/** * Marlin 3D Printer Firmware * Copyright (c) 2019 MarlinFirmware [https://github.com/MarlinFirmware/Marlin] * * Based on Sprinter and grbl. * Copyright (c) 2011 Camiel Gubbels / Erik van der Zalm * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see . * */ #include "../inc/MarlinConfigPre.h" #if ENABLED(PROBE_TEMP_COMPENSATION) #include "probe_temp_compensation.h" #include ProbeTempComp temp_comp; int16_t ProbeTempComp::z_offsets_probe[ProbeTempComp::cali_info_init[TSI_PROBE].measurements], // = {0} ProbeTempComp::z_offsets_bed[ProbeTempComp::cali_info_init[TSI_BED].measurements]; // = {0} #if ENABLED(USE_TEMP_EXT_COMPENSATION) int16_t ProbeTempComp::z_offsets_ext[ProbeTempComp::cali_info_init[TSI_EXT].measurements]; // = {0} #endif int16_t *ProbeTempComp::sensor_z_offsets[TSI_COUNT] = { ProbeTempComp::z_offsets_probe, ProbeTempComp::z_offsets_bed #if ENABLED(USE_TEMP_EXT_COMPENSATION) , ProbeTempComp::z_offsets_ext #endif }; const temp_calib_t ProbeTempComp::cali_info[TSI_COUNT] = { ProbeTempComp::cali_info_init[TSI_PROBE], ProbeTempComp::cali_info_init[TSI_BED] #if ENABLED(USE_TEMP_EXT_COMPENSATION) , ProbeTempComp::cali_info_init[TSI_EXT] #endif }; uint8_t ProbeTempComp::calib_idx; // = 0 float ProbeTempComp::init_measurement; // = 0.0 void ProbeTempComp::clear_offsets(const TempSensorID tsi) { for (uint8_t i = 0; i < cali_info[tsi].measurements; ++i) sensor_z_offsets[tsi][i] = 0; calib_idx = 0; } bool ProbeTempComp::set_offset(const TempSensorID tsi, const uint8_t idx, const int16_t offset) { if (idx >= cali_info[tsi].measurements) return false; sensor_z_offsets[tsi][idx] = offset; return true; } void ProbeTempComp::print_offsets() { for (uint8_t s = 0; s < TSI_COUNT; s++) { float temp = cali_info[s].start_temp; for (int16_t i = -1; i < cali_info[s].measurements; ++i) { serialprintPGM(s == TSI_BED ? PSTR("Bed") : #if ENABLED(USE_TEMP_EXT_COMPENSATION) s == TSI_EXT ? PSTR("Extruder") : #endif PSTR("Probe") ); SERIAL_ECHOLNPAIR( " temp: ", temp, "C; Offset: ", i < 0 ? 0.0f : sensor_z_offsets[s][i], " um" ); temp += cali_info[s].temp_res; } } } void ProbeTempComp::prepare_new_calibration(const float &init_meas_z) { calib_idx = 0; init_measurement = init_meas_z; } void ProbeTempComp::push_back_new_measurement(const TempSensorID tsi, const float &meas_z) { switch (tsi) { case TSI_PROBE: case TSI_BED: //case TSI_EXT: if (calib_idx >= cali_info[tsi].measurements) return; sensor_z_offsets[tsi][calib_idx++] = static_cast(meas_z * 1000.0f - init_measurement * 1000.0f); default: break; } } bool ProbeTempComp::finish_calibration(const TempSensorID tsi) { if (tsi != TSI_PROBE && tsi != TSI_BED) return false; if (calib_idx < 3) { SERIAL_ECHOLNPGM("!Insufficient measurements (min. 3)."); clear_offsets(tsi); return false; } const uint8_t measurements = cali_info[tsi].measurements; const float start_temp = cali_info[tsi].start_temp, res_temp = cali_info[tsi].temp_res; int16_t * const data = sensor_z_offsets[tsi]; // Extrapolate float k, d; if (calib_idx < measurements) { SERIAL_ECHOLNPAIR("Got ", calib_idx, " measurements. "); if (linear_regression(tsi, k, d)) { SERIAL_ECHOPGM("Applying linear extrapolation"); calib_idx--; for (; calib_idx < measurements; ++calib_idx) { const float temp = start_temp + float(calib_idx) * res_temp; data[calib_idx] = static_cast(k * temp + d); } } else { // Simply use the last measured value for higher temperatures SERIAL_ECHOPGM("Failed to extrapolate"); const int16_t last_val = data[calib_idx]; for (; calib_idx < measurements; ++calib_idx) data[calib_idx] = last_val; } SERIAL_ECHOLNPGM(" for higher temperatures."); } // Sanity check for (calib_idx = 0; calib_idx < measurements; ++calib_idx) { // Restrict the max. offset if (abs(data[calib_idx]) > 2000) { SERIAL_ECHOLNPGM("!Invalid Z-offset detected (0-2)."); clear_offsets(tsi); return false; } // Restrict the max. offset difference between two probings if (calib_idx > 0 && abs(data[calib_idx - 1] - data[calib_idx]) > 800) { SERIAL_ECHOLNPGM("!Invalid Z-offset between two probings detected (0-0.8)."); clear_offsets(TSI_PROBE); return false; } } return true; } void ProbeTempComp::compensate_measurement(const TempSensorID tsi, const float &temp, float &meas_z) { if (WITHIN(temp, cali_info[tsi].start_temp, cali_info[tsi].end_temp)) meas_z -= get_offset_for_temperature(tsi, temp); } float ProbeTempComp::get_offset_for_temperature(const TempSensorID tsi, const float &temp) { const uint8_t measurements = cali_info[tsi].measurements; const float start_temp = cali_info[tsi].start_temp, end_temp = cali_info[tsi].end_temp, res_temp = cali_info[tsi].temp_res; const int16_t * const data = sensor_z_offsets[tsi]; if (temp <= start_temp) return 0.0f; if (temp >= end_temp) return static_cast(data[measurements - 1]) / 1000.0f; // Linear interpolation int16_t val1 = 0, val2 = data[0]; uint8_t idx = 0; float meas_temp = start_temp + res_temp; while (meas_temp < temp) { if (++idx >= measurements) return static_cast(val2) / 1000.0f; meas_temp += res_temp; val1 = val2; val2 = data[idx]; } const float factor = (meas_temp - temp) / static_cast(res_temp); return (static_cast(val2) - static_cast(val2 - val1) * factor) / 1000.0f; } bool ProbeTempComp::linear_regression(const TempSensorID tsi, float &k, float &d) { if (tsi != TSI_PROBE && tsi != TSI_BED) return false; if (!WITHIN(calib_idx, 2, cali_info[tsi].measurements)) return false; const float start_temp = cali_info[tsi].start_temp, res_temp = cali_info[tsi].temp_res; const int16_t * const data = sensor_z_offsets[tsi]; float sum_x = start_temp, sum_x2 = sq(start_temp), sum_xy = 0, sum_y = 0; for (uint8_t i = 0; i < calib_idx; ++i) { const float xi = start_temp + (i + 1) * res_temp, yi = static_cast(data[i]); sum_x += xi; sum_x2 += sq(xi); sum_xy += xi * yi; sum_y += yi; } const float denom = static_cast(calib_idx + 1) * sum_x2 - sq(sum_x); if (fabs(denom) <= 10e-5) { // Singularity - unable to solve k = d = 0.0; return false; } k = (static_cast(calib_idx + 1) * sum_xy - sum_x * sum_y) / denom; d = (sum_y - k * sum_x) / static_cast(calib_idx + 1); return true; } #endif // PROBE_TEMP_COMPENSATION