/** * Marlin 3D Printer Firmware * Copyright (C) 2016 MarlinFirmware [https://github.com/MarlinFirmware/Marlin] * * Based on Sprinter and grbl. * Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see . * */ #ifdef TARGET_LPC1768 #include "../../inc/MarlinConfig.h" #include "LPC1768_PWM.h" #include // Interrupts void cli(void) { __disable_irq(); } // Disable void sei(void) { __enable_irq(); } // Enable // Time functions void _delay_ms(const int delay_ms) { delay(delay_ms); } uint32_t millis() { return _millis; } void delayMicroseconds(uint32_t us) { static const int nop_factor = (SystemCoreClock / 11000000); static volatile int loops = 0; //previous ops already burned most of 1us, burn the rest loops = nop_factor / 4; //measured at 1us while (loops > 0) --loops; if (us < 2) return; us--; //redirect to delay for large values, then set new delay to remainder if (us > 1000) { delay(us / 1000); us = us % 1000; } // burn cycles, time in interrupts will not be taken into account loops = us * nop_factor; while (loops > 0) --loops; } extern "C" void delay(const int msec) { volatile millis_t end = _millis + msec; SysTick->VAL = SysTick->LOAD; // reset systick counter so next systick is in exactly 1ms // this could extend the time between systicks by upto 1ms while PENDING(_millis, end) __WFE(); } // IO functions // As defined by Arduino INPUT(0x0), OUPUT(0x1), INPUT_PULLUP(0x2) void pinMode(pin_t pin, uint8_t mode) { if (!VALID_PIN(pin)) return; PINSEL_CFG_Type config = { LPC1768_PIN_PORT(pin), LPC1768_PIN_PIN(pin), PINSEL_FUNC_0, PINSEL_PINMODE_TRISTATE, PINSEL_PINMODE_NORMAL }; switch(mode) { case INPUT: LPC_GPIO(LPC1768_PIN_PORT(pin))->FIODIR &= ~LPC_PIN(LPC1768_PIN_PIN(pin)); PINSEL_ConfigPin(&config); break; case OUTPUT: LPC_GPIO(LPC1768_PIN_PORT(pin))->FIODIR |= LPC_PIN(LPC1768_PIN_PIN(pin)); PINSEL_ConfigPin(&config); break; case INPUT_PULLUP: LPC_GPIO(LPC1768_PIN_PORT(pin))->FIODIR &= ~LPC_PIN(LPC1768_PIN_PIN(pin)); config.Pinmode = PINSEL_PINMODE_PULLUP; PINSEL_ConfigPin(&config); break; default: break; } } void digitalWrite(pin_t pin, uint8_t pin_status) { if (!VALID_PIN(pin)) return; if (pin_status) LPC_GPIO(LPC1768_PIN_PORT(pin))->FIOSET = LPC_PIN(LPC1768_PIN_PIN(pin)); else LPC_GPIO(LPC1768_PIN_PORT(pin))->FIOCLR = LPC_PIN(LPC1768_PIN_PIN(pin)); pinMode(pin, OUTPUT); // Set pin mode on every write (Arduino version does this) /** * Must be done AFTER the output state is set. Doing this before will cause a * 2uS glitch if writing a "1". * * When the Port Direction bit is written to a "1" the output is immediately set * to the value of the FIOPIN bit which is "0" because of power up defaults. */ } bool digitalRead(pin_t pin) { if (!VALID_PIN(pin)) { return false; } return LPC_GPIO(LPC1768_PIN_PORT(pin))->FIOPIN & LPC_PIN(LPC1768_PIN_PIN(pin)) ? 1 : 0; } void analogWrite(pin_t pin, int pwm_value) { // 1 - 254: pwm_value, 0: LOW, 255: HIGH #define MR0_MARGIN 200 // if channel value too close to MR0 the system locks up static bool out_of_PWM_slots = false; if (!VALID_PIN(pin)) return; uint value = MAX(MIN(pwm_value, 255), 0); if (value == 0 || value == 255) { // treat as digital pin LPC1768_PWM_detach_pin(pin); // turn off PWM digitalWrite(pin, value); } else { if (LPC1768_PWM_attach_pin(pin, 1, (LPC_PWM1->MR0 - MR0_MARGIN), 0xff)) // locks up if get too close to MR0 value LPC1768_PWM_write(pin, map(value, 1, 254, 1, (LPC_PWM1->MR0 - MR0_MARGIN))); // map 1-254 onto PWM range else { // out of PWM channels if (!out_of_PWM_slots) MYSERIAL.printf(".\nWARNING - OUT OF PWM CHANNELS\n.\n"); //only warn once out_of_PWM_slots = true; digitalWrite(pin, value); // treat as a digital pin if out of channels } } } extern bool HAL_adc_finished(); uint16_t analogRead(pin_t adc_pin) { HAL_adc_start_conversion(adc_pin); while (!HAL_adc_finished()); // Wait for conversion to finish return HAL_adc_get_result(); } // ************************** // Persistent Config Storage // ************************** void eeprom_write_byte(unsigned char *pos, unsigned char value) { } unsigned char eeprom_read_byte(uint8_t * pos) { return '\0'; } void eeprom_read_block (void *__dst, const void *__src, size_t __n) { } void eeprom_update_block (const void *__src, void *__dst, size_t __n) { } char *dtostrf (double __val, signed char __width, unsigned char __prec, char *__s) { char format_string[20]; snprintf(format_string, 20, "%%%d.%df", __width, __prec); sprintf(__s, format_string, __val); return __s; } int32_t random(int32_t max) { return rand() % max; } int32_t random(int32_t min, int32_t max) { return min + rand() % (max - min); } void randomSeed(uint32_t value) { srand(value); } int map(uint16_t x, uint16_t in_min, uint16_t in_max, uint16_t out_min, uint16_t out_max) { return (x - in_min) * (out_max - out_min) / (in_max - in_min) + out_min; } #endif // TARGET_LPC1768