/** * Marlin 3D Printer Firmware * Copyright (c) 2020 MarlinFirmware [https://github.com/MarlinFirmware/Marlin] * * Based on Sprinter and grbl. * Copyright (c) 2011 Camiel Gubbels / Erik van der Zalm * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see . * */ /** * G26 Mesh Validation Tool * * G26 is a Mesh Validation Tool intended to provide support for the Marlin Unified Bed Leveling System. * In order to fully utilize and benefit from the Marlin Unified Bed Leveling System an accurate Mesh must * be defined. G29 is designed to allow the user to quickly validate the correctness of her Mesh. It will * first heat the bed and nozzle. It will then print lines and circles along the Mesh Cell boundaries and * the intersections of those lines (respectively). * * This action allows the user to immediately see where the Mesh is properly defined and where it needs to * be edited. The command will generate the Mesh lines closest to the nozzle's starting position. Alternatively * the user can specify the X and Y position of interest with command parameters. This allows the user to * focus on a particular area of the Mesh where attention is needed. * * B # Bed Set the Bed Temperature. If not specified, a default of 60 C. will be assumed. * * C Current When searching for Mesh Intersection points to draw, use the current nozzle location * as the base for any distance comparison. * * D Disable Disable the Unified Bed Leveling System. In the normal case the user is invoking this * command to see how well a Mesh as been adjusted to match a print surface. In order to do * this the Unified Bed Leveling System is turned on by the G26 command. The D parameter * alters the command's normal behavior and disables the Unified Bed Leveling System even if * it is on. * * H # Hotend Set the Nozzle Temperature. If not specified, a default of 205 C. will be assumed. * * I # Preset Heat the Nozzle and Bed based on a Material Preset (if material presets are defined). * * F # Filament Used to specify the diameter of the filament being used. If not specified * 1.75mm filament is assumed. If you are not getting acceptable results by using the * 'correct' numbers, you can scale this number up or down a little bit to change the amount * of filament that is being extruded during the printing of the various lines on the bed. * * K Keep-On Keep the heaters turned on at the end of the command. * * L # Layer Layer height. (Height of nozzle above bed) If not specified .20mm will be used. * * O # Ooooze How much your nozzle will Ooooze filament while getting in position to print. This * is over kill, but using this parameter will let you get the very first 'circle' perfect * so you have a trophy to peel off of the bed and hang up to show how perfectly you have your * Mesh calibrated. If not specified, a filament length of .3mm is assumed. * * P # Prime Prime the nozzle with specified length of filament. If this parameter is not * given, no prime action will take place. If the parameter specifies an amount, that much * will be purged before continuing. If no amount is specified the command will start * purging filament until the user provides an LCD Click and then it will continue with * printing the Mesh. You can carefully remove the spent filament with a needle nose * pliers while holding the LCD Click wheel in a depressed state. If you do not have * an LCD, you must specify a value if you use P. * * Q # Multiplier Retraction Multiplier. Normally not needed. Retraction defaults to 1.0mm and * un-retraction is at 1.2mm These numbers will be scaled by the specified amount * * R # Repeat Prints the number of patterns given as a parameter, starting at the current location. * If a parameter isn't given, every point will be printed unless G26 is interrupted. * This works the same way that the UBL G29 P4 R parameter works. * * NOTE: If you do not have an LCD, you -must- specify R. This is to ensure that you are * aware that there's some risk associated with printing without the ability to abort in * cases where mesh point Z value may be inaccurate. As above, if you do not include a * parameter, every point will be printed. * * S # Nozzle Used to control the size of nozzle diameter. If not specified, a .4mm nozzle is assumed. * * U # Random Randomize the order that the circles are drawn on the bed. The search for the closest * un-drawn circle is still done. But the distance to the location for each circle has a * random number of the specified size added to it. Specifying S50 will give an interesting * deviation from the normal behavior on a 10 x 10 Mesh. * * X # X Coord. Specify the starting location of the drawing activity. * * Y # Y Coord. Specify the starting location of the drawing activity. */ #include "../../inc/MarlinConfig.h" #if ENABLED(G26_MESH_VALIDATION) #define G26_OK false #define G26_ERR true #include "../../gcode/gcode.h" #include "../../feature/bedlevel/bedlevel.h" #include "../../MarlinCore.h" #include "../../module/planner.h" #include "../../module/stepper.h" #include "../../module/motion.h" #include "../../module/tool_change.h" #include "../../module/temperature.h" #include "../../lcd/marlinui.h" #if ENABLED(EXTENSIBLE_UI) #include "../../lcd/extui/ui_api.h" #endif #if ENABLED(UBL_HILBERT_CURVE) #include "../../feature/bedlevel/hilbert_curve.h" #endif #define EXTRUSION_MULTIPLIER 1.0 #define PRIME_LENGTH 10.0 #define OOZE_AMOUNT 0.3 #define INTERSECTION_CIRCLE_RADIUS 5 #define CROSSHAIRS_SIZE 3 #ifndef G26_RETRACT_MULTIPLIER #define G26_RETRACT_MULTIPLIER 1.0 // x 1mm #endif #ifndef G26_XY_FEEDRATE #define G26_XY_FEEDRATE (PLANNER_XY_FEEDRATE() / 3.0) #endif #ifndef G26_XY_FEEDRATE_TRAVEL #define G26_XY_FEEDRATE_TRAVEL (PLANNER_XY_FEEDRATE() / 1.5) #endif #if CROSSHAIRS_SIZE >= INTERSECTION_CIRCLE_RADIUS #error "CROSSHAIRS_SIZE must be less than INTERSECTION_CIRCLE_RADIUS." #endif #define G26_OK false #define G26_ERR true #if ENABLED(ARC_SUPPORT) void plan_arc(const xyze_pos_t&, const ab_float_t&, const bool, const uint8_t); #endif constexpr float g26_e_axis_feedrate = 0.025; static MeshFlags circle_flags; float g26_random_deviation = 0.0; #if HAS_LCD_MENU /** * If the LCD is clicked, cancel, wait for release, return true */ bool user_canceled() { if (!ui.button_pressed()) return false; // Return if the button isn't pressed ui.set_status_P(GET_TEXT(MSG_G26_CANCELED), 99); TERN_(HAS_LCD_MENU, ui.quick_feedback()); ui.wait_for_release(); return true; } #endif void move_to(const_float_t rx, const_float_t ry, const_float_t z, const_float_t e_delta) { static float last_z = -999.99; const xy_pos_t dest = { rx, ry }; const bool has_xy_component = dest != current_position, // Check if X or Y is involved in the movement. has_e_component = e_delta != 0.0; if (z != last_z) { last_z = z; destination.set(current_position.x, current_position.y, z, current_position.e); const