/** * Marlin 3D Printer Firmware * Copyright (c) 2020 MarlinFirmware [https://github.com/MarlinFirmware/Marlin] * * Based on Sprinter and grbl. * Copyright (c) 2011 Camiel Gubbels / Erik van der Zalm * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see . * */ #include "../../../inc/MarlinConfigPre.h" #if HAS_TFT_LVGL_UI #include "SPI_TFT.h" #include "tft_lvgl_configuration.h" #include "draw_ready_print.h" #include "pic_manager.h" #include "mks_hardware.h" #include "draw_ui.h" #include "SPIFlashStorage.h" #include #include "../../../MarlinCore.h" #include "../../../inc/MarlinConfig.h" #include HAL_PATH(../../../HAL, tft/xpt2046.h) #include "../../marlinui.h" XPT2046 touch; #if ENABLED(POWER_LOSS_RECOVERY) #include "../../../feature/powerloss.h" #endif #if HAS_SERVOS #include "../../../module/servo.h" #endif #if EITHER(PROBE_TARE, HAS_Z_SERVO_PROBE) #include "../../../module/probe.h" #endif #if ENABLED(TOUCH_SCREEN_CALIBRATION) #include "../../tft_io/touch_calibration.h" #include "draw_touch_calibration.h" #endif #if ENABLED(MKS_WIFI_MODULE) #include "wifi_module.h" #endif #include #ifndef TFT_WIDTH #define TFT_WIDTH 480 #endif #ifndef TFT_HEIGHT #define TFT_HEIGHT 320 #endif #if HAS_SPI_FLASH_FONT void init_gb2312_font(); #endif static lv_disp_buf_t disp_buf; lv_group_t* g; #if ENABLED(SDSUPPORT) void UpdateAssets(); #endif uint16_t DeviceCode = 0x9488; extern uint8_t sel_id; uint8_t bmp_public_buf[14 * 1024]; uint8_t public_buf[513]; extern bool flash_preview_begin, default_preview_flg, gcode_preview_over; void SysTick_Callback() { lv_tick_inc(1); print_time_count(); #if ENABLED(MKS_WIFI_MODULE) if (tips_disp.timer == TIPS_TIMER_START) tips_disp.timer_count++; #endif if (uiCfg.filament_loading_time_flg) { uiCfg.filament_loading_time_cnt++; uiCfg.filament_rate = uint32_t(100.0f * uiCfg.filament_loading_time_cnt / SEC_TO_MS(uiCfg.filament_loading_time) + 0.5f); if (uiCfg.filament_loading_time_cnt >= SEC_TO_MS(uiCfg.filament_loading_time)) { uiCfg.filament_loading_time_cnt = 0; uiCfg.filament_loading_time_flg = false; uiCfg.filament_loading_completed = true; } } if (uiCfg.filament_unloading_time_flg) { uiCfg.filament_unloading_time_cnt++; uiCfg.filament_rate = uint32_t(100.0f * uiCfg.filament_unloading_time_cnt / SEC_TO_MS(uiCfg.filament_unloading_time) + 0.5f); if (uiCfg.filament_unloading_time_cnt >= SEC_TO_MS(uiCfg.filament_unloading_time)) { uiCfg.filament_unloading_time_cnt = 0; uiCfg.filament_unloading_time_flg = false; uiCfg.filament_unloading_completed = true; uiCfg.filament_rate = 100; } } } void tft_lvgl_init() { W25QXX.init(SPI_QUARTER_SPEED); gCfgItems_init(); ui_cfg_init(); disp_language_init(); hal.watchdog_refresh(); // LVGL init takes time // Init TFT first! SPI_TFT.spi_init(SPI_FULL_SPEED); SPI_TFT.LCD_init(); hal.watchdog_refresh(); // LVGL init takes time #if ENABLED(USB_FLASH_DRIVE_SUPPORT) uint16_t usb_flash_loop = 