/** * Marlin 3D Printer Firmware * Copyright (C) 2016 MarlinFirmware [https://github.com/MarlinFirmware/Marlin] * * Based on Sprinter and grbl. * Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see . * */ /** * motion.h * * High-level motion commands to feed the planner * Some of these methods may migrate to the planner class. */ #ifndef MOTION_H #define MOTION_H #include "../inc/MarlinConfig.h" #if IS_SCARA #include "../module/scara.h" #endif extern bool relative_mode; extern float current_position[XYZE], // High-level current tool position destination[XYZE]; // Destination for a move // Scratch space for a cartesian result extern float cartes[XYZ]; // Until kinematics.cpp is created, declare this here #if IS_KINEMATIC extern float delta[ABC]; #endif #if OLDSCHOOL_ABL extern float xy_probe_feedrate_mm_s; #define XY_PROBE_FEEDRATE_MM_S xy_probe_feedrate_mm_s #elif defined(XY_PROBE_SPEED) #define XY_PROBE_FEEDRATE_MM_S MMM_TO_MMS(XY_PROBE_SPEED) #else #define XY_PROBE_FEEDRATE_MM_S PLANNER_XY_FEEDRATE() #endif /** * Feed rates are often configured with mm/m * but the planner and stepper like mm/s units. */ extern const float homing_feedrate_mm_s[4]; FORCE_INLINE float homing_feedrate(const AxisEnum a) { return pgm_read_float(&homing_feedrate_mm_s[a]); } extern float feedrate_mm_s; /** * Feedrate scaling and conversion */ extern int16_t feedrate_percentage; #define MMS_SCALED(MM_S) ((MM_S)*feedrate_percentage*0.01) extern uint8_t active_extruder; #if HOTENDS > 1 extern float hotend_offset[XYZ][HOTENDS]; #endif extern float soft_endstop_min[XYZ], soft_endstop_max[XYZ]; FORCE_INLINE float pgm_read_any(const float *p) { return pgm_read_float_near(p); } FORCE_INLINE signed char pgm_read_any(const signed char *p) { return pgm_read_byte_near(p); } #define XYZ_DEFS(type, array, CONFIG) \ extern const type array##_P[XYZ]; \ FORCE_INLINE type array(AxisEnum axis) { return pgm_read_any(&array##_P[axis]); } \ typedef void __void_##CONFIG##__ XYZ_DEFS(float, base_min_pos, MIN_POS); XYZ_DEFS(float, base_max_pos, MAX_POS); XYZ_DEFS(float, base_home_pos, HOME_POS); XYZ_DEFS(float, max_length, MAX_LENGTH); XYZ_DEFS(float, home_bump_mm, HOME_BUMP_MM); XYZ_DEFS(signed char, home_dir, HOME_DIR); #if HAS_SOFTWARE_ENDSTOPS extern bool soft_endstops_enabled; void clamp_to_software_endstops(float target[XYZ]); #else #define soft_endstops_enabled false #define clamp_to_software_endstops(x) NOOP #endif void report_current_position(); inline void set_current_from_destination() { COPY(current_position, destination); } inline void set_destination_from_current() { COPY(destination, current_position); } void get_cartesian_from_steppers(); void set_current_from_steppers_for_axis(const AxisEnum axis); /** * sync_plan_position * * Set the planner/stepper positions directly from current_position with * no kinematic translation. Used for homing axes and cartesian/core syncing. */ void sync_plan_position(); void sync_plan_position_e(); #if IS_KINEMATIC void sync_plan_position_kinematic(); #define SYNC_PLAN_POSITION_KINEMATIC() sync_plan_position_kinematic() #else #define SYNC_PLAN_POSITION_KINEMATIC() sync_plan_position() #endif /** * Move the planner to the current position from wherever it last moved * (or from wherever it has been told it is located). */ void