feedRate_t fr_mm_s = planner.settings.max_feedrate_mm_s[Z_AXIS] * 0.5f; // Use half of the Z_AXIS max feed rate prepare_internal_move_to_destination(fr_mm_s); } // If X or Y in combination with E is involved do a 'normal' move. // If X or Y with no E is involved do a 'fast' move // Otherwise retract/recover/hop. destination = dest; destination.e += e_delta; const feedRate_t fr_mm_s = has_xy_component ? (has_e_component ? feedRate_t(G26_XY_FEEDRATE) : feedRate_t(G26_XY_FEEDRATE_TRAVEL)) : planner.settings.max_feedrate_mm_s[E_AXIS] * 0.666f; prepare_internal_move_to_destination(fr_mm_s); } void move_to(const xyz_pos_t &where, const_float_t de) { move_to(where.x, where.y, where.z, de); } typedef struct { float extrusion_multiplier = EXTRUSION_MULTIPLIER, retraction_multiplier = G26_RETRACT_MULTIPLIER, layer_height = MESH_TEST_LAYER_HEIGHT, prime_length = PRIME_LENGTH; celsius_t bed_temp = MESH_TEST_BED_TEMP, hotend_temp = MESH_TEST_HOTEND_TEMP; float nozzle = MESH_TEST_NOZZLE_SIZE, filament_diameter = DEFAULT_NOMINAL_FILAMENT_DIA, ooze_amount; // 'O' ... OOZE_AMOUNT bool continue_with_closest, // 'C' keep_heaters_on; // 'K' xy_pos_t xy_pos; // = { 0, 0 } int8_t prime_flag = 0; bool g26_retracted = false; // Track the retracted state during G26 so mismatched // retracts/recovers don't result in a bad state. void retract_filament(const xyz_pos_t &where) { if (!g26_retracted) { // Only retract if we are not already retracted! g26_retracted = true; move_to(where, -1.0f * retraction_multiplier); } } // TODO: Parameterize the Z lift with a define void retract_lift_move(const xyz_pos_t &s) { retract_filament(destination); move_to(current_position.x, current_position.y, current_position.z + 0.5f, 0.0f); // Z lift to minimize scraping move_to(s.x, s.y, s.z + 0.5f, 0.0f); // Get to the starting point with no extrusion while lifted } void recover_filament(const xyz_pos_t &where) { if (g26_retracted) { // Only un-retract if we are retracted. move_to(where, 1.2f * retraction_multiplier); g26_retracted = false; } } /** * print_line_from_here_to_there() takes two cartesian coordinates and draws a line from one * to the other. But there are really three sets of coordinates involved. The first coordinate * is the present location of the nozzle. We don't necessarily want to print from this location. * We first need to move the nozzle to the start of line segment where we want to print. Once * there, we can use the two coordinates supplied to draw the line. * * Note: Although we assume the first set of coordinates is the start of the line and the second * set of coordinates is the end of the line, it does not always work out that way. This function * optimizes the movement to minimize the travel distance before it can start printing. This saves * a lot of time and eliminates a lot of nonsensical movement of the nozzle. However, it does * cause a lot of very little short retracement of th nozzle when it draws the very first line * segment of a 'circle'. The time this requires is very short and is easily saved by the other * cases where the optimization comes into play. */ void print_line_from_here_to_there(const xyz_pos_t &s, const xyz_pos_t &e) { // Distances to the start / end of the line xy_float_t svec = current_position - s, evec = current_position - e; const float dist_start = HYPOT2(svec.x, svec.y), dist_end = HYPOT2(evec.x, evec.y), line_length = HYPOT(e.x - s.x, e.y - s.y); // If the end point of the line is closer to the nozzle, flip the direction, // moving from the end to the start. On very small lines the optimization isn't worth it. if (dist_end < dist_start && (INTERSECTION_CIRCLE_RADIUS) < ABS(line_length)) return print_line_from_here_to_there(e, s); // Decide whether to retract & lift if (dist_start > 2.0) retract_lift_move(s); move_to(s, 0.0); // Get to the starting point with no extrusion / un-Z lift const float e_pos_delta = line_length * g26_e_axis_feedrate * extrusion_multiplier; recover_filament(destination); move_to(e, e_pos_delta); // Get to the ending point with an appropriate amount of extrusion } void connect_neighbor_with_line(const xy_int8_t &p1, int8_t dx, int8_t dy) { xy_int8_t p2; p2.x = p1.x + dx; p2.y = p1.y + dy; if (p2.x < 0 || p2.x >= (GRID_MAX_POINTS_X)) return; if (p2.y < 0 || p2.y >= (GRID_MAX_POINTS_Y)) return; if (circle_flags.marked(p1.x, p1.y) && circle_flags.marked(p2.x, p2.y)) { xyz_pos_t s, e; s.x = _GET_MESH_X(p1.x) + (INTERSECTION_CIRCLE_RADIUS - (CROSSHAIRS_SIZE)) * dx; e.x = _GET_MESH_X(p2.x) - (INTERSECTION_CIRCLE_RADIUS - (CROSSHAIRS_SIZE)) * dx; s.y = _GET_MESH_Y(p1.y) + (INTERSECTION_CIRCLE_RADIUS - (CROSSHAIRS_SIZE)) * dy; e.y = _GET_MESH_Y(p2.y) - (INTERSECTION_CIRCLE_RADIUS - (CROSSHAIRS_SIZE)) * dy; s.z = e.z = layer_height; #if HAS_ENDSTOPS LIMIT(s.y, Y_MIN_POS + 1, Y_MAX_POS - 1); LIMIT(e.y, Y_MIN_POS + 1, Y_MAX_POS - 1); LIMIT(s.x, X_MIN_POS + 1, X_MAX_POS - 1); LIMIT(e.x, X_MIN_POS + 1, X_MAX_POS - 1); #endif if (position_is_reachable(s.x, s.y) && position_is_reachable(e.x, e.y)) print_line_from_here_to_there(s, e); } } /** * Turn on the bed and nozzle heat and * wait for them to get up to temperature. */ bool turn_on_heaters() { SERIAL_ECHOLNPGM("Waiting for heatup."); #if HAS_HEATED_BED if (bed_temp > 25) { #if HAS_WIRED_LCD ui.set_status_P(GET_TEXT(MSG_G26_HEATING_BED), 99); ui.quick_feedback(); TERN_(HAS_LCD_MENU, ui.capture()); #endif thermalManager.setTargetBed(bed_temp); // Wait for the temperature to stabilize if (!thermalManager.wait_for_bed(true OPTARG(G26_CLICK_CAN_CANCEL, true))) return G26_ERR; } #else UNUSED(bed_temp); #endif // HAS_HEATED_BED // Start heating the active nozzle #if HAS_WIRED_LCD ui.set_status_P(GET_TEXT(MSG_G26_HEATING_NOZZLE), 99); ui.quick_feedback(); #endif thermalManager.setTargetHotend(hotend_temp, active_extruder); // Wait for the temperature to stabilize if (!thermalManager.wait_for_hotend(active_extruder, true OPTARG(G26_CLICK_CAN_CANCEL, true))) return G26_ERR; #if HAS_WIRED_LCD ui.reset_status(); ui.quick_feedback(); #endif return G26_OK; } /** * Prime the nozzle if needed. Return true on error. */ bool prime_nozzle() { const feedRate_t fr_slow_e = planner.settings.max_feedrate_mm_s[E_AXIS] / 15.0f; #if HAS_LCD_MENU && !HAS_TOUCH_BUTTONS // ui.button_pressed issue with touchscreen #if ENABLED(PREVENT_LENGTHY_EXTRUDE) float Total_Prime = 0.0; #endif if (prime_flag == -1) { // The user wants to control how much filament gets purged ui.capture(); ui.set_status_P(GET_TEXT(MSG_G26_MANUAL_PRIME), 99); ui.chirp(); destination = current_position; recover_filament(destination); // Make sure G26 doesn't think the filament is retracted(). while (!ui.button_pressed()) { ui.chirp(); destination.e += 0.25; #if ENABLED(PREVENT_LENGTHY_EXTRUDE) Total_Prime += 0.25; if (Total_Prime >= EXTRUDE_MAXLENGTH) { ui.release(); return G26_ERR; } #endif