000 ? DIGIMOD(xx / 1000) : ' '; conv[2] = xx >= 100 ? DIGIMOD(xx / 100) : ' '; conv[3] = xx >= 10 ? DIGIMOD(xx / 10) : ' '; conv[4] = DIGIMOD(xx); conv[5] = '\0'; return conv; } // Convert signed float to string with +1234.5 format char* ftostr51sign(const float& x) { long xx = abs(x * 10); conv[0] = (x >= 0) ? '+' : '-'; conv[1] = DIGIMOD(xx / 10000); conv[2] = DIGIMOD(xx / 1000); conv[3] = DIGIMOD(xx / 100); conv[4] = DIGIMOD(xx / 10); conv[5] = '.'; conv[6] = DIGIMOD(xx); conv[7] = '\0'; return conv; } // Convert signed float to string with +123.45 format char* ftostr52sign(const float& x) { long xx = abs(x * 100); conv[0] = (x >= 0) ? '+' : '-'; conv[1] = DIGIMOD(xx / 10000); conv[2] = DIGIMOD(xx / 1000); conv[3] = DIGIMOD(xx / 100); conv[4] = '.'; conv[5] = DIGIMOD(xx / 10); conv[6] = DIGIMOD(xx); conv[7] = '\0'; return conv; } // Convert signed float to space-padded string with -_23.4_ format char* ftostr52sp(const float& x) { long xx = x * 100; uint8_t dig; if (xx < 0) { // negative val = -_0 xx = -xx; conv[0] = '-'; dig = (xx / 1000) % 10; conv[1] = dig ? DIGIT(dig) : ' '; } else { // positive val = __0 dig = (xx / 10000) % 10; if (dig) { conv[0] = DIGIT(dig); conv[1] = DIGIMOD(xx / 1000); } else { conv[0] = ' '; dig = (xx / 1000) % 10; conv[1] = dig ? DIGIT(dig) : ' '; } } conv[2] = DIGIMOD(xx / 100); // lsd always dig = xx % 10; if (dig) { // 2 decimal places conv[5] = DIGIT(dig); conv[4] = DIGIMOD(xx / 10); conv[3] = '.'; } else { // 1 or 0 decimal place dig = (xx / 10) % 10; if (dig) { conv[4] = DIGIT(dig); conv[3] = '.'; } else { conv[3] = conv[4] = ' '; } conv[5] = ' '; } conv[6] = '\0'; return conv; } #endif // ULTRA_LCD