1000; #if ENABLED(MULTI_VOLUME) && !HAS_SD_HOST_DRIVE SET_INPUT_PULLUP(SD_DETECT_PIN); card.changeMedia(IS_SD_INSERTED() ? &card.media_driver_sdcard : &card.media_driver_usbFlash); #endif do { card.media_driver_usbFlash.idle(); hal.watchdog_refresh(); delay(2); } while (!card.media_driver_usbFlash.isInserted() && usb_flash_loop--); card.mount(); #elif HAS_LOGO_IN_FLASH delay(1000); hal.watchdog_refresh(); delay(1000); #endif hal.watchdog_refresh(); // LVGL init takes time #if ENABLED(SDSUPPORT) UpdateAssets(); hal.watchdog_refresh(); // LVGL init takes time TERN_(MKS_TEST, mks_test_get()); #endif touch.Init(); lv_init(); lv_disp_buf_init(&disp_buf, bmp_public_buf, nullptr, LV_HOR_RES_MAX * 14); // Initialize the display buffer lv_disp_drv_t disp_drv; // Descriptor of a display driver lv_disp_drv_init(&disp_drv); // Basic initialization disp_drv.flush_cb = my_disp_flush; // Set your driver function disp_drv.buffer = &disp_buf; // Assign the buffer to the display lv_disp_drv_register(&disp_drv); // Finally register the driver lv_indev_drv_t indev_drv; lv_indev_drv_init(&indev_drv); // Descriptor of a input device driver indev_drv.type = LV_INDEV_TYPE_POINTER; // Touch pad is a pointer-like device indev_drv.read_cb = my_touchpad_read; // Set your driver function lv_indev_drv_register(&indev_drv); // Finally register the driver #if HAS_ROTARY_ENCODER g = lv_group_create(); lv_indev_drv_t enc_drv; lv_indev_drv_init(&enc_drv); enc_drv.type = LV_INDEV_TYPE_ENCODER; enc_drv.read_cb = my_mousewheel_read; lv_indev_t * enc_indev = lv_indev_drv_register(&enc_drv); lv_indev_set_group(enc_indev, g); #endif lv_fs_drv_t spi_flash_drv; lv_fs_drv_init(&spi_flash_drv); spi_flash_drv.letter = 'F'; spi_flash_drv.open_cb = spi_flash_open_cb; spi_flash_drv.close_cb = spi_flash_close_cb; spi_flash_drv.read_cb = spi_flash_read_cb; spi_flash_drv.seek_cb = spi_flash_seek_cb; spi_flash_drv.tell_cb = spi_flash_tell_cb; lv_fs_drv_register(&spi_flash_drv); lv_fs_drv_t sd_drv; lv_fs_drv_init(&sd_drv); sd_drv.letter = 'S'; sd_drv.open_cb = sd_open_cb; sd_drv.close_cb = sd_close_cb; sd_drv.read_cb = sd_read_cb; sd_drv.seek_cb = sd_seek_cb; sd_drv.tell_cb = sd_tell_cb; lv_fs_drv_register(&sd_drv); systick_attach_callback(SysTick_Callback); TERN_(HAS_SPI_FLASH_FONT, init_gb2312_font()); tft_style_init(); filament_pin_setup(); lv_encoder_pin_init(); #if ENABLED(MKS_WIFI_MODULE) mks_esp_wifi_init(); mks_wifi_firmware_update(); #endif TERN_(HAS_SERVOS, servo_init()); TERN_(HAS_Z_SERVO_PROBE, probe.servo_probe_init()); bool ready = true; #if ENABLED(POWER_LOSS_RECOVERY) recovery.load(); if (recovery.valid()) { ready = false; if (gCfgItems.from_flash_pic) flash_preview_begin = true; else default_preview_flg = true; uiCfg.print_state = REPRINTING; #if ENABLED(LONG_FILENAME_HOST_SUPPORT) strncpy(public_buf_m, recovery.info.sd_filename, sizeof(public_buf_m)); card.printLongPath(public_buf_m); strncpy(list_file.long_name[sel_id], card.longFilename, sizeof(list_file.long_name[0])); #else