prepare_internal_move_to_destination(fr_slow_e); destination = current_position; planner.synchronize(); // Without this synchronize, the purge is more consistent, // but because the planner has a buffer, we won't be able // to stop as quickly. So we put up with the less smooth // action to give the user a more responsive 'Stop'. } ui.wait_for_release(); ui.set_status_P(GET_TEXT(MSG_G26_PRIME_DONE), 99); ui.quick_feedback(); ui.release(); } else #endif { #if HAS_WIRED_LCD ui.set_status_P(GET_TEXT(MSG_G26_FIXED_LENGTH), 99); ui.quick_feedback(); #endif destination = current_position; destination.e += prime_length; prepare_internal_move_to_destination(fr_slow_e); destination.e -= prime_length; retract_filament(destination); } return G26_OK; } /** * Find the nearest point at which to print a circle */ mesh_index_pair find_closest_circle_to_print(const xy_pos_t &pos) { mesh_index_pair out_point; out_point.pos = -1; #if ENABLED(UBL_HILBERT_CURVE) auto test_func = [](uint8_t i, uint8_t j, void *data) -> bool { if (!circle_flags.marked(i, j)) { mesh_index_pair *out_point = (mesh_index_pair*)data; out_point->pos.set(i, j); // Save its data return true; } return false; }; hilbert_curve::search_from_closest(pos, test_func, &out_point); #else float closest = 99999.99; GRID_LOOP(i, j) { if (!circle_flags.marked(i, j)) { // We found a circle that needs to be printed const xy_pos_t m = { _GET_MESH_X(i), _GET_MESH_Y(j) }; // Get the distance to this intersection float f = (pos - m).magnitude(); // It is possible that we are being called with the values // to let us find the closest circle to the start position. // But if this is not the case, add a small weighting to the // distance calculation to help it choose a better place to continue. f += (xy_pos - m).magnitude() / 15.0f; // Add the specified amount of Random Noise to our search if (g26_random_deviation > 1.0) f += random(0.0, g26_random_deviation); if (f < closest) { closest = f; // Found a closer un-printed location out_point.pos.set(i, j); // Save its data out_point.distance = closest; } } } #endif circle_flags.mark(out_point); // Mark this location as done. return out_point; } } g26_helper_t; /** * G26: Mesh Validation Pattern generation. * * Used to interactively edit the mesh by placing the * nozzle in a problem area and doing a G29 P4 R command. * * Parameters: * * B Bed Temperature * C Continue from the Closest mesh point * D Disable leveling before starting * F Filament diameter * H Hotend Temperature * K Keep heaters on when completed * L Layer Height * O Ooze extrusion length * P Prime length * Q Retraction multiplier * R Repetitions (number of grid points) * S Nozzle Size (diameter) in mm * T Tool index to change to, if included * U Random deviation (50 if no value given) * X X position * Y Y position */ void GcodeSuite::G26() { SERIAL_ECHOLNPGM("G26 starting..."); // Don't allow Mesh Validation without homing first, // or if the parameter parsing did not go OK, abort if (homing_needed_error()) return; // Change the tool first, if specified if (parser.seenval('T')) tool_change(parser.value_int()); g26_helper_t g26; g26.ooze_amount = parser.linearval('O', OOZE_AMOUNT); g26.continue_with_closest = parser.boolval('C'); g26.keep_heaters_on = parser.boolval('K'); // Accept 'I' if temperature presets are defined #if PREHEAT_COUNT const uint8_t preset_index = parser.seenval('I') ? _MIN(parser.value_byte(), PREHEAT_COUNT - 1) + 1 : 