/** * Marlin 3D Printer Firmware * Copyright (c) 2020 MarlinFirmware [https://github.com/MarlinFirmware/Marlin] * * Based on Sprinter and grbl. * Copyright (c) 2011 Camiel Gubbels / Erik van der Zalm * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see . * */ #pragma once #include "../inc/MarlinConfigPre.h" #if ENABLED(EMERGENCY_PARSER) #include "../feature/e_parser.h" #endif // Used in multiple places // You can build it but not manipulate it. // There are only few places where it's required to access the underlying member: GCodeQueue, SerialMask and MultiSerial struct serial_index_t { // A signed index, where -1 is a special case meaning no action (neither output or input) int8_t index; // Check if the index is within the range [a ... b] constexpr inline bool within(const int8_t a, const int8_t b) const { return WITHIN(index, a, b); } constexpr inline bool valid() const { return WITHIN(index, 0, 7); } // At most, 8 bits // Construction is either from an index constexpr serial_index_t(const int8_t index) : index(index) {} // Default to "no index" constexpr serial_index_t() : index(-1) {} }; // In order to catch usage errors in code, we make the base to encode number explicit // If given a number (and not this enum), the compiler will reject the overload, falling back to the (double, digit) version // We don't want hidden conversion of the first parameter to double, so it has to be as hard to do for the compiler as creating this enum enum class PrintBase { Dec = 10, Hex = 16, Oct = 8, Bin = 2 }; // A simple feature list enumeration enum class SerialFeature { None = 0x00, MeatPack = 0x01, //!< Enabled when Meatpack is present BinaryFileTransfer = 0x02, //!< Enabled for BinaryFile transfer support (in the future) Virtual = 0x04, //!< Enabled for virtual serial port (like Telnet / Websocket / ...) Hookable = 0x08, //!< Enabled if the serial class supports a setHook method }; ENUM_FLAGS(SerialFeature); // flushTX is not implemented in all HAL, so use SFINAE to call the method where it is. CALL_IF_EXISTS_IMPL(void, flushTX); CALL_IF_EXISTS_IMPL(bool, connected, true); CALL_IF_EXISTS_IMPL(SerialFeature, features, SerialFeature::None); // A simple forward struct to prevent the compiler from selecting print(double, int) as a default overload // for any type other than double/float. For double/float, a conversion exists so the call will be invisible. struct EnsureDouble { double a; operator double() { return a; } // If the compiler breaks on ambiguity here, it's likely because print(X, base) is called with X not a double/float, and // a base that's not a PrintBase value. This code is made to detect the error. You MUST set a base explicitly like this: // SERIAL_PRINT(v, PrintBase::Hex) EnsureDouble(double a) : a(a) {} EnsureDouble(float a) : a(a) {} }; // Using Curiously-Recurring Template Pattern here to avoid virtual table cost when compiling. // Since the real serial class is known at compile time, this results in the compiler writing // a completely efficient code. template struct SerialBase { #if ENABLED(EMERGENCY_PARSER) const bool ep_enabled; EmergencyParser::State emergency_state; inline bool emergency_parser_enabled() { return ep_enabled; } SerialBase(bool ep_capable) : ep_enabled(ep_capable), emergency_state(EmergencyParser::State::EP_RESET) {} #else SerialBase(const bool) {} #endif #define SerialChild static_cast(this) // Static dispatch methods below: // The most important method here is where it all ends to: void write(uint8_t c) { SerialChild->write(c); } // Called when the parser finished processing an instruction, usually build to nothing void msgDone() const { SerialChild->msgDone(); } // Called on initialization void begin(const long baudRate) { SerialChild->begin(baudRate); } // Called on destruction void end() { SerialChild->end(); } /** Check for available data from the port @param index The port index, usually 0 */ int available(serial_index_t index=0) const { return SerialChild->available(index); } /** Read a value from the port @param index The port index, usually 0 */ int read(serial_index_t index=0) { return SerialChild->read(index); } /** Combine the features of this serial instance and return it @param index The port index, usually 0 */ SerialFeature features(serial_index_t index=0) const { return static_cast(this)->features(index); } // Check if the serial port has a feature bool has_feature(serial_index_t index, SerialFeature flag) const { return (features(index) & flag) != SerialFeature::None; } // Check if the serial port is connected (usually bypassed) bool connected() const { return SerialChild->connected(); } // Redirect flush void flush() { SerialChild->flush(); } // Not all implementation have a