/** * Marlin 3D Printer Firmware * Copyright (c) 2020 MarlinFirmware [https://github.com/MarlinFirmware/Marlin] * * Based on Sprinter and grbl. * Copyright (c) 2011 Camiel Gubbels / Erik van der Zalm * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see . * */ #include "../gcode.h" #include "../../MarlinCore.h" #include "../../module/planner.h" #if DISABLED(NO_VOLUMETRICS) /** * M200: Set filament diameter and set E axis units to cubic units * * T - Optional extruder number. Current extruder if omitted. * D - Set filament diameter and enable. D0 disables volumetric. * S - Turn volumetric ON or OFF. * L - Volumetric extruder limit (in mm^3/sec). L0 disables the limit. */ void GcodeSuite::M200() { const int8_t target_extruder = get_target_extruder_from_command(); if (target_extruder < 0) return; bool vol_enable = parser.volumetric_enabled, can_enable = true; if (parser.seenval('D')) { const float dval = parser.value_linear_units(); if (dval) { // Set filament size for volumetric calculation planner.set_filament_size(target_extruder, dval); vol_enable = true; // Dn = enable for compatibility } else can_enable = false; // D0 = disable for compatibility } // Enable or disable with S1 / S0 parser.volumetric_enabled = can_enable && parser.boolval('S', vol_enable); #if ENABLED(VOLUMETRIC_EXTRUDER_LIMIT) if (parser.seenval('L')) { // Set volumetric limit (in mm^3/sec) const float lval = parser.value_float(); if (WITHIN(lval, 0, 20)) planner.set_volumetric_extruder_limit(target_extruder, lval); else SERIAL_ECHOLNPGM("?L value out of range (0-20)."); } #endif planner.calculate_volumetric_multipliers(); } #endif // !NO_VOLUMETRICS /** * M201: Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000) * * With multiple extruders use T to specify which one. */ void GcodeSuite::M201() { const int8_t target_extruder = get_target_extruder_from_command(); if (target_extruder < 0) return; #ifdef XY_FREQUENCY_LIMIT if (parser.seenval('F')) planner.set_frequency_limit(parser.value_byte()); if (parser.seenval('G')) planner.xy_freq_min_speed_factor = constrain(parser.value_float(), 1, 100) / 100; #endif LOOP_XYZE(i) { if (parser.seen(axis_codes[i])) { const uint8_t a = (i == E_AXIS ? uint8_t(E_AXIS_N(target_extruder)) : i); planner.set_max_acceleration(a, parser.value_axis_units((AxisEnum)a)); } } } /** * M203: Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in units/sec * * With multiple extruders use T to specify which one. */ void GcodeSuite::M203() { const int8_t target_extruder = get_target_extruder_from_command(); if (target_extruder < 0) return; LOOP_XYZE(i) if (parser.seen(axis_codes[i])) { const uint8_t a = (i == E_AXIS ? uint8_t(E_AXIS_N(target_extruder)) : i); planner.set_max_feedrate(a, parser.value_axis_units((AxisEnum)a)); } } /** * M204: Set Accelerations in units/sec^2 (M204 P1200 R3000 T3000) * * P = Printing moves * R = Retract only (no X, Y, Z) moves * T = Travel (non printing) moves */ void GcodeSuite::M204() { if (!parser.seen("PRST")) { SERIAL_ECHOPAIR("Acceleration: P", planner.settings.acceleration); SERIAL_ECHOPAIR(" R", planner.settings.retract_acceleration); SERIAL_ECHOLNPAIR_P(SP_T_STR, planner.settings.travel_acceleration); } else { //planner.synchronize(); // 'S' for legacy compatibility. Should NOT BE USED for new development if (parser.seenval('S')) planner.settings.travel_acceleration = planner.settings.acceleration = parser.value_linear_units(); if (parser.seenval('P')) planner.settings.acceleration = parser.value_linear_units(); if (parser.seenval('R')) planner.settings.retract_acceleration = parser.value_linear_units(); if (parser.seenval('T')) planner.settings.travel_acceleration = parser.value_linear_units(); } } /** * M205: Set Advanced Settings * * B = Min Segment Time (µs) * S = Min Feed Rate (units/s) * T = Min Travel Feed Rate (units/s) * X = Max X Jerk (units/sec^2) * Y = Max Y Jerk (units/sec^2) * Z = Max Z Jerk (units/sec^2) * E = Max E Jerk (units/sec^2) * J = Junction Deviation (mm) (If not using CLASSIC_JERK) */ void GcodeSuite::M205() { #if HAS_JUNCTION_DEVIATION #define J_PARAM "J" #else #define J_PARAM #endif #if HAS_CLASSIC_JERK #define XYZE_PARAM "XYZE" #else #define XYZE_PARAM #endif if (!parser.seen("BST" J_PARAM XYZE_PARAM)) return; //planner.synchronize(); if (parser.seen('B')) planner.settings.min_segment_time_us = parser.value_ulong(); if (parser.seen('S')) planner.settings.min_feedrate_mm_s = parser.value_linear_units(); if (parser.seen('T')) planner.settings.min_travel_feedrate_mm_s = parser.value_linear_units(); #if HAS_JUNCTION_DEVIATION if (parser.seen('J')) { const float junc_dev = parser.value_linear_units(); if (WITHIN(junc_dev, 0.01f, 0.3f)) { planner.junction_deviation_mm = junc_dev; TERN_(LIN_ADVANCE, planner.recalculate_max_e_jerk()); } else SERIAL_ERROR_MSG("?J out of range (0.01 to 0.3)"); } #endif #if HAS_CLASSIC_JERK if (parser.seen('X')) planner.set_max_jerk(X_AXIS, parser.value_linear_units()); if (parser.seen('Y')) planner.set_max_jerk(Y_AXIS, parser.value_linear_units()); if (parser.seen('Z')) { planner.set_max_jerk(Z_AXIS, parser.value_linear_units()); #if HAS_MESH && DISABLED(LIMITED_JERK_EDITING) if (planner.max_jerk.z <= 0.1f) SERIAL_ECHOLNPGM("WARNING! Low Z Jerk may lead to unwanted pauses."); #endif } #if HAS_CLASSIC_E_JERK if (parser.seen('E')) planner.set_max_jerk(E_AXIS, parser.value_linear_units()); #endif #endif }