0; #endif #if HAS_HEATED_BED // Get a temperature from 'I' or 'B' celsius_t bedtemp = 0; // Use the 'I' index if temperature presets are defined #if PREHEAT_COUNT if (preset_index) bedtemp = ui.material_preset[preset_index - 1].bed_temp; #endif // Look for 'B' Bed Temperature if (parser.seenval('B')) bedtemp = parser.value_celsius(); if (bedtemp) { if (!WITHIN(bedtemp, 40, BED_MAX_TARGET)) { SERIAL_ECHOLNPGM("?Specified bed temperature not plausible (40-", BED_MAX_TARGET, "C)."); return; } g26.bed_temp = bedtemp; } #endif // HAS_HEATED_BED if (parser.seenval('L')) { g26.layer_height = parser.value_linear_units(); if (!WITHIN(g26.layer_height, 0.0, 2.0)) { SERIAL_ECHOLNPGM("?Specified layer height not plausible."); return; } } if (parser.seen('Q')) { if (parser.has_value()) { g26.retraction_multiplier = parser.value_float(); if (!WITHIN(g26.retraction_multiplier, 0.05, 15.0)) { SERIAL_ECHOLNPGM("?Specified Retraction Multiplier not plausible."); return; } } else { SERIAL_ECHOLNPGM("?Retraction Multiplier must be specified."); return; } } if (parser.seenval('S')) { g26.nozzle = parser.value_float(); if (!WITHIN(g26.nozzle, 0.1, 2.0)) { SERIAL_ECHOLNPGM("?Specified nozzle size not plausible."); return; } } if (parser.seen('P')) { if (!parser.has_value()) { #if HAS_LCD_MENU g26.prime_flag = -1; #else SERIAL_ECHOLNPGM("?Prime length must be specified when not using an LCD."); return; #endif } else { g26.prime_flag++; g26.prime_length = parser.value_linear_units(); if (!WITHIN(g26.prime_length, 0.0, 25.0)) { SERIAL_ECHOLNPGM("?Specified prime length not plausible."); return; } } } if (parser.seenval('F')) { g26.filament_diameter = parser.value_linear_units(); if (!WITHIN(g26.filament_diameter, 1.0, 4.0)) { SERIAL_ECHOLNPGM("?Specified filament size not plausible."); return; } } g26.extrusion_multiplier *= sq(1.75) / sq(g26.filament_diameter); // If we aren't using 1.75mm filament, we need to // scale up or down the length needed to get the // same volume of filament g26.extrusion_multiplier *= g26.filament_diameter * sq(g26.nozzle) / sq(0.3); // Scale up by nozzle size // Get a temperature from 'I' or 'H' celsius_t noztemp = 0; // Accept 'I' if temperature presets are defined #if PREHEAT_COUNT if (preset_index) noztemp = ui.material_preset[preset_index - 1].hotend_temp; #endif // Look for 'H' Hotend Temperature if (parser.seenval('H')) noztemp = parser.value_celsius(); // If any preset or temperature was specified if (noztemp) { if (!WITHIN(noztemp, 165, (HEATER_0_MAXTEMP) - (HOTEND_OVERSHOOT))) { SERIAL_ECHOLNPGM("?Specified nozzle temperature not plausible."); return; } g26.hotend_temp = noztemp; } // 'U' to Randomize and optionally set circle deviation if (parser.seen('U')) { randomSeed(millis()); // This setting will persist for the next G26 g26_random_deviation = parser.has_value() ? parser.value_float() : 50.0; } // Get repeat from 'R', otherwise do one full circuit int16_t g26_repeats; #if HAS_LCD_MENU g26_repeats = parser.intval('R', GRID_MAX_POINTS + 1); #else if (parser.seen('R')) g26_repeats = parser.has_value() ? parser.value_int() : GRID_MAX_POINTS + 1; else { SERIAL_ECHOLNPGM("?(R)epeat must be specified when not using an LCD."); return; } #endif if (g26_repeats < 1) { SERIAL_ECHOLNPGM("?