/** * Marlin 3D Printer Firmware * Copyright (c) 2020 MarlinFirmware [https://github.com/MarlinFirmware/Marlin] * Copyright (c) 2016 Bob Cousins bobcousins42@googlemail.com * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see . */ #pragma once /** * Description: HAL for Espressif ESP32 WiFi */ #define CPU_32_BIT #include #include "../shared/Marduino.h" #include "../shared/math_32bit.h" #include "../shared/HAL_SPI.h" #include "fastio.h" #include "watchdog.h" #include "i2s.h" #if ENABLED(WIFISUPPORT) #include "WebSocketSerial.h" #endif #if ENABLED(ESP3D_WIFISUPPORT) #include "esp3dlib.h" #endif #include "FlushableHardwareSerial.h" // ------------------------ // Defines // ------------------------ extern portMUX_TYPE spinlock; #define MYSERIAL0 flushableSerial #if EITHER(WIFISUPPORT, ESP3D_WIFISUPPORT) #if ENABLED(ESP3D_WIFISUPPORT) #define MYSERIAL1 Serial2Socket #else #define MYSERIAL1 webSocketSerial #endif #define NUM_SERIAL 2 #else #define NUM_SERIAL 1 #endif #define CRITICAL_SECTION_START() portENTER_CRITICAL(&spinlock) #define CRITICAL_SECTION_END() portEXIT_CRITICAL(&spinlock) #define ISRS_ENABLED() (spinlock.owner == portMUX_FREE_VAL) #define ENABLE_ISRS() if (spinlock.owner != portMUX_FREE_VAL) portEXIT_CRITICAL(&spinlock) #define DISABLE_ISRS() portENTER_CRITICAL(&spinlock) // Fix bug in pgm_read_ptr #undef pgm_read_ptr #define pgm_read_ptr(addr) (*(addr)) // ------------------------ // Types // ------------------------ typedef int16_t pin_t; #define HAL_SERVO_LIB Servo // ------------------------ // Public Variables // ------------------------ /** result of last ADC conversion */ extern uint16_t HAL_adc_result; // ------------------------ // Public functions // ------------------------ // clear reset reason void HAL_clear_reset_source(); // reset reason uint8_t HAL_get_reset_source(); void _delay_ms(int delay); #pragma GCC diagnostic push #pragma GCC diagnostic ignored "-Wunused-function" int freeMemory(); #pragma GCC diagnostic pop void analogWrite(pin_t pin, int value); // ADC #define HAL_ANALOG_SELECT(pin) void HAL_adc_init(); #define HAL_ADC_VREF 3.3 #define HAL_ADC_RESOLUTION 10 #define HAL_START_ADC(pin) HAL_adc_start_conversion(pin) #define HAL_READ_ADC() HAL_adc_result #define HAL_ADC_READY() true void HAL_adc_start_conversion(const uint8_t adc_pin); #define GET_PIN_MAP_PIN(index) index #define GET_PIN_MAP_INDEX(pin) pin #define PARSED_PIN_INDEX(code, dval) parser.intval(code, dval) // Enable hooks into idle and setup for HAL #define HAL_IDLETASK 1 #define BOARD_INIT() HAL_init_board(); void HAL_idletask(); void HAL_init(); void HAL_init_board(); // // Delay in cycles (used by DELAY_NS / DELAY_US) // FORCE_INLINE static void DELAY_CYCLES(uint32_t x) { unsigned long start, ccount, stop; /** * It's important to care for race conditions (and overflows) here. * Race condition example: If `stop` calculates to being close to the upper boundary of * `uint32_t` and if at the same time a longer loop interruption kicks in (e.g. due to other * FreeRTOS tasks or interrupts), `ccount` might overflow (and therefore be below `stop` again) * without the loop ever being able to notice that `ccount` had already been above `stop` once * (and that therefore the number of cycles to delay has already passed). * As DELAY_CYCLES (through DELAY_NS / DELAY_US) is used by software SPI bit banging to drive * LCDs and therefore might be called very, very often, this seemingly improbable situation did * actually happen in reality. It resulted in apparently random print pauses of ~17.9 seconds * (0x100000000 / 240 MHz) or multiples thereof, essentially ruining the current print by causing * large blobs of filament. */ __asm__ __volatile__ ( "rsr %0, ccount" : "=a" (start) ); stop = start + x; ccount = start; if (stop >= start) { // no overflow, so only loop while in between start and stop: // 0x00000000 -----------------start****stop-- 0xffffffff while (ccount >= start && ccount < stop) { __asm__ __volatile__ ( "rsr %0, ccount" : "=a" (ccount) ); } } else { // stop did overflow, so only loop while outside of stop and start: // 0x00000000 **stop-------------------start** 0xffffffff while (ccount >= start || ccount < stop) { __asm__ __volatile__ ( "rsr %0, ccount" : "=a" (ccount) ); } } }