line_to_current_position(); /** * Move the planner to the position stored in the destination array, which is * used by G0/G1/G2/G3/G5 and many other functions to set a destination. */ void buffer_line_to_destination(const float fr_mm_s); #if IS_KINEMATIC void prepare_uninterpolated_move_to_destination(const float fr_mm_s=0.0); #endif void prepare_move_to_destination(); /** * Blocking movement and shorthand functions */ void do_blocking_move_to(const float rx, const float ry, const float rz, const float &fr_mm_s=0.0); void do_blocking_move_to_x(const float &rx, const float &fr_mm_s=0.0); void do_blocking_move_to_z(const float &rz, const float &fr_mm_s=0.0); void do_blocking_move_to_xy(const float &rx, const float &ry, const float &fr_mm_s=0.0); void setup_for_endstop_or_probe_move(); void clean_up_after_endstop_or_probe_move(); void bracket_probe_move(const bool before); void setup_for_endstop_or_probe_move(); void clean_up_after_endstop_or_probe_move(); // // Homing // #define HAS_AXIS_UNHOMED_ERR ( \ ENABLED(Z_PROBE_ALLEN_KEY) \ || ENABLED(Z_PROBE_SLED) \ || HAS_PROBING_PROCEDURE \ || HOTENDS > 1 \ || ENABLED(NOZZLE_CLEAN_FEATURE) \ || ENABLED(NOZZLE_PARK_FEATURE) \ || (ENABLED(ADVANCED_PAUSE_FEATURE) && ENABLED(HOME_BEFORE_FILAMENT_CHANGE)) \ || HAS_M206_COMMAND \ ) || ENABLED(NO_MOTION_BEFORE_HOMING) #if HAS_AXIS_UNHOMED_ERR bool axis_unhomed_error(const bool x=true, const bool y=true, const bool z=true); #endif #if ENABLED(NO_MOTION_BEFORE_HOMING) #define MOTION_CONDITIONS (IsRunning() && !axis_unhomed_error()) #else #define MOTION_CONDITIONS IsRunning() #endif void set_axis_is_at_home(const AxisEnum axis); void homeaxis(const AxisEnum axis); #define HOMEAXIS(A) homeaxis(_AXIS(A)) #if ENABLED(SENSORLESS_HOMING) void sensorless_homing_per_axis(const AxisEnum axis, const bool enable=true); #endif // // Macros // /** * Workspace offsets */ #if HAS_WORKSPACE_OFFSET #if HAS_HOME_OFFSET extern float home_offset[XYZ]; #endif #if HAS_POSITION_SHIFT extern float position_shift[XYZ]; #endif #if HAS_HOME_OFFSET && HAS_POSITION_SHIFT extern float workspace_offset[XYZ]; #define WORKSPACE_OFFSET(AXIS) workspace_offset[AXIS] #elif HAS_HOME_OFFSET #define WORKSPACE_OFFSET(AXIS) home_offset[AXIS] #elif HAS_POSITION_SHIFT #define WORKSPACE_OFFSET(AXIS) position_shift[AXIS] #endif #define NATIVE_TO_LOGICAL(POS, AXIS) ((POS) + WORKSPACE_OFFSET(AXIS)) #define LOGICAL_TO_NATIVE(POS, AXIS) ((POS) - WORKSPACE_OFFSET(AXIS)) #else #define NATIVE_TO_LOGICAL(POS, AXIS) (POS) #define LOGICAL_TO_NATIVE(POS, AXIS) (POS) #endif #define LOGICAL_X_POSITION(POS) NATIVE_TO_LOGICAL(POS, X_AXIS) #define LOGICAL_Y_POSITION(POS) NATIVE_TO_LOGICAL(POS, Y_AXIS) #define LOGICAL_Z_POSITION(POS) NATIVE_TO_LOGICAL(POS, Z_AXIS) #define RAW_X_POSITION(POS) LOGICAL_TO_NATIVE(POS, X_AXIS) #define RAW_Y_POSITION(POS) LOGICAL_TO_NATIVE(POS, Y_AXIS) #define RAW_Z_POSITION(POS) LOGICAL_TO_NATIVE(POS, Z_AXIS) /** * position_is_reachable family of functions */ #if IS_KINEMATIC // (DELTA or SCARA) #if IS_SCARA extern const float L1, L2; #endif // Return true if the given point is within the printable area inline bool position_is_reachable(const float &rx, const float &ry, const float inset=0) { #if ENABLED(DELTA) return HYPOT2(rx, ry) <= sq(DELTA_PRINTABLE_RADIUS - inset); #elif IS_SCARA const float