(R)epeat value not plausible; must be at least 1."); return; } // Set a position with 'X' and/or 'Y'. Default: current_position g26.xy_pos.set(parser.seenval('X') ? RAW_X_POSITION(parser.value_linear_units()) : current_position.x, parser.seenval('Y') ? RAW_Y_POSITION(parser.value_linear_units()) : current_position.y); if (!position_is_reachable(g26.xy_pos)) { SERIAL_ECHOLNPGM("?Specified X,Y coordinate out of bounds."); return; } /** * Wait until all parameters are verified before altering the state! */ set_bed_leveling_enabled(!parser.seen_test('D')); do_z_clearance(Z_CLEARANCE_BETWEEN_PROBES); #if DISABLED(NO_VOLUMETRICS) bool volumetric_was_enabled = parser.volumetric_enabled; parser.volumetric_enabled = false; planner.calculate_volumetric_multipliers(); #endif if (g26.turn_on_heaters() != G26_OK) goto LEAVE; current_position.e = 0.0; sync_plan_position_e(); if (g26.prime_flag && g26.prime_nozzle() != G26_OK) goto LEAVE; /** * Bed is preheated * * Nozzle is at temperature * * Filament is primed! * * It's "Show Time" !!! */ circle_flags.reset(); // Move nozzle to the specified height for the first layer destination = current_position; destination.z = g26.layer_height; move_to(destination, 0.0); move_to(destination, g26.ooze_amount); TERN_(HAS_LCD_MENU, ui.capture()); #if DISABLED(ARC_SUPPORT) /** * Pre-generate radius offset values at 30 degree intervals to reduce CPU load. */ #define A_INT 30 #define _ANGS (360 / A_INT) #define A_CNT (_ANGS / 2) #define _IND(A) ((A + _ANGS * 8) % _ANGS) #define _COS(A) (trig_table[_IND(A) % A_CNT] * (_IND(A) >= A_CNT ? -1 : 1)) #define _SIN(A) (-_COS((A + A_CNT / 2) % _ANGS)) #if A_CNT & 1 #error "A_CNT must be a positive value. Please change A_INT." #endif float trig_table[A_CNT]; LOOP_L_N(i, A_CNT) trig_table[i] = INTERSECTION_CIRCLE_RADIUS * cos(RADIANS(i * A_INT)); #endif // !ARC_SUPPORT mesh_index_pair location; TERN_(EXTENSIBLE_UI, ExtUI::onMeshUpdate(location.pos, ExtUI::G26_START)); do { // Find the nearest confluence location = g26.find_closest_circle_to_print(g26.continue_with_closest ? xy_pos_t(current_position) : g26.xy_pos); if (location.valid()) { TERN_(EXTENSIBLE_UI, ExtUI::onMeshUpdate(location.pos, ExtUI::G26_POINT_START)); const xy_pos_t circle = _GET_MESH_POS(location.pos); // If this mesh location is outside the printable radius, skip it. if (!position_is_reachable(circle)) continue; // Determine where to start and end the circle, // which is always drawn counter-clockwise. const xy_int8_t st = location; const bool f = st.y == 0, r = st.x >= GRID_MAX_POINTS_X - 1, b = st.y >= GRID_MAX_POINTS_Y - 1; #if ENABLED(ARC_SUPPORT) #define ARC_LENGTH(quarters) (INTERSECTION_CIRCLE_RADIUS * M_PI * (quarters) / 2) #define INTERSECTION_CIRCLE_DIAM ((INTERSECTION_CIRCLE_RADIUS) * 2) xy_float_t e = { circle.x + INTERSECTION_CIRCLE_RADIUS, circle.y }; xyz_float_t s = e; // Figure out where to start and end the arc - we always print counterclockwise float arc_length = ARC_LENGTH(4); if (st.x == 0) { // left edge if (!f) { s.x = circle.x; s.y -= INTERSECTION_CIRCLE_RADIUS; } if (!b) { e.x = circle.x; e.y += INTERSECTION_CIRCLE_RADIUS; } arc_length = (f || b) ? ARC_LENGTH(1) : ARC_LENGTH(2); } else if (r) { // right edge if (b) s.set(circle.x - (INTERSECTION_CIRCLE_RADIUS), circle.y); else s.set(circle.x, circle.y + INTERSECTION_CIRCLE_RADIUS); if (f) e.set(circle.x - (INTERSECTION_CIRCLE_RADIUS), circle.y); else e.set(circle.x, circle.y - (INTERSECTION_CIRCLE_RADIUS)); arc_length = (f || b) ? ARC_LENGTH(1) : ARC_LENGTH(2); } else if (f) { e.x -= INTERSECTION_CIRCLE_DIAM; arc_length = ARC_LENGTH(2); } else