/** * Marlin 3D Printer Firmware * Copyright (c) 2019 MarlinFirmware [https://github.com/MarlinFirmware/Marlin] * * Based on Sprinter and grbl. * Copyright (c) 2011 Camiel Gubbels / Erik van der Zalm * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see . * */ /** * configuration_store.cpp * * Settings and EEPROM storage * * IMPORTANT: Whenever there are changes made to the variables stored in EEPROM * in the functions below, also increment the version number. This makes sure that * the default values are used whenever there is a change to the data, to prevent * wrong data being written to the variables. * * ALSO: Variables in the Store and Retrieve sections must be in the same order. * If a feature is disabled, some data must still be written that, when read, * either sets a Sane Default, or results in No Change to the existing value. * */ // Change EEPROM version if the structure changes #define EEPROM_VERSION "V74" #define EEPROM_OFFSET 100 // Check the integrity of data offsets. // Can be disabled for production build. //#define DEBUG_EEPROM_READWRITE #include "configuration_store.h" #include "endstops.h" #include "planner.h" #include "stepper.h" #include "temperature.h" #include "../lcd/ultralcd.h" #include "../core/language.h" #include "../libs/vector_3.h" // for matrix_3x3 #include "../gcode/gcode.h" #include "../MarlinCore.h" #if EITHER(EEPROM_SETTINGS, SD_FIRMWARE_UPDATE) #include "../HAL/shared/persistent_store_api.h" #endif #include "probe.h" #if HAS_LEVELING #include "../feature/bedlevel/bedlevel.h" #endif #if ENABLED(EXTENSIBLE_UI) #include "../lcd/extensible_ui/ui_api.h" #endif #if HAS_SERVOS #include "servo.h" #endif #if HAS_SERVOS && HAS_SERVO_ANGLES #define EEPROM_NUM_SERVOS NUM_SERVOS #else #define EEPROM_NUM_SERVOS NUM_SERVO_PLUGS #endif #include "../feature/fwretract.h" #if ENABLED(POWER_LOSS_RECOVERY) #include "../feature/power_loss_recovery.h" #endif #include "../feature/pause.h" #if ENABLED(BACKLASH_COMPENSATION) #include "../feature/backlash.h" #endif #if HAS_FILAMENT_SENSOR #include "../feature/runout.h" #endif #if ENABLED(EXTRA_LIN_ADVANCE_K) extern float saved_extruder_advance_K[EXTRUDERS]; #endif #if EXTRUDERS > 1 #include "tool_change.h" void M217_report(const bool eeprom); #endif #if ENABLED(BLTOUCH) #include "../feature/bltouch.h" #endif #if HAS_TRINAMIC #include "stepper/indirection.h" #include "../feature/tmc_util.h" #endif #if ENABLED(PROBE_TEMP_COMPENSATION) #include "../feature/probe_temp_compensation.h" #endif #pragma pack(push, 1) // No padding between variables typedef struct { uint16_t X, Y, Z, X2, Y2, Z2, Z3, E0, E1, E2, E3, E4, E5; } tmc_stepper_current_t; typedef struct { uint32_t X, Y, Z, X2, Y2, Z2, Z3, E0, E1, E2, E3, E4, E5; } tmc_hybrid_threshold_t; typedef struct { int16_t X, Y, Z, X2; } tmc_sgt_t; typedef struct { bool X, Y, Z, X2, Y2, Z2, Z3, E0, E1, E2, E3, E4, E5; } tmc_stealth_enabled_t; // Limit an index to an array size #define ALIM(I,ARR) _MIN(I, COUNT(ARR) - 1) // Defaults for reset / fill in on load static const uint32_t _DMA[] PROGMEM = DEFAULT_MAX_ACCELERATION; static const float _DASU[] PROGMEM = DEFAULT_AXIS_STEPS_PER_UNIT; static const feedRate_t _DMF[] PROGMEM = DEFAULT_MAX_FEEDRATE; extern const char SP_X_STR[], SP_Y_STR[], SP_Z_STR[], SP_E_STR[]; /** * Current EEPROM Layout * * Keep this data structure up to date so * EEPROM size is known at compile time! */ typedef struct SettingsDataStruct { char version[4]; // Vnn\0 uint16_t crc; // Data Checksum // // DISTINCT_E_FACTORS // uint8_t esteppers; // XYZE_N - XYZ planner_settings_t planner_settings; xyze_float_t planner_max_jerk; // M205 XYZE planner.max_jerk float planner_junction_deviation_mm; // M205 J planner.junction_deviation_mm xyz_pos_t home_offset; // M206 XYZ / M665 TPZ #if HAS_HOTEND_OFFSET xyz_pos_t hotend_offset[HOTENDS - 1]; // M218 XYZ #endif // // FILAMENT_RUNOUT_SENSOR // bool runout_sensor_enabled; // M412 S float runout_distance_mm; // M412 D // // ENABLE_LEVELING_FADE_HEIGHT // float planner_z_fade_height; // M420 Zn planner.z_fade_height // // MESH_BED_LEVELING // float mbl_z_offset; // mbl.z_offset uint8_t mesh_num_x, mesh_num_y; // GRID_MAX_POINTS_X, GRID_MAX_POINTS_Y #if ENABLED(MESH_BED_LEVELING) float mbl_z_values[GRID_MAX_POINTS_X][GRID_MAX_POINTS_Y]; // mbl.z_values #else float mbl_z_values[3][3]; #endif // // HAS_BED_PROBE // xyz_pos_t probe_offset; // // ABL_PLANAR // matrix_3x3 planner_bed_level_matrix; // planner.bed_level_matrix // // AUTO_BED_LEVELING_BILINEAR // uint8_t grid_max_x, grid_max_y; // GRID_MAX_POINTS_X, GRID_MAX_POINTS_Y xy_pos_t bilinear_grid_spacing, bilinear_start; // G29 L F #if ENABLED(AUTO_BED_LEVELING_BILINEAR) bed_mesh_t z_values; // G29 #else float z_values[3][3]; #endif // // AUTO_BED_LEVELING_UBL // bool planner_leveling_active; // M420 S planner.leveling_active int8_t ubl_storage_slot; // ubl.storage_slot // // SERVO_ANGLES // uint16_t servo_angles[EEPROM_NUM_SERVOS][2]; // M281 P L U // // Temperature first layer compensation values // #if ENABLED(PROBE_TEMP_COMPENSATION) int16_t z_offsets_probe[COUNT(temp_comp.z_offsets_probe)], // M871 P I V z_offsets_bed[COUNT(temp_comp.z_offsets_bed)] // M871 B I V #if ENABLED(USE_TEMP_EXT_COMPENSATION) , z_offsets_ext[COUNT(temp_comp.z_offsets_ext)] // M871 E I V #endif ; #endif // // BLTOUCH // bool bltouch_last_written_mode; // // DELTA / [XYZ]_DUAL_ENDSTOPS // #if ENABLED(DELTA) float delta_height; // M666 H abc_float_t delta_endstop_adj; // M666 XYZ float delta_radius, // M665 R delta_diagonal_rod, // M665 L delta_segments_per_second; // M665 S abc_float_t delta_tower_angle_trim; // M665 XYZ #elif EITHER(X_DUAL_ENDSTOPS, Y_DUAL_ENDSTOPS) || Z_MULTI_ENDSTOPS float x2_endstop_adj, // M666 X y2_endstop_adj, // M666 Y z2_endstop_adj, // M666 Z (S2) z3_endstop_adj; // M666 Z (S3) #endif // // ULTIPANEL // int16_t ui_preheat_hotend_temp[2], // M145 S0 H ui_preheat_bed_temp[2]; // M145 S0 B uint8_t ui_preheat_fan_speed[2]; // M145 S0 F // // PIDTEMP // PIDCF_t hotendPID[HOTENDS]; // M301 En PIDCF / M303 En U int16_t lpq_len; // M301 L // // PIDTEMPBED // PID_t bedPID; // M304 PID / M303 E-1 U // // User-defined Thermistors // #if HAS_USER_THERMISTORS user_thermistor_t user_thermistor[USER_THERMISTORS]; // M305 P0 R4700 T100000 B3950 #endif // // HAS_LCD_CONTRAST // int16_t lcd_contrast; // M250 C // // POWER_LOSS_RECOVERY // bool recovery_enabled; // M413 S // // FWRETRACT // fwretract_settings_t fwretract_settings; // M207 S F Z W, M208 S F W R bool autoretract_enabled; // M209 S // // !NO_VOLUMETRIC // bool parser_volumetric_enabled; // M200 D parser.volumetric_enabled float