strncpy(list_file.long_name[sel_id], recovery.info.sd_filename, sizeof(list_file.long_name[0])); #endif lv_draw_printing(); } #endif if (ready) lv_draw_ready_print(); #if BOTH(MKS_TEST, SDSUPPORT) if (mks_test_flag == 0x1E) mks_gpio_test(); #endif } static lv_disp_drv_t* disp_drv_p; #if ENABLED(USE_SPI_DMA_TC) bool lcd_dma_trans_lock = false; #endif void dmc_tc_handler(struct __DMA_HandleTypeDef * hdma) { #if ENABLED(USE_SPI_DMA_TC) lv_disp_flush_ready(disp_drv_p); lcd_dma_trans_lock = false; TFT_SPI::Abort(); #endif } void my_disp_flush(lv_disp_drv_t * disp, const lv_area_t * area, lv_color_t * color_p) { uint16_t width = area->x2 - area->x1 + 1, height = area->y2 - area->y1 + 1; disp_drv_p = disp; SPI_TFT.setWindow((uint16_t)area->x1, (uint16_t)area->y1, width, height); #if ENABLED(USE_SPI_DMA_TC) lcd_dma_trans_lock = true; SPI_TFT.tftio.WriteSequenceIT((uint16_t*)color_p, width * height); TFT_SPI::DMAtx.XferCpltCallback = dmc_tc_handler; #else SPI_TFT.tftio.WriteSequence((uint16_t*)color_p, width * height); lv_disp_flush_ready(disp_drv_p); // Indicate you are ready with the flushing #endif W25QXX.init(SPI_QUARTER_SPEED); } #if ENABLED(USE_SPI_DMA_TC) bool get_lcd_dma_lock() { return lcd_dma_trans_lock; } #endif void lv_fill_rect(lv_coord_t x1, lv_coord_t y1, lv_coord_t x2, lv_coord_t y2, lv_color_t bk_color) { uint16_t width, height; width = x2 - x1 + 1; height = y2 - y1 + 1; SPI_TFT.setWindow((uint16_t)x1, (uint16_t)y1, width, height); SPI_TFT.tftio.WriteMultiple(bk_color.full, width * height); W25QXX.init(SPI_QUARTER_SPEED); } #define TICK_CYCLE 1 unsigned int getTickDiff(unsigned int curTick, unsigned int lastTick) { return TICK_CYCLE * (lastTick <= curTick ? (curTick - lastTick) : (0xFFFFFFFF - lastTick + curTick)); } static bool get_point(int16_t *x, int16_t *y) { if (!touch.getRawPoint(x, y)) return false; #if ENABLED(TOUCH_SCREEN_CALIBRATION) const calibrationState state = touch_calibration.get_calibration_state(); if (state >= CALIBRATION_TOP_LEFT && state <= CALIBRATION_BOTTOM_RIGHT) { if (touch_calibration.handleTouch(*x, *y)) lv_update_touch_calibration_screen(); return false; } *x = int16_t((int32_t(*x) * touch_calibration.calibration.x) >> 16) + touch_calibration.calibration.offset_x; *y = int16_t((int32_t(*y) * touch_calibration.calibration.y) >> 16) + touch_calibration.calibration.offset_y; #else *x = int16_t((int32_t(*x) * TOUCH_CALIBRATION_X) >> 16) + TOUCH_OFFSET_X; *y = int16_t((int32_t(*y) * TOUCH_CALIBRATION_Y) >> 16) + TOUCH_OFFSET_Y; #endif return true; } bool my_touchpad_read(lv_indev_drv_t * indev_driver, lv_indev_data_t * data) { static int16_t last_x = 0, last_y = 0; if (get_point(&last_x, &last_y)) { #if TFT_ROTATION == TFT_ROTATE_180 data->point.x = TFT_WIDTH - last_x; data->point.y = TFT_HEIGHT - last_y; #else data->point.x = last_x; data->point.y = last_y; #endif data->state = LV_INDEV_STATE_PR; } else { #if TFT_ROTATION == TFT_ROTATE_180 data->point.x = TFT_WIDTH - last_x; data->point.y = TFT_HEIGHT - last_y; #else data->point.x = last_x; data->point.y = last_y; #endif data->state = LV_INDEV_STATE_REL; } return false; // Return `false` since no data is buffering or left to read } int16_t enc_diff = 0; lv_indev_state_t state = LV_INDEV_STATE_REL; bool my_mousewheel_read(lv_indev_drv_t * indev_drv, lv_indev_data_t * data) { (void) indev_drv; // Unused data->state = state; data->enc_diff = enc_diff; enc_diff = 0; return false; // No more data to read so return false } extern uint8_t currentFlashPage; // spi_flash uint32_t pic_read_base_addr = 0, pic_read_addr_offset = 0; lv_fs_res_t spi_flash_open_cb (lv_fs_drv_t * drv, void * file_p, const char * path, lv_fs_mode_t mode) { static char last_path_name[30]; if (strcasecmp(last_path_name, path) != 0) { pic_read_base_addr = lv_get_pic_addr((uint8_t *)path); strcpy(last_path_name, path); } else { W25QXX.init(SPI_QUARTER_SPEED); currentFlashPage = 0; } pic_read_addr_offset = pic_read_base_addr; return LV_FS_RES_OK; } lv_fs_res_t spi_flash_close_cb (lv_fs_drv_t * drv, void * file_p) { lv_fs_res_t res = LV_FS_RES_OK; /* Add your code here */ pic_read_addr_offset = pic_read_base_addr; return res; } lv_fs_res_t spi_flash_read_cb (lv_fs_drv_t * drv, void * file_p, void * buf, uint32_t btr, uint32_t * br) { lv_pic_test((uint8_t *)buf, pic_read_addr_offset, btr); *br = btr; return LV_FS_RES_OK; } lv_fs_res_t spi_flash_seek_cb(lv_fs_drv_t * drv, void * file_p, uint32_t pos) { #if HAS_SPI_FLASH_COMPRESSION if (pos == 4) { uint8_t bmp_header[4]; SPIFlash.beginRead(pic_read_base_addr); SPIFlash.readData(bmp_header, 4); currentFlashPage = 1; } pic_read_addr_offset = pic_read_base_addr; #else pic_read_addr_offset = pic_read_base_addr + pos; #endif return LV_FS_RES_OK; } lv_fs_res_t spi_flash_tell_cb(lv_fs_drv_t * drv, void * file_p, uint32_t * pos_p) { *pos_p = pic_read_addr_offset - pic_read_base_addr; return LV_FS_RES_OK; } // sd char *cur_namefff; uint32_t sd_read_base_addr = 0, sd_read_addr_offset = 0, small_image_size = 409; lv_fs_res_t sd_open_cb (lv_fs_drv_t * drv, void * file_p, const char * path, lv_fs_mode_t mode) { char name_buf[100]; *name_buf = '/'; strcpy(name_buf + 1, path); char *temp = strstr(name_buf, ".bin"); if (temp) strcpy(temp, ".GCO"); sd_read_base_addr = lv_open_gcode_file((char *)name_buf); sd_read_addr_offset = sd_read_base_addr; if (sd_read_addr_offset == UINT32_MAX) return LV_FS_RES_NOT_EX; // find small image size card.read(public_buf, 512); public_buf[511] = '\0'; const char* eol = strpbrk((const char*)public_buf, "\n\r"); small_image_size = (uintptr_t)eol - (uintptr_t)((uint32_t *)(&public_buf[0])) + 1; return LV_FS_RES_OK; } lv_fs_res_t sd_close_cb (lv_fs_drv_t * drv, void * file_p) { /* Add your code here */ lv_close_gcode_file(); return LV_FS_RES_OK; } lv_fs_res_t sd_read_cb (lv_fs_drv_t * drv, void * file_p, void * buf, uint32_t btr, uint32_t * br) { if (btr == 200) { lv_gcode_file_read((uint8_t *)buf); //pic_read_addr_offset += 208; *br = 200; } else if (btr == 4) { uint8_t header_pic[4] = { 0x04, 0x90, 0x81, 0x0C }; memcpy(buf, header_pic, 4); *br = 4; } return LV_FS_RES_OK; } lv_fs_res_t sd_seek_cb(lv_fs_drv_t * drv, void * file_p, uint32_t pos) { sd_read_addr_offset = sd_read_base_addr + (pos - 4) / 200 * small_image_size; lv_gcode_file_seek(sd_read_addr_offset); return LV_FS_RES_OK; } lv_fs_res_t sd_tell_cb(lv_fs_drv_t * drv, void * file_p, uint32_t * pos_p) { if (sd_read_addr_offset) *pos_p = 0; else *pos_p = (sd_read_addr_offset - sd_read_base_addr) / small_image_size * 200 + 4; return LV_FS_RES_OK; } void lv_encoder_pin_init() { #if BUTTON_EXISTS(EN1) SET_INPUT_PULLUP(BTN_EN1); #endif #if BUTTON_EXISTS(EN2) SET_INPUT_PULLUP(BTN_EN2); #endif #if BUTTON_EXISTS(ENC) SET_INPUT_PULLUP(BTN_ENC); #endif #if BUTTON_EXISTS(BACK) SET_INPUT_PULLUP(BTN_BACK); #endif #if BUTTON_EXISTS(UP) SET_INPUT(BTN_UP); #endif #if BUTTON_EXISTS(DOWN) SET_INPUT(BTN_DOWN); #endif #if BUTTON_EXISTS(LEFT) SET_INPUT(BTN_LEFT); #endif #if BUTTON_EXISTS(RIGHT) SET_INPUT(BTN_RIGHT); #endif } #if 1 // HAS_ENCODER_ACTION void lv_update_encoder() { static uint32_t encoder_time1; uint32_t tmpTime, diffTime = 0; tmpTime = millis(); diffTime = getTickDiff(tmpTime, encoder_time1); if (diffTime > 50) { #if HAS_ENCODER_WHEEL #if ANY_BUTTON(EN1, EN2, ENC, BACK) uint8_t newbutton = 0; if (BUTTON_PRESSED(EN1)) newbutton |= EN_A; if (BUTTON_PRESSED(EN2)) newbutton |= EN_B; if (BUTTON_PRESSED(ENC)) newbutton |= EN_C; if (BUTTON_PRESSED(BACK)) newbutton |= EN_D; #else constexpr uint8_t newbutton = 0; #endif static uint8_t buttons = 0; buttons = newbutton; static uint8_t lastEncoderBits; #define encrot0 0 #define encrot1 1 #define encrot2 2 uint8_t enc = 0; if (buttons & EN_A) enc |= B01; if (buttons & EN_B) enc |= B10; if (enc != lastEncoderBits) { switch (enc) { case encrot1: if (lastEncoderBits == encrot0) { enc_diff--; encoder_time1 = tmpTime; } break; case encrot2: if (lastEncoderBits == encrot0) { enc_diff++; encoder_time1 = tmpTime; } break; } lastEncoderBits = enc; } static uint8_t last_button_state = LV_INDEV_STATE_REL; const uint8_t enc_c = (buttons & EN_C) ? LV_INDEV_STATE_PR : LV_INDEV_STATE_REL; if (enc_c != last_button_state) { state = enc_c ? LV_INDEV_STATE_PR : LV_INDEV_STATE_REL; last_button_state = enc_c; } #endif // HAS_ENCODER_WHEEL } // next_button_update_ms } #endif // HAS_ENCODER_ACTION #if __PLAT_NATIVE_SIM__ #include typedef void (*lv_log_print_g_cb_t)(lv_log_level_t level, const char *, uint32_t, const char *); extern "C" void lv_log_register_print_cb(lv_log_print_g_cb_t print_cb) {} #endif #endif // HAS_TFT_LVGL_UI