flushTX, so let's call them only if the child has the implementation void flushTX() { CALL_IF_EXISTS(void, SerialChild, flushTX); } // Glue code here void write(const char *str) { while (*str) write(*str++); } void write(const uint8_t *buffer, size_t size) { while (size--) write(*buffer++); } void print(char *str) { write(str); } void print(const char *str) { write(str); } // No default argument to avoid ambiguity // Define print for every fundamental integer type, to ensure that all redirect properly // to the correct underlying implementation. // Prints are performed with a single size, to avoid needing multiple print functions. // The fixed integer size used for prints will be the larger of long or a pointer. #if __LONG_WIDTH__ >= __INTPTR_WIDTH__ typedef long int_fixed_print_t; typedef unsigned long uint_fixed_print_t; #else typedef intptr_t int_fixed_print_t; typedef uintptr_t uint_fixed_print_t; FORCE_INLINE void print(intptr_t c, PrintBase base) { printNumber_signed(c, base); } FORCE_INLINE void print(uintptr_t c, PrintBase base) { printNumber_unsigned(c, base); } #endif FORCE_INLINE void print(char c, PrintBase base) { printNumber_signed(c, base); } FORCE_INLINE void print(short c, PrintBase base) { printNumber_signed(c, base); } FORCE_INLINE void print(int c, PrintBase base) { printNumber_signed(c, base); } FORCE_INLINE void print(long c, PrintBase base) { printNumber_signed(c, base); } FORCE_INLINE void print(unsigned char c, PrintBase base) { printNumber_unsigned(c, base); } FORCE_INLINE void print(unsigned short c, PrintBase base) { printNumber_unsigned(c, base); } FORCE_INLINE void print(unsigned int c, PrintBase base) { printNumber_unsigned(c, base); } FORCE_INLINE void print(unsigned long c, PrintBase base) { printNumber_unsigned(c, base); } void print(EnsureDouble c, int digits) { printFloat(c, digits); } // Forward the call to the former's method // Default implementation for anything without a specialization // This handles integers since they are the most common template void print(T c) { print(c, PrintBase::Dec); } void print(float c) { print(c, 2); } void print(double c) { print(c, 2); } void println(char *s) { print(s); println(); } void println(const char *s) { print(s); println(); } void println(float c, int digits) { print(c, digits); println(); } void println(double c, int digits) { print(c, digits); println(); } void println() { write('\r'); write('\n'); } // Default implementations for types without a specialization. Handles integers. template void println(T c, PrintBase base) { print(c, base); println(); } template void println(T c) { println(c, PrintBase::Dec); } // Forward the call to the former's method void println(float c) { println(c, 2); } void println(double c) { println(c, 2); } // Print a number with the given base NO_INLINE void printNumber_unsigned(uint_fixed_print_t n, PrintBase base) { if (n) { unsigned char buf[8 * sizeof(long)]; // Enough space for base 2 int8_t i = 0; while (n) { buf[i++] = n % (uint_fixed_print_t)base; n /= (uint_fixed_print_t)base; } while (i--) write((char)(buf[i] + (buf[i] < 10 ? '0' : 'A' - 10))); } else write('0'); } NO_INLINE void printNumber_signed(int_fixed_print_t n, PrintBase base) { if (base == PrintBase::Dec && n < 0) { n = -n; // This works because all platforms Marlin's builds on are using 2-complement encoding for negative number // On such CPU, changing the sign of a number is done by inverting the bits and adding one, so if n = 0x80000000 = -2147483648 then // -n = 0x7FFFFFFF + 1 => 0x80000000 = 2147483648 (if interpreted as unsigned) or -2147483648 if interpreted as signed. // On non 2-complement CPU, there would be no possible representation for 2147483648. write('-'); } printNumber_unsigned((uint_fixed_print_t)n , base); } // Print a decimal number NO_INLINE void printFloat(double number, uint8_t digits) { // Handle negative numbers if (number < 0.0) { write('-'); number = -number; } // Round correctly so that print(1.999, 2) prints as "2.00" double rounding = 0.5; LOOP_L_N(i, digits) rounding *= 0.1; number += rounding; // Extract the integer part of the number and print it unsigned long int_part = (unsigned long)number; double remainder = number - (double)int_part; printNumber_unsigned(int_part, PrintBase::Dec); // Print the decimal point, but only if there are digits beyond if (digits) { write('.'); // Extract digits from the remainder one at a time while (digits--) { remainder *= 10.0; unsigned long toPrint = (unsigned long)remainder; printNumber_unsigned(toPrint, PrintBase::Dec); remainder -= toPrint; } } } }; // All serial instances will be built by chaining the features required // for the function in the form of a template type definition.