planner_filament_size[EXTRUDERS]; // M200 T D planner.filament_size[] // // HAS_TRINAMIC // tmc_stepper_current_t tmc_stepper_current; // M906 X Y Z X2 Y2 Z2 Z3 E0 E1 E2 E3 E4 E5 tmc_hybrid_threshold_t tmc_hybrid_threshold; // M913 X Y Z X2 Y2 Z2 Z3 E0 E1 E2 E3 E4 E5 tmc_sgt_t tmc_sgt; // M914 X Y Z X2 tmc_stealth_enabled_t tmc_stealth_enabled; // M569 X Y Z X2 Y2 Z2 Z3 E0 E1 E2 E3 E4 E5 // // LIN_ADVANCE // float planner_extruder_advance_K[EXTRUDERS]; // M900 K planner.extruder_advance_K // // HAS_MOTOR_CURRENT_PWM // uint32_t motor_current_setting[3]; // M907 X Z E // // CNC_COORDINATE_SYSTEMS // xyz_pos_t coordinate_system[MAX_COORDINATE_SYSTEMS]; // G54-G59.3 // // SKEW_CORRECTION // skew_factor_t planner_skew_factor; // M852 I J K planner.skew_factor // // ADVANCED_PAUSE_FEATURE // #if EXTRUDERS fil_change_settings_t fc_settings[EXTRUDERS]; // M603 T U L #endif // // Tool-change settings // #if EXTRUDERS > 1 toolchange_settings_t toolchange_settings; // M217 S P R #endif // // BACKLASH_COMPENSATION // xyz_float_t backlash_distance_mm; // M425 X Y Z uint8_t backlash_correction; // M425 F float backlash_smoothing_mm; // M425 S // // EXTENSIBLE_UI // #if ENABLED(EXTENSIBLE_UI) // This is a significant hardware change; don't reserve space when not present uint8_t extui_data[ExtUI::eeprom_data_size]; #endif } SettingsData; //static_assert(sizeof(SettingsData) <= E2END + 1, "EEPROM too small to contain SettingsData!"); MarlinSettings settings; uint16_t MarlinSettings::datasize() { return sizeof(SettingsData); } /** * Post-process after Retrieve or Reset */ #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT) float new_z_fade_height; #endif void MarlinSettings::postprocess() { xyze_pos_t oldpos = current_position; // steps per s2 needs to be updated to agree with units per s2 planner.reset_acceleration_rates(); // Make sure delta kinematics are updated before refreshing the // planner position so the stepper counts will be set correctly. #if ENABLED(DELTA) recalc_delta_settings(); #endif #if ENABLED(PIDTEMP) thermalManager.updatePID(); #endif #if DISABLED(NO_VOLUMETRICS) planner.calculate_volumetric_multipliers(); #elif EXTRUDERS for (uint8_t i = COUNT(planner.e_factor); i--;) planner.refresh_e_factor(i); #endif // Software endstops depend on home_offset LOOP_XYZ(i) { update_workspace_offset((AxisEnum)i); update_software_endstops((AxisEnum)i); } #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT) set_z_fade_height(new_z_fade_height, false); // false = no report #endif #if ENABLED(AUTO_BED_LEVELING_BILINEAR) refresh_bed_level(); #endif #if HAS_MOTOR_CURRENT_PWM stepper.refresh_motor_power(); #endif #if ENABLED(FWRETRACT) fwretract.refresh_autoretract(); #endif #if HAS_LINEAR_E_JERK planner.recalculate_max_e_jerk(); #endif // Refresh steps_to_mm with the reciprocal of axis_steps_per_mm // and init stepper.count[], planner.position[] with current_position planner.refresh_positioning(); // Various factors can change the current position if (oldpos != current_position) report_current_position(); } #if BOTH(PRINTCOUNTER, EEPROM_SETTINGS) #include "printcounter.h" static_assert( !WITHIN(STATS_EEPROM_ADDRESS, EEPROM_OFFSET, EEPROM_OFFSET + sizeof(SettingsData)) && !WITHIN(STATS_EEPROM_ADDRESS + sizeof(printStatistics), EEPROM_OFFSET, EEPROM_OFFSET + sizeof(SettingsData)), "STATS_EEPROM_ADDRESS collides with EEPROM settings storage." ); #endif #if ENABLED(SD_FIRMWARE_UPDATE) #if ENABLED(EEPROM_SETTINGS) static_assert( !WITHIN(SD_FIRMWARE_UPDATE_EEPROM_ADDR, EEPROM_OFFSET, EEPROM_OFFSET + sizeof(SettingsData)), "SD_FIRMWARE_UPDATE_EEPROM_ADDR collides with EEPROM settings storage." ); #endif bool MarlinSettings::sd_update_status() { uint8_t val; persistentStore.read_data(SD_FIRMWARE_UPDATE_EEPROM_ADDR, &val); return (val == SD_FIRMWARE_UPDATE_ACTIVE_VALUE); } bool MarlinSettings::set_sd_update_status(const bool enable) { if (enable != sd_update_status()) persistentStore.write_data( SD_FIRMWARE_UPDATE_EEPROM_ADDR, enable ? SD_FIRMWARE_UPDATE_ACTIVE_VALUE : SD_FIRMWARE_UPDATE_INACTIVE_VALUE ); return true; } #endif // SD_FIRMWARE_UPDATE #ifdef ARCHIM2_SPI_FLASH_EEPROM_BACKUP_SIZE static_assert( EEPROM_OFFSET + sizeof(SettingsData) < ARCHIM2_SPI_FLASH_EEPROM_BACKUP_SIZE, "ARCHIM2_SPI_FLASH_EEPROM_BACKUP_SIZE is insufficient to capture all EEPROM data." ); #endif #define DEBUG_OUT ENABLED(EEPROM_CHITCHAT) #include "../core/debug_out.h" #if ENABLED(EEPROM_SETTINGS) #define EEPROM_START() if (!persistentStore.access_start()) { SERIAL_ECHO_MSG("No EEPROM."); return false; } \ int eeprom_index = EEPROM_OFFSET #define EEPROM_FINISH() persistentStore.access_finish() #define EEPROM_SKIP(VAR) (eeprom_index += sizeof(VAR)) #define EEPROM_WRITE(VAR) do{ persistentStore.write_data(eeprom_index, (uint8_t*)&VAR, sizeof(VAR), &working_crc); }while(0) #define EEPROM_READ(VAR) do{ persistentStore.read_data(eeprom_index, (uint8_t*)&VAR, sizeof(VAR), &working_crc, !validating); }while(0) #define EEPROM_READ_ALWAYS(VAR) do{ persistentStore.read_data(eeprom_index, (uint8_t*)&VAR, sizeof(VAR), &working_crc); }while(0) #define EEPROM_ASSERT(TST,ERR) do{ if (!(TST)) { SERIAL_ERROR_MSG(ERR); eeprom_error = true; } }while(0) #if ENABLED(DEBUG_EEPROM_READWRITE) #define _FIELD_TEST(FIELD) \ EEPROM_ASSERT( \ eeprom_error || eeprom_index == offsetof(SettingsData, FIELD) + EEPROM_OFFSET, \ "Field " STRINGIFY(FIELD) " mismatch." \ ) #else #define _FIELD_TEST(FIELD) NOOP #endif const char version[4] = EEPROM_VERSION; bool MarlinSettings::eeprom_error, MarlinSettings::validating; bool MarlinSettings::size_error(const uint16_t size) { if (size != datasize()) { DEBUG_ERROR_MSG("EEPROM datasize error."); return true; } return false; } /** * M500 - Store Configuration */ bool MarlinSettings::save() { float dummy = 0; char ver[4] = "ERR"; uint16_t working_crc = 0; EEPROM_START(); eeprom_error = false; #if ENABLED(FLASH_EEPROM_EMULATION) EEPROM_SKIP(ver); // Flash doesn't allow rewriting without erase #else EEPROM_WRITE(ver); // invalidate data first #endif EEPROM_SKIP(working_crc); // Skip the checksum slot working_crc = 0; // clear before first "real data" _FIELD_TEST(esteppers); const uint8_t esteppers = COUNT(planner.settings.axis_steps_per_mm) - XYZ; EEPROM_WRITE(esteppers); // // Planner Motion // { EEPROM_WRITE(planner.settings); #if HAS_CLASSIC_JERK EEPROM_WRITE(planner.max_jerk); #if HAS_LINEAR_E_JERK dummy = float(DEFAULT_EJERK); EEPROM_WRITE(dummy); #endif #else const xyze_pos_t planner_max_jerk = { 10, 10, 0.4, float(DEFAULT_EJERK) }; EEPROM_WRITE(planner_max_jerk); #endif #if DISABLED(CLASSIC_JERK) EEPROM_WRITE(planner.junction_deviation_mm); #else