R2 = HYPOT2(rx - SCARA_OFFSET_X, ry - SCARA_OFFSET_Y); return ( R2 <= sq(L1 + L2) - inset #if MIDDLE_DEAD_ZONE_R > 0 && R2 >= sq(float(MIDDLE_DEAD_ZONE_R)) #endif ); #endif } #if HAS_BED_PROBE // Return true if the both nozzle and the probe can reach the given point. // Note: This won't work on SCARA since the probe offset rotates with the arm. inline bool position_is_reachable_by_probe(const float &rx, const float &ry) { return position_is_reachable(rx - (X_PROBE_OFFSET_FROM_EXTRUDER), ry - (Y_PROBE_OFFSET_FROM_EXTRUDER)) && position_is_reachable(rx, ry, ABS(MIN_PROBE_EDGE)); } #endif #else // CARTESIAN // Return true if the given position is within the machine bounds. inline bool position_is_reachable(const float &rx, const float &ry) { // Add 0.001 margin to deal with float imprecision return WITHIN(rx, X_MIN_POS - 0.001, X_MAX_POS + 0.001) && WITHIN(ry, Y_MIN_POS - 0.001, Y_MAX_POS + 0.001); } #if HAS_BED_PROBE /** * Return whether the given position is within the bed, and whether the nozzle * can reach the position required to put the probe at the given position. * * Example: For a probe offset of -10,+10, then for the probe to reach 0,0 the * nozzle must be be able to reach +10,-10. */ inline bool position_is_reachable_by_probe(const float &rx, const float &ry) { return position_is_reachable(rx - (X_PROBE_OFFSET_FROM_EXTRUDER), ry - (Y_PROBE_OFFSET_FROM_EXTRUDER)) && WITHIN(rx, MIN_PROBE_X - 0.001, MAX_PROBE_X + 0.001) && WITHIN(ry, MIN_PROBE_Y - 0.001, MAX_PROBE_Y + 0.001); } #endif #endif // CARTESIAN #if !HAS_BED_PROBE FORCE_INLINE bool position_is_reachable_by_probe(const float &rx, const float &ry) { return position_is_reachable(rx, ry); } #endif /** * Dual X Carriage / Dual Nozzle */ #if ENABLED(DUAL_X_CARRIAGE) || ENABLED(DUAL_NOZZLE_DUPLICATION_MODE) extern bool extruder_duplication_enabled; // Used in Dual X mode 2 #endif /** * Dual X Carriage */ #if ENABLED(DUAL_X_CARRIAGE) enum DualXMode : char { DXC_FULL_CONTROL_MODE, // DUAL_X_CARRIAGE only DXC_AUTO_PARK_MODE, // DUAL_X_CARRIAGE only DXC_DUPLICATION_MODE }; extern DualXMode dual_x_carriage_mode; extern float inactive_extruder_x_pos, // used in mode 0 & 1 raised_parked_position[XYZE], // used in mode 1 duplicate_extruder_x_offset; // used in mode 2 extern bool active_extruder_parked; // used in mode 1 & 2 extern millis_t delayed_move_time; // used in mode 1 extern int16_t duplicate_extruder_temp_offset; // used in mode 2 float x_home_pos(const int extruder); FORCE_INLINE int x_home_dir(const uint8_t extruder) { return extruder ? X2_HOME_DIR : X_HOME_DIR; } #elif ENABLED(DUAL_NOZZLE_DUPLICATION_MODE) enum DualXMode : char { DXC_DUPLICATION_MODE = 2 }; #endif #if HAS_WORKSPACE_OFFSET || ENABLED(DUAL_X_CARRIAGE) || ENABLED(DELTA) void update_software_endstops(const AxisEnum axis); #endif #if HAS_M206_COMMAND void set_home_offset(const AxisEnum axis, const float v); #endif #if ENABLED(AUTO_BED_LEVELING_BILINEAR) #if ENABLED(DELTA) #define ADJUST_DELTA(V) \ if (planner.leveling_active) { \ const float zadj = bilinear_z_offset(V); \ delta[A_AXIS] += zadj; \ delta[B_AXIS] += zadj; \ delta[C_AXIS] += zadj; \ } #else #define ADJUST_DELTA(V) if (planner.leveling_active) { delta[Z_AXIS] += bilinear_z_offset(V); } #endif #else #define ADJUST_DELTA(V) NOOP #endif #endif // MOTION_H