if (b) { s.x -= INTERSECTION_CIRCLE_DIAM; arc_length = ARC_LENGTH(2); } const ab_float_t arc_offset = circle - s; const xy_float_t dist = current_position - s; // Distance from the start of the actual circle const float dist_start = HYPOT2(dist.x, dist.y); const xyze_pos_t endpoint = { e.x, e.y, g26.layer_height, current_position.e + (arc_length * g26_e_axis_feedrate * g26.extrusion_multiplier) }; if (dist_start > 2.0) { s.z = g26.layer_height + 0.5f; g26.retract_lift_move(s); } s.z = g26.layer_height; move_to(s, 0.0); // Get to the starting point with no extrusion / un-Z lift g26.recover_filament(destination); { REMEMBER(fr, feedrate_mm_s, PLANNER_XY_FEEDRATE() * 0.1f); plan_arc(endpoint, arc_offset, false, 0); // Draw a counter-clockwise arc destination = current_position; } if (TERN0(HAS_LCD_MENU, user_canceled())) goto LEAVE; // Check if the user wants to stop the Mesh Validation #else // !ARC_SUPPORT int8_t start_ind = -2, end_ind = 9; // Assume a full circle (from 5:00 to 5:00) if (st.x == 0) { // Left edge? Just right half. start_ind = f ? 0 : -3; // 03:00 to 12:00 for front-left end_ind = b ? 0 : 2; // 06:00 to 03:00 for back-left } else if (r) { // Right edge? Just left half. start_ind = b ? 6 : 3; // 12:00 to 09:00 for front-right end_ind = f ? 5 : 8; // 09:00 to 06:00 for back-right } else if (f) { // Front edge? Just back half. start_ind = 0; // 03:00 end_ind = 5; // 09:00 } else if (b) { // Back edge? Just front half. start_ind = 6; // 09:00 end_ind = 11; // 03:00 } for (int8_t ind = start_ind; ind <= end_ind; ind++) { if (TERN0(HAS_LCD_MENU, user_canceled())) goto LEAVE; // Check if the user wants to stop the Mesh Validation xyz_float_t p = { circle.x + _COS(ind ), circle.y + _SIN(ind ), g26.layer_height }, q = { circle.x + _COS(ind + 1), circle.y + _SIN(ind + 1), g26.layer_height }; #if IS_KINEMATIC // Check to make sure this segment is entirely on the bed, skip if not. if (!position_is_reachable(p) || !position_is_reachable(q)) continue; #elif HAS_ENDSTOPS LIMIT(p.x, X_MIN_POS + 1, X_MAX_POS - 1); // Prevent hitting the endstops LIMIT(p.y, Y_MIN_POS + 1, Y_MAX_POS - 1); LIMIT(q.x, X_MIN_POS + 1, X_MAX_POS - 1); LIMIT(q.y, Y_MIN_POS + 1, Y_MAX_POS - 1); #endif g26.print_line_from_here_to_there(p, q); SERIAL_FLUSH(); // Prevent host M105 buffer overrun. } #endif // !ARC_SUPPORT g26.connect_neighbor_with_line(location.pos, -1, 0); g26.connect_neighbor_with_line(location.pos, 1, 0); g26.connect_neighbor_with_line(location.pos, 0, -1); g26.connect_neighbor_with_line(location.pos, 0, 1); planner.synchronize(); TERN_(EXTENSIBLE_UI, ExtUI::onMeshUpdate(location.pos, ExtUI::G26_POINT_FINISH)); if (TERN0(HAS_LCD_MENU, user_canceled())) goto LEAVE; } SERIAL_FLUSH(); // Prevent host M105 buffer overrun. } while (--g26_repeats && location.valid()); LEAVE: ui.set_status_P(GET_TEXT(MSG_G26_LEAVING), -1); TERN_(EXTENSIBLE_UI, ExtUI::onMeshUpdate(location, ExtUI::G26_FINISH)); g26.retract_filament(destination); destination.z = Z_CLEARANCE_BETWEEN_PROBES; move_to(destination, 0); // Raise the nozzle #if DISABLED(NO_VOLUMETRICS) parser.volumetric_enabled = volumetric_was_enabled; planner.calculate_volumetric_multipliers(); #endif TERN_(HAS_LCD_MENU, ui.release()); // Give back control of the LCD if (!g26.keep_heaters_on) { TERN_(HAS_HEATED_BED, thermalManager.setTargetBed(0)); thermalManager.setTargetHotend(active_extruder, 0); } } #endif // G26_MESH_VALIDATION