dummy = 0.02f; EEPROM_WRITE(dummy); #endif } // // Home Offset // { _FIELD_TEST(home_offset); #if HAS_SCARA_OFFSET EEPROM_WRITE(scara_home_offset); #else #if !HAS_HOME_OFFSET const xyz_pos_t home_offset{0}; #endif EEPROM_WRITE(home_offset); #endif #if HAS_HOTEND_OFFSET // Skip hotend 0 which must be 0 for (uint8_t e = 1; e < HOTENDS; e++) EEPROM_WRITE(hotend_offset[e]); #endif } // // Filament Runout Sensor // { #if HAS_FILAMENT_SENSOR const bool &runout_sensor_enabled = runout.enabled; #else const bool runout_sensor_enabled = true; #endif #if HAS_FILAMENT_SENSOR && defined(FILAMENT_RUNOUT_DISTANCE_MM) const float &runout_distance_mm = runout.runout_distance(); #else const float runout_distance_mm = 0; #endif _FIELD_TEST(runout_sensor_enabled); EEPROM_WRITE(runout_sensor_enabled); EEPROM_WRITE(runout_distance_mm); } // // Global Leveling // { const float zfh = ( #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT) planner.z_fade_height #else 10.0 #endif ); EEPROM_WRITE(zfh); } // // Mesh Bed Leveling // { #if ENABLED(MESH_BED_LEVELING) // Compile time test that sizeof(mbl.z_values) is as expected static_assert( sizeof(mbl.z_values) == (GRID_MAX_POINTS) * sizeof(mbl.z_values[0][0]), "MBL Z array is the wrong size." ); const uint8_t mesh_num_x = GRID_MAX_POINTS_X, mesh_num_y = GRID_MAX_POINTS_Y; EEPROM_WRITE(mbl.z_offset); EEPROM_WRITE(mesh_num_x); EEPROM_WRITE(mesh_num_y); EEPROM_WRITE(mbl.z_values); #else // For disabled MBL write a default mesh dummy = 0; const uint8_t mesh_num_x = 3, mesh_num_y = 3; EEPROM_WRITE(dummy); // z_offset EEPROM_WRITE(mesh_num_x); EEPROM_WRITE(mesh_num_y); for (uint8_t q = mesh_num_x * mesh_num_y; q--;) EEPROM_WRITE(dummy); #endif } // // Probe XYZ Offsets // { _FIELD_TEST(probe_offset); EEPROM_WRITE(probe_offset); } // // Planar Bed Leveling matrix // { #if ABL_PLANAR EEPROM_WRITE(planner.bed_level_matrix); #else dummy = 0; for (uint8_t q = 9; q--;) EEPROM_WRITE(dummy); #endif } // // Bilinear Auto Bed Leveling // { #if ENABLED(AUTO_BED_LEVELING_BILINEAR) // Compile time test that sizeof(z_values) is as expected static_assert( sizeof(z_values) == (GRID_MAX_POINTS) * sizeof(z_values[0][0]), "Bilinear Z array is the wrong size." ); const uint8_t grid_max_x = GRID_MAX_POINTS_X, grid_max_y = GRID_MAX_POINTS_Y; EEPROM_WRITE(grid_max_x); // 1 byte EEPROM_WRITE(grid_max_y); // 1 byte EEPROM_WRITE(bilinear_grid_spacing); // 2 ints EEPROM_WRITE(bilinear_start); // 2 ints EEPROM_WRITE(z_values); // 9-256 floats #else // For disabled Bilinear Grid write an empty 3x3 grid const uint8_t grid_max_x = 3, grid_max_y = 3; const xy_pos_t bilinear_start{0}, bilinear_grid_spacing{0}; dummy = 0; EEPROM_WRITE(grid_max_x); EEPROM_WRITE(grid_max_y); EEPROM_WRITE(bilinear_grid_spacing); EEPROM_WRITE(bilinear_start); for (uint16_t q = grid_max_x * grid_max_y; q--;) EEPROM_WRITE(dummy); #endif } // // Unified Bed Leveling // { _FIELD_TEST(planner_leveling_active); #if ENABLED(AUTO_BED_LEVELING_UBL) EEPROM_WRITE(planner.leveling_active); EEPROM_WRITE(ubl.storage_slot); #else const bool ubl_active = false; const int8_t storage_slot = -1; EEPROM_WRITE(ubl_active); EEPROM_WRITE(storage_slot); #endif // AUTO_BED_LEVELING_UBL } // // Servo Angles // { _FIELD_TEST(servo_angles); #if !HAS_SERVO_ANGLES uint16_t servo_angles[EEPROM_NUM_SERVOS][2] = { { 0, 0 } }; #endif EEPROM_WRITE(servo_angles); } // // Thermal first layer compensation values // #if ENABLED(PROBE_TEMP_COMPENSATION) EEPROM_WRITE(temp_comp.z_offsets_probe); EEPROM_WRITE(temp_comp.z_offsets_bed); #if ENABLED(USE_TEMP_EXT_COMPENSATION) EEPROM_WRITE(temp_comp.z_offsets_ext); #endif #else // No placeholder data for this feature #endif // // BLTOUCH // { _FIELD_TEST(bltouch_last_written_mode); #if ENABLED(BLTOUCH) const bool &bltouch_last_written_mode = bltouch.last_written_mode; #else constexpr bool bltouch_last_written_mode = false; #endif EEPROM_WRITE(bltouch_last_written_mode); } // // DELTA Geometry or Dual Endstops offsets // { #if ENABLED(DELTA) _FIELD_TEST(delta_height); EEPROM_WRITE(delta_height); // 1 float EEPROM_WRITE(delta_endstop_adj); // 3 floats EEPROM_WRITE(delta_radius); // 1 float EEPROM_WRITE(delta_diagonal_rod); // 1 float EEPROM_WRITE(delta_segments_per_second); // 1 float EEPROM_WRITE(delta_tower_angle_trim); // 3 floats #elif EITHER(X_DUAL_ENDSTOPS, Y_DUAL_ENDSTOPS) || Z_MULTI_ENDSTOPS _FIELD_TEST(x2_endstop_adj); // Write dual endstops in X, Y, Z order. Unused = 0.0 dummy = 0; #if ENABLED(X_DUAL_ENDSTOPS) EEPROM_WRITE(endstops.x2_endstop_adj); // 1 float #else EEPROM_WRITE(dummy); #endif #if ENABLED(Y_DUAL_ENDSTOPS) EEPROM_WRITE(endstops.y2_endstop_adj); // 1 float #else EEPROM_WRITE(dummy); #endif #if Z_MULTI_ENDSTOPS EEPROM_WRITE(endstops.z2_endstop_adj); // 1 float #else EEPROM_WRITE(dummy); #endif #if ENABLED(Z_TRIPLE_ENDSTOPS) EEPROM_WRITE(endstops.z3_endstop_adj); // 1 float #else EEPROM_WRITE(dummy); #endif #endif } // // LCD Preheat settings // { _FIELD_TEST(ui_preheat_hotend_temp); #if HOTENDS && HAS_LCD_MENU const int16_t (&ui_preheat_hotend_temp)[2] = ui.preheat_hotend_temp, (&ui_preheat_bed_temp)[2] = ui.preheat_bed_temp; const uint8_t (&ui_preheat_fan_speed)[2] = ui.preheat_fan_speed; #else constexpr int16_t ui_preheat_hotend_temp[2] = { PREHEAT_1_TEMP_HOTEND, PREHEAT_2_TEMP_HOTEND }, ui_preheat_bed_temp[2] = { PREHEAT_1_TEMP_BED, PREHEAT_2_TEMP_BED }; constexpr uint8_t ui_preheat_fan_speed[2] = { PREHEAT_1_FAN_SPEED, PREHEAT_2_FAN_SPEED }; #endif EEPROM_WRITE(ui_preheat_hotend_temp); EEPROM_WRITE(ui_preheat_bed_temp); EEPROM_WRITE(ui_preheat_fan_speed); } // // PIDTEMP // { _FIELD_TEST(hotendPID); HOTEND_LOOP() { PIDCF_t pidcf = { #if DISABLED(PIDTEMP) DUMMY_PID_VALUE, DUMMY_PID_VALUE, DUMMY_PID_VALUE, DUMMY_PID_VALUE, DUMMY_PID_VALUE #else PID_PARAM(Kp, e), unscalePID_i(PID_PARAM(Ki, e)), unscalePID_d(PID_PARAM(Kd, e)), PID_PARAM(Kc, e), PID_PARAM(Kf, e) #endif }; EEPROM_WRITE(pidcf); } _FIELD_TEST(lpq_len); #if ENABLED(PID_EXTRUSION_SCALING) EEPROM_WRITE(thermalManager.lpq_len); #else const int16_t lpq_len = 20; EEPROM_WRITE(lpq_len); #endif } // // PIDTEMPBED // { _FIELD_TEST(bedPID); const PID_t bed_pid = { #if DISABLED(PIDTEMPBED) DUMMY_PID_VALUE, DUMMY_PID_VALUE, DUMMY_PID_VALUE #else // Store the unscaled PID values thermalManager.temp_bed.pid.Kp, unscalePID_i(thermalManager.temp_bed.pid.Ki), unscalePID_d(thermalManager.temp_bed.pid.Kd) #endif }; EEPROM_WRITE(bed_pid); } // // User-defined Thermistors // #if HAS_USER_THERMISTORS { _FIELD_TEST(user_thermistor); EEPROM_WRITE(thermalManager.user_thermistor); } #endif // // LCD Contrast // { _FIELD_TEST(lcd_contrast); const int16_t lcd_contrast = #if HAS_LCD_CONTRAST ui.contrast #elif defined(DEFAULT_LCD_CONTRAST) DEFAULT_LCD_CONTRAST #else 127 #endif ; EEPROM_WRITE(lcd_contrast); } // // Power-Loss Recovery // { _FIELD_TEST(recovery_enabled); const bool recovery_enabled = #if ENABLED(POWER_LOSS_RECOVERY) recovery.enabled #else true #endif ; EEPROM_WRITE(recovery_enabled); } // // Firmware Retraction // { _FIELD_TEST(fwretract_settings); #if ENABLED(FWRETRACT) EEPROM_WRITE(fwretract.settings); #else const fwretract_settings_t autoretract_defaults = { 3, 45, 0, 0, 0, 13, 0, 8 }; EEPROM_WRITE(autoretract_defaults); #endif #if BOTH(FWRETRACT, FWRETRACT_AUTORETRACT) EEPROM_WRITE(fwretract.autoretract_enabled); #else const bool autoretract_enabled = false; EEPROM_WRITE(autoretract_enabled); #endif } // // Volumetric & Filament Size // { _FIELD_TEST(parser_volumetric_enabled); #if DISABLED(NO_VOLUMETRICS) EEPROM_WRITE(parser.volumetric_enabled); EEPROM_WRITE(planner.filament_size); #else const bool volumetric_enabled = false; dummy = DEFAULT_NOMINAL_FILAMENT_DIA; EEPROM_WRITE(volumetric_enabled); for (uint8_t q = EXTRUDERS; q--;) EEPROM_WRITE(dummy); #endif } // // TMC Configuration // { _FIELD_TEST(tmc_stepper_current); tmc_stepper_current_t tmc_stepper_current = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }; #if HAS_TRINAMIC #if AXIS_IS_TMC(X) tmc_stepper_current.X = stepperX.getMilliamps(); #endif #if AXIS_IS_TMC(Y) tmc_stepper_current.Y = stepperY.getMilliamps(); #endif #if AXIS_IS_TMC(Z) tmc_stepper_current.Z = stepperZ.getMilliamps(); #endif #if AXIS_IS_TMC(X2) tmc_stepper_current.X2 = stepperX2.getMilliamps(); #endif #if AXIS_IS_TMC(Y2) tmc_stepper_current.Y2 = stepperY2.getMilliamps(); #endif #if AXIS_IS_TMC(Z2) tmc_stepper_current.Z2 = stepperZ2.getMilliamps(); #endif #if AXIS_IS_TMC(Z3) tmc_stepper_current.Z3 = stepperZ3.getMilliamps(); #endif #if MAX_EXTRUDERS #if AXIS_IS_TMC(E0) tmc_stepper_current.E0 = stepperE0.getMilliamps(); #endif #if MAX_EXTRUDERS > 1 #if AXIS_IS_TMC(E1) tmc_stepper_current.E1 = stepperE1.getMilliamps(); #endif #if MAX_EXTRUDERS > 2 #if AXIS_IS_TMC(E2) tmc_stepper_current.E2 = stepperE2.getMilliamps(); #endif #if MAX_EXTRUDERS > 3 #if AXIS_IS_TMC(E3) tmc_stepper_current.E3 = stepperE3.getMilliamps(); #endif #if MAX_EXTRUDERS > 4 #if AXIS_IS_TMC(E4) tmc_stepper_current.E4 = stepperE4.getMilliamps(); #endif #if MAX_EXTRUDERS > 5 #if AXIS_IS_TMC(E5) tmc_stepper_current.E5 = stepperE5.getMilliamps(); #endif #endif // MAX_EXTRUDERS > 5 #endif // MAX_EXTRUDERS > 4 #endif // MAX_EXTRUDERS > 3 #endif // MAX_EXTRUDERS > 2 #endif // MAX_EXTRUDERS > 1 #endif // MAX_EXTRUDERS #endif EEPROM_WRITE(tmc_stepper_current); } // // TMC Hybrid Threshold, and placeholder values // { _FIELD_TEST(tmc_hybrid_threshold); #if ENABLED(HYBRID_THRESHOLD) tmc_hybrid_threshold_t tmc_hybrid_threshold = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }; #if AXIS_HAS_STEALTHCHOP(X) tmc_hybrid_threshold.X = stepperX.get_pwm_thrs(); #endif #if AXIS_HAS_STEALTHCHOP(Y) tmc_hybrid_threshold.Y = stepperY.get_pwm_thrs(); #endif #if AXIS_HAS_STEALTHCHOP(Z) tmc_hybrid_threshold.Z = stepperZ.get_pwm_thrs(); #endif #if AXIS_HAS_STEALTHCHOP(X2) tmc_hybrid_threshold.X2 = stepperX2.get_pwm_thrs(); #endif #if AXIS_HAS_STEALTHCHOP(Y2) tmc_hybrid_threshold.Y2 = stepperY2.get_pwm_thrs(); #endif #if AXIS_HAS_STEALTHCHOP(Z2) tmc_hybrid_threshold.Z2 = stepperZ2.get_pwm_thrs(); #endif #if AXIS_HAS_STEALTHCHOP(Z3) tmc_hybrid_threshold.Z3 = stepperZ3.get_pwm_thrs(); #endif #if MAX_EXTRUDERS #if AXIS_HAS_STEALTHCHOP(E0) tmc_hybrid_threshold.E0 = stepperE0.get_pwm_thrs(); #endif #if MAX_EXTRUDERS > 1 #if AXIS_HAS_STEALTHCHOP(E1) tmc_hybrid_threshold.E1 = stepperE1.get_pwm_thrs(); #endif #if MAX_EXTRUDERS > 2 #if AXIS_HAS_STEALTHCHOP(E2) tmc_hybrid_threshold.E2 = stepperE2.get_pwm_thrs(); #endif #if MAX_EXTRUDERS > 3 #if AXIS_HAS_STEALTHCHOP(E3) tmc_hybrid_threshold.E3 = stepperE3.get_pwm_thrs(); #endif #if MAX_EXTRUDERS > 4 #if AXIS_HAS_STEALTHCHOP(E4) tmc_hybrid_threshold.E4 = stepperE4.get_pwm_thrs(); #endif #if MAX_EXTRUDERS > 5 #if AXIS_HAS_STEALTHCHOP(E5) tmc_hybrid_threshold.E5 = stepperE5.get_pwm_thrs(); #endif #endif // MAX_EXTRUDERS > 5 #endif // MAX_EXTRUDERS > 4 #endif // MAX_EXTRUDERS > 3 #endif // MAX_EXTRUDERS > 2 #endif // MAX_EXTRUDERS > 1 #endif // MAX_EXTRUDERS #else const tmc_hybrid_threshold_t tmc_hybrid_threshold = { .X = 100, .Y = 100, .Z = 3, .X2 = 100, .Y2 = 100, .Z2 = 3, .Z3 = 3, .E0 = 30, .E1 = 30, .E2 = 30, .E3 = 30, .E4 = 30, .E5 = 30 }; #endif EEPROM_WRITE(tmc_hybrid_threshold); } // // TMC StallGuard threshold // { tmc_sgt_t tmc_sgt{0}; #if USE_SENSORLESS #if X_SENSORLESS tmc_sgt.X = stepperX.homing_threshold(); #endif #if X2_SENSORLESS tmc_sgt.X2 = stepperX2.homing_threshold(); #endif #if Y_SENSORLESS tmc_sgt.Y = stepperY.homing_threshold(); #endif #if Z_SENSORLESS tmc_sgt.Z = stepperZ.homing_threshold(); #endif #endif EEPROM_WRITE(tmc_sgt); } // // TMC stepping mode // { _FIELD_TEST(tmc_stealth_enabled); tmc_stealth_enabled_t tmc_stealth_enabled = { false, false, false, false, false, false, false, false, false, false, false, false, false }; #if HAS_STEALTHCHOP #if AXIS_HAS_STEALTHCHOP(X) tmc_stealth_enabled.X = stepperX.get_stealthChop_status(); #endif #if AXIS_HAS_STEALTHCHOP(Y) tmc_stealth_enabled.Y = stepperY.get_stealthChop_status(); #endif #if AXIS_HAS_STEALTHCHOP(Z) tmc_stealth_enabled.Z = stepperZ.get_stealthChop_status(); #endif #if AXIS_HAS_STEALTHCHOP(X2) tmc_stealth_enabled.X2 = stepperX2.get_stealthChop_status(); #endif #if AXIS_HAS_STEALTHCHOP(Y2) tmc_stealth_enabled.Y2 = stepperY2.get_stealthChop_status(); #endif #if AXIS_HAS_STEALTHCHOP(Z2) tmc_stealth_enabled.Z2 = stepperZ2.get_stealthChop_status(); #endif #if AXIS_HAS_STEALTHCHOP(Z3) tmc_stealth_enabled.Z3 = stepperZ3.get_stealthChop_status(); #endif #if MAX_EXTRUDERS #if AXIS_HAS_STEALTHCHOP(E0) tmc_stealth_enabled.E0 = stepperE0.get_stealthChop_status(); #endif #if MAX_EXTRUDERS > 1 #if AXIS_HAS_STEALTHCHOP(E1) tmc_stealth_enabled.E1 = stepperE1.get_stealthChop_status(); #endif #if MAX_EXTRUDERS > 2 #if AXIS_HAS_STEALTHCHOP(E2) tmc_stealth_enabled.E2 = stepperE2.get_stealthChop_status(); #endif #if MAX_EXTRUDERS > 3 #if AXIS_HAS_STEALTHCHOP(E3) tmc_stealth_enabled.E3 = stepperE3.get_stealthChop_status(); #endif #if MAX_EXTRUDERS > 4 #if AXIS_HAS_STEALTHCHOP(E4) tmc_stealth_enabled.E4 = stepperE4.get_stealthChop_status(); #endif #if MAX_EXTRUDERS > 5 #if AXIS_HAS_STEALTHCHOP(E5) tmc_stealth_enabled.E5 = stepperE5.get_stealthChop_status(); #endif #endif // MAX_EXTRUDERS > 5 #endif // MAX_EXTRUDERS > 4 #endif // MAX_EXTRUDERS > 3 #endif // MAX_EXTRUDERS > 2 #endif // MAX_EXTRUDERS > 1 #endif // MAX_EXTRUDERS #endif EEPROM_WRITE(tmc_stealth_enabled); } // // Linear Advance // { _FIELD_TEST(planner_extruder_advance_K); #if ENABLED(LIN_ADVANCE) EEPROM_WRITE(planner.extruder_advance_K); #else dummy = 0; for (uint8_t q = _MAX(EXTRUDERS, 1); q--;) EEPROM_WRITE(dummy); #endif } // // Motor Current PWM // { _FIELD_TEST(motor_current_setting); #if HAS_MOTOR_CURRENT_PWM EEPROM_WRITE(stepper.motor_current_setting); #else const xyz_ulong_t no_current{0}; EEPROM_WRITE(no_current); #endif } // // CNC Coordinate Systems // _FIELD_TEST(coordinate_system); #if ENABLED(CNC_COORDINATE_SYSTEMS) EEPROM_WRITE(gcode.coordinate_system); #else const xyz_pos_t coordinate_system[MAX_COORDINATE_SYSTEMS] = { { 0 } }; EEPROM_WRITE(coordinate_system); #endif // // Skew correction factors // _FIELD_TEST(planner_skew_factor); EEPROM_WRITE(planner.skew_factor); // // Advanced Pause filament load & unload lengths // #if EXTRUDERS { #if DISABLED(ADVANCED_PAUSE_FEATURE) const fil_change_settings_t fc_settings[EXTRUDERS] = { 0, 0 }; #endif _FIELD_TEST(fc_settings); EEPROM_WRITE(fc_settings); } #endif // // Multiple Extruders // #if EXTRUDERS > 1 _FIELD_TEST(toolchange_settings); EEPROM_WRITE(toolchange_settings); #endif // // Backlash Compensation // { #if ENABLED(BACKLASH_GCODE) const xyz_float_t &backlash_distance_mm = backlash.distance_mm; const uint8_t &backlash_correction = backlash.correction; #else const xyz_float_t backlash_distance_mm{0}; const uint8_t backlash_correction = 0; #endif #if ENABLED(BACKLASH_GCODE) && defined(BACKLASH_SMOOTHING_MM) const float &backlash_smoothing_mm = backlash.smoothing_mm; #else const float backlash_smoothing_mm = 3; #endif _FIELD_TEST(backlash_distance_mm); EEPROM_WRITE(backlash_distance_mm); EEPROM_WRITE(backlash_correction); EEPROM_WRITE(backlash_smoothing_mm); } // // Extensible UI User Data // #if ENABLED(EXTENSIBLE_UI) { char extui_data[ExtUI::eeprom_data_size] = { 0 }; ExtUI::onStoreSettings(extui_data); _FIELD_TEST(extui_data); EEPROM_WRITE(extui_data); } #endif // // Validate CRC and Data Size // if (!eeprom_error) { const uint16_t eeprom_size = eeprom_index - (EEPROM_OFFSET), final_crc = working_crc; // Write the EEPROM header eeprom_index = EEPROM_OFFSET; EEPROM_WRITE(version); EEPROM_WRITE(final_crc); // Report storage size DEBUG_ECHO_START(); DEBUG_ECHOLNPAIR("Settings Stored (", eeprom_size, " bytes; crc ", (uint32_t)final_crc, ")"); eeprom_error |= size_error(eeprom_size); } EEPROM_FINISH(); // // UBL Mesh // #if ENABLED(UBL_SAVE_ACTIVE_ON_M500) if (ubl.storage_slot >= 0) store_mesh(ubl.storage_slot); #endif #if ENABLED(EXTENSIBLE_UI) ExtUI::onConfigurationStoreWritten(!eeprom_error); #endif return !eeprom_error; } /** * M501 - Retrieve Configuration */ bool MarlinSettings::_load() { uint16_t working_crc = 0; EEPROM_START(); char stored_ver[4]; EEPROM_READ_ALWAYS(stored_ver); uint16_t stored_crc; EEPROM_READ_ALWAYS(stored_crc); // Version has to match or defaults are used if (strncmp(version, stored_ver, 3) != 0) { if (stored_ver[3] != '\0') { stored_ver[0] = '?'; stored_ver[1] = '\0'; } DEBUG_ECHO_START(); DEBUG_ECHOLNPAIR("EEPROM version mismatch (EEPROM=", stored_ver, " Marlin=" EEPROM_VERSION ")"); eeprom_error = true; } else { float dummy = 0; working_crc = 0; // Init to 0. Accumulated by EEPROM_READ _FIELD_TEST(esteppers); // Number of esteppers may change uint8_t esteppers; EEPROM_READ_ALWAYS(esteppers); // // Planner Motion // { // Get only the number of E stepper parameters previously stored // Any steppers added later are set to their defaults uint32_t tmp1[XYZ + esteppers]; float tmp2[XYZ + esteppers]; feedRate_t tmp3[XYZ + esteppers]; EEPROM_READ(tmp1); // max_acceleration_mm_per_s2 EEPROM_READ(planner.settings.min_segment_time_us); EEPROM_READ(tmp2); // axis_steps_per_mm EEPROM_READ(tmp3); // max_feedrate_mm_s if (!validating) LOOP_XYZE_N(i) { const bool in = (i < esteppers + XYZ); planner.settings.max_acceleration_mm_per_s2[i] = in ? tmp1[i] : pgm_read_dword(&_DMA[ALIM(i, _DMA)]); planner.settings.axis_steps_per_mm[i] = in ? tmp2[i] : pgm_read_float(&_DASU[ALIM(i, _DASU)]); planner.settings.max_feedrate_mm_s[i] = in ? tmp3[i] : pgm_read_float(&_DMF[ALIM(i, _DMF)]); } EEPROM_READ(planner.settings.acceleration); EEPROM_READ(planner.settings.retract_acceleration); EEPROM_READ(planner.settings.travel_acceleration); EEPROM_READ(planner.settings.min_feedrate_mm_s); EEPROM_READ(planner.settings.min_travel_feedrate_mm_s); #if HAS_CLASSIC_JERK EEPROM_READ(planner.max_jerk); #if HAS_LINEAR_E_JERK EEPROM_READ(dummy); #endif #else for (uint8_t q = 4; q--;) EEPROM_READ(dummy); #endif #if DISABLED(CLASSIC_JERK) EEPROM_READ(planner.junction_deviation_mm); #else EEPROM_READ(dummy); #endif } // // Home Offset (M206 / M665) // { _FIELD_TEST(home_offset); #if HAS_SCARA_OFFSET EEPROM_READ(scara_home_offset); #else #if !HAS_HOME_OFFSET xyz_pos_t home_offset; #endif EEPROM_READ(home_offset); #endif } // // Hotend Offsets, if any // { #if HAS_HOTEND_OFFSET // Skip hotend 0 which must be 0 for (uint8_t e = 1; e < HOTENDS; e++) EEPROM_READ(hotend_offset[e]); #endif } // // Filament Runout Sensor // { #if HAS_FILAMENT_SENSOR bool &runout_sensor_enabled = runout.enabled; #else bool runout_sensor_enabled; #endif _FIELD_TEST(runout_sensor_enabled); EEPROM_READ(runout_sensor_enabled); float runout_distance_mm; EEPROM_READ(runout_distance_mm); #if HAS_FILAMENT_SENSOR && defined(FILAMENT_RUNOUT_DISTANCE_MM) if (!validating) runout.set_runout_distance(runout_distance_mm); #endif } // // Global Leveling // { #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT) EEPROM_READ(new_z_fade_height); #else EEPROM_READ(dummy); #endif } // // Mesh (Manual) Bed Leveling // { uint8_t mesh_num_x, mesh_num_y; EEPROM_READ(dummy); EEPROM_READ_ALWAYS(mesh_num_x); EEPROM_READ_ALWAYS(mesh_num_y); #if ENABLED(MESH_BED_LEVELING) if (!validating) mbl.z_offset = dummy; if (mesh_num_x == GRID_MAX_POINTS_X && mesh_num_y == GRID_MAX_POINTS_Y) { // EEPROM data fits the current mesh EEPROM_READ(mbl.z_values); } else { // EEPROM data is stale if (!validating) mbl.reset(); for (uint16_t q = mesh_num_x * mesh_num_y; q--;) EEPROM_READ(dummy); } #else // MBL is disabled - skip the stored data for (uint16_t q = mesh_num_x * mesh_num_y; q--;) EEPROM_READ(dummy); #endif // MESH_BED_LEVELING } // // Probe Z Offset // { _FIELD_TEST(probe_offset); #if HAS_BED_PROBE xyz_pos_t &zpo = probe_offset; #else xyz_pos_t zpo; #endif EEPROM_READ(zpo); } // // Planar Bed Leveling matrix // { #if ABL_PLANAR EEPROM_READ(planner.bed_level_matrix); #else for (uint8_t q = 9; q--;) EEPROM_READ(dummy); #endif } // // Bilinear Auto Bed Leveling // { uint8_t grid_max_x, grid_max_y; EEPROM_READ_ALWAYS(grid_max_x); // 1 byte EEPROM_READ_ALWAYS(grid_max_y); // 1 byte #if ENABLED(AUTO_BED_LEVELING_BILINEAR) if (grid_max_x == GRID_MAX_POINTS_X && grid_max_y == GRID_MAX_POINTS_Y) { if (!validating) set_bed_leveling_enabled(false); EEPROM_READ(bilinear_grid_spacing); // 2 ints EEPROM_READ(bilinear_start); // 2 ints EEPROM_READ(z_values); // 9 to 256 floats } else // EEPROM data is stale #endif // AUTO_BED_LEVELING_BILINEAR { // Skip past disabled (or stale) Bilinear Grid data xy_pos_t bgs, bs; EEPROM_READ(bgs); EEPROM_READ(bs); for (uint16_t q = grid_max_x * grid_max_y; q--;) EEPROM_READ(dummy); } } // // Unified Bed Leveling active state // { _FIELD_TEST(planner_leveling_active); #if ENABLED(AUTO_BED_LEVELING_UBL) EEPROM_READ(planner.leveling_active); EEPROM_READ(ubl.storage_slot); #else bool planner_leveling_active; uint8_t ubl_storage_slot; EEPROM_READ(planner_leveling_active); EEPROM_READ(ubl_storage_slot); #endif } // // SERVO_ANGLES // { _FIELD_TEST(servo_angles); #if ENABLED(EDITABLE_SERVO_ANGLES) uint16_t (&servo_angles_arr)[EEPROM_NUM_SERVOS][2] = servo_angles; #else uint16_t servo_angles_arr[EEPROM_NUM_SERVOS][2]; #endif EEPROM_READ(servo_angles_arr); } // // Thermal first layer compensation values // #if ENABLED(PROBE_TEMP_COMPENSATION) EEPROM_READ(temp_comp.z_offsets_probe); EEPROM_READ(temp_comp.z_offsets_bed); #if ENABLED(USE_TEMP_EXT_COMPENSATION) EEPROM_READ(temp_comp.z_offsets_ext); #endif temp_comp.reset_index(); #else // No placeholder data for this feature #endif // // BLTOUCH // { _FIELD_TEST(bltouch_last_written_mode); #if ENABLED(BLTOUCH) bool &bltouch_last_written_mode = bltouch.last_written_mode; #else bool bltouch_last_written_mode; #endif EEPROM_READ(bltouch_last_written_mode); } // // DELTA Geometry or Dual Endstops offsets // { #if ENABLED(DELTA) _FIELD_TEST(delta_height); EEPROM_READ(delta_height); // 1 float EEPROM_READ(delta_endstop_adj); // 3 floats EEPROM_READ(delta_radius); // 1 float EEPROM_READ(delta_diagonal_rod); // 1 float EEPROM_READ(delta_segments_per_second); // 1 float EEPROM_READ(delta_tower_angle_trim); // 3 floats #elif EITHER(X_DUAL_ENDSTOPS, Y_DUAL_ENDSTOPS) || Z_MULTI_ENDSTOPS _FIELD_TEST(x2_endstop_adj); #if ENABLED(X_DUAL_ENDSTOPS) EEPROM_READ(endstops.x2_endstop_adj); // 1 float #else EEPROM_READ(dummy); #endif #if ENABLED(Y_DUAL_ENDSTOPS) EEPROM_READ(endstops.y2_endstop_adj); // 1 float #else EEPROM_READ(dummy); #endif #if Z_MULTI_ENDSTOPS EEPROM_READ(endstops.z2_endstop_adj); // 1 float #else EEPROM_READ(dummy); #endif #if ENABLED(Z_TRIPLE_ENDSTOPS) EEPROM_READ(endstops.z3_endstop_adj); // 1 float #else EEPROM_READ(dummy); #endif #endif } // // LCD Preheat settings // { _FIELD_TEST(ui_preheat_hotend_temp); #if HOTENDS && HAS_LCD_MENU int16_t (&ui_preheat_hotend_temp)[2] = ui.preheat_hotend_temp, (&ui_preheat_bed_temp)[2] = ui.preheat_bed_temp; uint8_t (&ui_preheat_fan_speed)[2] = ui.preheat_fan_speed; #else int16_t ui_preheat_hotend_temp[2], ui_preheat_bed_temp[2]; uint8_t ui_preheat_fan_speed[2]; #endif EEPROM_READ(ui_preheat_hotend_temp); // 2 floats EEPROM_READ(ui_preheat_bed_temp); // 2 floats EEPROM_READ(ui_preheat_fan_speed); // 2 floats } // // Hotend PID // { HOTEND_LOOP() { PIDCF_t pidcf; EEPROM_READ(pidcf); #if ENABLED(PIDTEMP) if (!validating && pidcf.Kp != DUMMY_PID_VALUE) { // Scale PID values since EEPROM values are unscaled PID_PARAM(Kp, e) = pidcf.Kp; PID_PARAM(Ki, e) = scalePID_i(pidcf.Ki); PID_PARAM(Kd, e) = scalePID_d(pidcf.Kd); #if ENABLED(PID_EXTRUSION_SCALING) PID_PARAM(Kc, e) = pidcf.Kc; #endif #if ENABLED(PID_FAN_SCALING) PID_PARAM(Kf, e) = pidcf.Kf; #endif } #endif } } // // PID Extrusion Scaling // { _FIELD_TEST(lpq_len); #if ENABLED(PID_EXTRUSION_SCALING) EEPROM_READ(thermalManager.lpq_len); #else int16_t lpq_len; EEPROM_READ(lpq_len); #endif } // // Heated Bed PID // { PID_t pid; EEPROM_READ(pid); #if ENABLED(PIDTEMPBED) if (!validating && pid.Kp != DUMMY_PID_VALUE) { // Scale PID values since EEPROM values are unscaled thermalManager.temp_bed.pid.Kp = pid.Kp; thermalManager.temp_bed.pid.Ki = scalePID_i(pid.Ki); thermalManager.temp_bed.pid.Kd = scalePID_d(pid.Kd); } #endif } // // User-defined Thermistors // #if HAS_USER_THERMISTORS { _FIELD_TEST(user_thermistor); EEPROM_READ(thermalManager.user_thermistor); } #endif // // LCD Contrast // { _FIELD_TEST(lcd_contrast); int16_t lcd_contrast; EEPROM_READ(lcd_contrast); #if HAS_LCD_CONTRAST ui.set_contrast(lcd_contrast); #endif } // // Power-Loss Recovery // { _FIELD_TEST(recovery_enabled); #if ENABLED(POWER_LOSS_RECOVERY) EEPROM_READ(recovery.enabled); #else bool recovery_enabled; EEPROM_READ(recovery_enabled); #endif } // // Firmware Retraction // { _FIELD_TEST(fwretract_settings); #if ENABLED(FWRETRACT) EEPROM_READ(fwretract.settings); #else fwretract_settings_t fwretract_settings; EEPROM_READ(fwretract_settings); #endif #if BOTH(FWRETRACT, FWRETRACT_AUTORETRACT) EEPROM_READ(fwretract.autoretract_enabled); #else bool autoretract_enabled; EEPROM_READ(autoretract_enabled); #endif } // // Volumetric & Filament Size // { struct { bool volumetric_enabled; float filament_size[EXTRUDERS]; } storage; _FIELD_TEST(parser_volumetric_enabled); EEPROM_READ(storage); #if DISABLED(NO_VOLUMETRICS) if (!validating) { parser.volumetric_enabled = storage.volumetric_enabled; COPY(planner.filament_size, storage.filament_size); } #endif } // // TMC Stepper Settings // if (!validating) reset_stepper_drivers(); // TMC Stepper Current { _FIELD_TEST(tmc_stepper_current); tmc_stepper_current_t currents; EEPROM_READ(currents); #if HAS_TRINAMIC #define SET_CURR(Q) stepper##Q.rms_current(currents.Q ? currents.Q : Q##_CURRENT) if (!validating) { #if AXIS_IS_TMC(X) SET_CURR(X); #endif #if AXIS_IS_TMC(Y) SET_CURR(Y); #endif #if AXIS_IS_TMC(Z) SET_CURR(Z); #endif #if AXIS_IS_TMC(X2) SET_CURR(X2); #endif #if AXIS_IS_TMC(Y2) SET_CURR(Y2); #endif #if AXIS_IS_TMC(Z2) SET_CURR(Z2); #endif #if AXIS_IS_TMC(Z3) SET_CURR(Z3); #endif #if AXIS_IS_TMC(E0) SET_CURR(E0); #endif #if AXIS_IS_TMC(E1) SET_CURR(E1); #endif #if AXIS_IS_TMC(E2) SET_CURR(E2); #endif #if AXIS_IS_TMC(E3) SET_CURR(E3); #endif #if AXIS_IS_TMC(E4) SET_CURR(E4); #endif #if AXIS_IS_TMC(E5) SET_CURR(E5); #endif } #endif } // TMC Hybrid Threshold { tmc_hybrid_threshold_t tmc_hybrid_threshold; _FIELD_TEST(tmc_hybrid_threshold); EEPROM_READ(tmc_hybrid_threshold); #if ENABLED(HYBRID_THRESHOLD) if (!validating) { #if AXIS_HAS_STEALTHCHOP(X) stepperX.set_pwm_thrs(tmc_hybrid_threshold.X); #endif #if AXIS_HAS_STEALTHCHOP(Y) stepperY.set_pwm_thrs(tmc_hybrid_threshold.Y); #endif #if AXIS_HAS_STEALTHCHOP(Z) stepperZ.set_pwm_thrs(tmc_hybrid_threshold.Z); #endif #if AXIS_HAS_STEALTHCHOP(X2) stepperX2.set_pwm_thrs(tmc_hybrid_threshold.X2); #endif #if AXIS_HAS_STEALTHCHOP(Y2) stepperY2.set_pwm_thrs(tmc_hybrid_threshold.Y2); #endif #if AXIS_HAS_STEALTHCHOP(Z2) stepperZ2.set_pwm_thrs(tmc_hybrid_threshold.Z2); #endif #if AXIS_HAS_STEALTHCHOP(Z3) stepperZ3.set_pwm_thrs(tmc_hybrid_threshold.Z3); #endif #if AXIS_HAS_STEALTHCHOP(E0) stepperE0.set_pwm_thrs(tmc_hybrid_threshold.E0); #endif #if AXIS_HAS_STEALTHCHOP(E1) stepperE1.set_pwm_thrs(tmc_hybrid_threshold.E1); #endif #if AXIS_HAS_STEALTHCHOP(E2) stepperE2.set_pwm_thrs(tmc_hybrid_threshold.E2); #endif #if AXIS_HAS_STEALTHCHOP(E3) stepperE3.set_pwm_thrs(tmc_hybrid_threshold.E3); #endif #if AXIS_HAS_STEALTHCHOP(E4) stepperE4.set_pwm_thrs(tmc_hybrid_threshold.E4); #endif #if AXIS_HAS_STEALTHCHOP(E5) stepperE5.set_pwm_thrs(tmc_hybrid_threshold.E5); #endif } #endif } // // TMC StallGuard threshold. // X and X2 use the same value // Y and Y2 use the same value // Z, Z2 and Z3 use the same value // { tmc_sgt_t tmc_sgt; _FIELD_TEST(tmc_sgt); EEPROM_READ(tmc_sgt); #if USE_SENSORLESS if (!validating) { #ifdef X_STALL_SENSITIVITY #if AXIS_HAS_STALLGUARD(X) stepperX.homing_threshold(tmc_sgt.X); #endif #if AXIS_HAS_STALLGUARD(X2) && !X2_SENSORLESS stepperX2.homing_threshold(tmc_sgt.X); #endif #endif #if X2_SENSORLESS stepperX2.homing_threshold(tmc_sgt.X2); #endif #ifdef Y_STALL_SENSITIVITY #if AXIS_HAS_STALLGUARD(Y) stepperY.homing_threshold(tmc_sgt.Y); #endif #if AXIS_HAS_STALLGUARD(Y2) stepperY2.homing_threshold(tmc_sgt.Y); #endif #endif #ifdef Z_STALL_SENSITIVITY #if AXIS_HAS_STALLGUARD(Z) stepperZ.homing_threshold(tmc_sgt.Z); #endif #if AXIS_HAS_STALLGUARD(Z2) stepperZ2.homing_threshold(tmc_sgt.Z); #endif #if AXIS_HAS_STALLGUARD(Z3) stepperZ3.homing_threshold(tmc_sgt.Z); #endif #endif } #endif } // TMC stepping mode { _FIELD_TEST(tmc_stealth_enabled); tmc_stealth_enabled_t tmc_stealth_enabled; EEPROM_READ(tmc_stealth_enabled); #if HAS_TRINAMIC #define SET_STEPPING_MODE(ST) stepper##ST.stored.stealthChop_enabled = tmc_stealth_enabled.ST; stepper##ST.refresh_stepping_mode(); if (!validating) { #if AXIS_HAS_STEALTHCHOP(X) SET_STEPPING_MODE(X); #endif #if AXIS_HAS_STEALTHCHOP(Y) SET_STEPPING_MODE(Y); #endif #if AXIS_HAS_STEALTHCHOP(Z) SET_STEPPING_MODE(Z); #endif #if AXIS_HAS_STEALTHCHOP(X2) SET_STEPPING_MODE(X2); #endif #if AXIS_HAS_STEALTHCHOP(Y2) SET_STEPPING_MODE(Y2); #endif #if AXIS_HAS_STEALTHCHOP(Z2) SET_STEPPING_MODE(Z2); #endif #if AXIS_HAS_STEALTHCHOP(Z3) SET_STEPPING_MODE(Z3); #endif #if AXIS_HAS_STEALTHCHOP(E0) SET_STEPPING_MODE(E0); #endif #if AXIS_HAS_STEALTHCHOP(E1) SET_STEPPING_MODE(E1); #endif #if AXIS_HAS_STEALTHCHOP(E2) SET_STEPPING_MODE(E2); #endif #if AXIS_HAS_STEALTHCHOP(E3) SET_STEPPING_MODE(E3); #endif #if AXIS_HAS_STEALTHCHOP(E4) SET_STEPPING_MODE(E4); #endif #if AXIS_HAS_STEALTHCHOP(E5) SET_STEPPING_MODE(E5); #endif } #endif } // // Linear Advance // { float extruder_advance_K[_MAX(EXTRUDERS, 1)]; _FIELD_TEST(planner_extruder_advance_K); EEPROM_READ(extruder_advance_K); #if ENABLED(LIN_ADVANCE) if (!validating) COPY(planner.extruder_advance_K, extruder_advance_K); #endif } // // Motor Current PWM // { uint32_t motor_current_setting[3]; _FIELD_TEST(motor_current_setting); EEPROM_READ(motor_current_setting); #if HAS_MOTOR_CURRENT_PWM if (!validating) COPY(stepper.motor_current_setting, motor_current_setting); #endif } // // CNC Coordinate System // { _FIELD_TEST(coordinate_system); #if ENABLED(CNC_COORDINATE_SYSTEMS) if (!validating) (void)gcode.select_coordinate_system(-1); // Go back to machine space EEPROM_READ(gcode.coordinate_system); #else xyz_pos_t coordinate_system[MAX_COORDINATE_SYSTEMS]; EEPROM_READ(coordinate_system); #endif } // // Skew correction factors // { skew_factor_t skew_factor; _FIELD_TEST(planner_skew_factor); EEPROM_READ(skew_factor); #if ENABLED(SKEW_CORRECTION_GCODE) if (!validating) { planner.skew_factor.xy = skew_factor.xy; #if ENABLED(SKEW_CORRECTION_FOR_Z) planner.skew_factor.xz = skew_factor.xz; planner.skew_factor.yz = skew_factor.yz; #endif } #endif } // // Advanced Pause filament load & unload lengths // #if EXTRUDERS { #if DISABLED(ADVANCED_PAUSE_FEATURE) fil_change_settings_t fc_settings[EXTRUDERS]; #endif _FIELD_TEST(fc_settings); EEPROM_READ(fc_settings); } #endif // // Tool-change settings // #if EXTRUDERS > 1 _FIELD_TEST(toolchange_settings); EEPROM_READ(toolchange_settings); #endif // // Backlash Compensation // { #if ENABLED(BACKLASH_GCODE) xyz_float_t &backlash_distance_mm = backlash.distance_mm; uint8_t &backlash_correction = backlash.correction; #else float backlash_distance_mm[XYZ]; uint8_t backlash_correction; #endif #if ENABLED(BACKLASH_GCODE) && defined(BACKLASH_SMOOTHING_MM) float &backlash_smoothing_mm = backlash.smoothing_mm; #else float backlash_smoothing_mm; #endif _FIELD_TEST(backlash_distance_mm); EEPROM_READ(backlash_distance_mm); EEPROM_READ(backlash_correction); EEPROM_READ(backlash_smoothing_mm); } // // Extensible UI User Data // #if ENABLED(EXTENSIBLE_UI) // This is a significant hardware change; don't reserve EEPROM space when not present { const char extui_data[ExtUI::eeprom_data_size] = { 0 }; _FIELD_TEST(extui_data); EEPROM_READ(extui_data); if (!validating) ExtUI::onLoadSettings(extui_data); } #endif eeprom_error = size_error(eeprom_index - (EEPROM_OFFSET)); if (eeprom_error) { DEBUG_ECHO_START(); DEBUG_ECHOLNPAIR("Index: ", int(eeprom_index - (EEPROM_OFFSET)), " Size: ", datasize()); } else if (working_crc != stored_crc) { eeprom_error = true; DEBUG_ERROR_START(); DEBUG_ECHOLNPAIR("EEPROM CRC mismatch - (stored) ", stored_crc, " != ", working_crc, " (calculated)!"); } else if (!validating) { DEBUG_ECHO_START(); DEBUG_ECHO(version); DEBUG_ECHOLNPAIR(" stored settings retrieved (", eeprom_index - (EEPROM_OFFSET), " bytes; crc ", (uint32_t)working_crc, ")"); } if (!validating && !eeprom_error) postprocess(); #if ENABLED(AUTO_BED_LEVELING_UBL) if (!validating) { ubl.report_state(); if (!ubl.sanity_check()) { SERIAL_EOL(); #if ENABLED(EEPROM_CHITCHAT) ubl.echo_name(); DEBUG_ECHOLNPGM(" initialized.\n"); #endif } else { eeprom_error = true; #if ENABLED(EEPROM_CHITCHAT) DEBUG_ECHOPGM("?Can't enable "); ubl.echo_name(); DEBUG_ECHOLNPGM("."); #endif ubl.reset(); } if (ubl.storage_slot >= 0) { load_mesh(ubl.storage_slot); DEBUG_ECHOLNPAIR("Mesh ", ubl.storage_slot, " loaded from storage."); } else { ubl.reset(); DEBUG_ECHOLNPGM("UBL reset"); } } #endif } #if ENABLED(EEPROM_CHITCHAT) && DISABLED(DISABLE_M503) if (!validating) report(); #endif EEPROM_FINISH(); return !eeprom_error; } #ifdef ARCHIM2_SPI_FLASH_EEPROM_BACKUP_SIZE extern bool restoreEEPROM(); #endif bool MarlinSettings::validate() { validating = true; #ifdef ARCHIM2_SPI_FLASH_EEPROM_BACKUP_SIZE bool success = _load(); if (!success && restoreEEPROM()) { SERIAL_ECHOLNPGM("Recovered backup EEPROM settings from SPI Flash"); success = _load(); } #else const bool success = _load(); #endif validating = false; return success; } bool MarlinSettings::load() { if (validate()) { const bool success = _load(); #if ENABLED(EXTENSIBLE_UI) ExtUI::onConfigurationStoreRead(success); #endif return success; } reset(); #if ENABLED(EEPROM_AUTO_INIT) (void)save(); SERIAL_ECHO_MSG("EEPROM Initialized"); #endif return false; } #if ENABLED(AUTO_BED_LEVELING_UBL) inline void ubl_invalid_slot(const int s) { #if ENABLED(EEPROM_CHITCHAT) DEBUG_ECHOLNPGM("?Invalid slot."); DEBUG_ECHO(s); DEBUG_ECHOLNPGM(" mesh slots available."); #else UNUSED(s); #endif } const uint16_t MarlinSettings::meshes_end = persistentStore.capacity() - 129; // 128 (+1 because of the change to capacity rather than last valid address) // is a placeholder for the size of the MAT; the MAT will always // live at the very end of the eeprom uint16_t MarlinSettings::meshes_start_index() { return (datasize() + EEPROM_OFFSET + 32) & 0xFFF8; // Pad the end of configuration data so it can float up // or down a little bit without disrupting the mesh data } uint16_t MarlinSettings::calc_num_meshes() { return (meshes_end - meshes_start_index()) / sizeof(ubl.z_values); } int MarlinSettings::mesh_slot_offset(const int8_t slot) { return meshes_end - (slot + 1) * sizeof(ubl.z_values); } void MarlinSettings::store_mesh(const int8_t slot) { #if ENABLED(AUTO_BED_LEVELING_UBL) const int16_t a = calc_num_meshes(); if (!WITHIN(slot, 0, a - 1)) { ubl_invalid_slot(a); DEBUG_ECHOLNPAIR("E2END=", persistentStore.capacity() - 1, " meshes_end=", meshes_end, " slot=", slot); DEBUG_EOL(); return; } int pos = mesh_slot_offset(slot); uint16_t crc = 0; // Write crc to MAT along with other data, or just tack on to the beginning or end persistentStore.access_start(); const bool status = persistentStore.write_data(pos, (uint8_t *)&ubl.z_values, sizeof(ubl.z_values), &crc); persistentStore.access_finish(); if (status) SERIAL_ECHOLNPGM("?Unable to save mesh data."); else DEBUG_ECHOLNPAIR("Mesh saved in slot ", slot); #else // Other mesh types #endif } void MarlinSettings::load_mesh(const int8_t slot, void * const into/*=nullptr*/) { #if ENABLED(AUTO_BED_LEVELING_UBL) const int16_t a = settings.calc_num_meshes(); if (!WITHIN(slot, 0, a - 1)) { ubl_invalid_slot(a); return; } int pos = mesh_slot_offset(slot); uint16_t crc = 0; uint8_t * const dest = into ? (uint8_t*)into : (uint8_t*)&ubl.z_values; persistentStore.access_start(); const uint16_t status = persistentStore.read_data(pos, dest, sizeof(ubl.z_values), &crc); persistentStore.access_finish(); if (status) SERIAL_ECHOLNPGM("?Unable to load mesh data."); else DEBUG_ECHOLNPAIR("Mesh loaded from slot ", slot); EEPROM_FINISH(); #else // Other mesh types #endif } //void MarlinSettings::delete_mesh() { return; } //void MarlinSettings::defrag_meshes() { return; } #endif // AUTO_BED_LEVELING_UBL #else // !EEPROM_SETTINGS bool MarlinSettings::save() { DEBUG_ERROR_MSG("EEPROM disabled"); return false; } #endif // !EEPROM_SETTINGS /** * M502 - Reset Configuration */ void MarlinSettings::reset() { LOOP_XYZE_N(i) { planner.settings.max_acceleration_mm_per_s2[i] = pgm_read_dword(&_DMA[ALIM(i, _DMA)]); planner.settings.axis_steps_per_mm[i] = pgm_read_float(&_DASU[ALIM(i, _DASU)]); planner.settings.max_feedrate_mm_s[i] = pgm_read_float(&_DMF[ALIM(i, _DMF)]); } planner.settings.min_segment_time_us = DEFAULT_MINSEGMENTTIME; planner.settings.acceleration = DEFAULT_ACCELERATION; planner.settings.retract_acceleration = DEFAULT_RETRACT_ACCELERATION; planner.settings.travel_acceleration = DEFAULT_TRAVEL_ACCELERATION; planner.settings.min_feedrate_mm_s = feedRate_t(DEFAULT_MINIMUMFEEDRATE); planner.settings.min_travel_feedrate_mm_s = feedRate_t(DEFAULT_MINTRAVELFEEDRATE); #if HAS_CLASSIC_JERK #ifndef DEFAULT_XJERK #define DEFAULT_XJERK 0 #endif #ifndef DEFAULT_YJERK #define DEFAULT_YJERK 0 #endif #ifndef DEFAULT_ZJERK #define DEFAULT_ZJERK 0 #endif planner.max_jerk.set(DEFAULT_XJERK, DEFAULT_YJERK, DEFAULT_ZJERK); #if HAS_CLASSIC_E_JERK planner.max_jerk.e = DEFAULT_EJERK; #endif #endif #if DISABLED(CLASSIC_JERK) planner.junction_deviation_mm = float(JUNCTION_DEVIATION_MM); #endif #if HAS_SCARA_OFFSET scara_home_offset.reset(); #elif HAS_HOME_OFFSET home_offset.reset(); #endif #if HAS_HOTEND_OFFSET reset_hotend_offsets(); #endif // // Filament Runout Sensor // #if HAS_FILAMENT_SENSOR runout.enabled = true; runout.reset(); #ifdef FILAMENT_RUNOUT_DISTANCE_MM runout.set_runout_distance(FILAMENT_RUNOUT_DISTANCE_MM); #endif #endif // // Tool-change Settings // #if EXTRUDERS > 1 #if ENABLED(TOOLCHANGE_FILAMENT_SWAP) toolchange_settings.swap_length = TOOLCHANGE_FIL_SWAP_LENGTH; toolchange_settings.extra_prime = TOOLCHANGE_FIL_EXTRA_PRIME; toolchange_settings.prime_speed = TOOLCHANGE_FIL_SWAP_PRIME_SPEED; toolchange_settings.retract_speed = TOOLCHANGE_FIL_SWAP_RETRACT_SPEED; #endif #if ENABLED(TOOLCHANGE_PARK) constexpr xyz_pos_t tpxy = TOOLCHANGE_PARK_XY; toolchange_settings.change_point = tpxy; #endif toolchange_settings.z_raise = TOOLCHANGE_ZRAISE; #endif #if ENABLED(BACKLASH_GCODE) backlash.correction = (BACKLASH_CORRECTION) * 255; constexpr xyz_float_t tmp = BACKLASH_DISTANCE_MM; backlash.distance_mm = tmp; #ifdef BACKLASH_SMOOTHING_MM backlash.smoothing_mm = BACKLASH_SMOOTHING_MM; #endif #endif #if ENABLED(EXTENSIBLE_UI) ExtUI::onFactoryReset(); #endif // // Magnetic Parking Extruder // #if ENABLED(MAGNETIC_PARKING_EXTRUDER) mpe_settings_init(); #endif // // Global Leveling // #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT) new_z_fade_height = 0.0; #endif #if HAS_LEVELING reset_bed_level(); #endif #if HAS_BED_PROBE constexpr float dpo[] = NOZZLE_TO_PROBE_OFFSET; static_assert(COUNT(dpo) == 3, "NOZZLE_TO_PROBE_OFFSET must contain offsets for X, Y, and Z."); #if HAS_PROBE_XY_OFFSET LOOP_XYZ(a) probe_offset[a] = dpo[a]; #else probe_offset.x = probe_offset.y = 0; probe_offset.z = dpo[Z_AXIS]; #endif #endif // // Servo Angles // #if ENABLED(EDITABLE_SERVO_ANGLES) COPY(servo_angles, base_servo_angles); #endif // // BLTOUCH // //#if ENABLED(BLTOUCH) // bltouch.last_written_mode; //#endif // // Endstop Adjustments // #if ENABLED(DELTA) const abc_float_t adj = DELTA_ENDSTOP_ADJ, dta = DELTA_TOWER_ANGLE_TRIM; delta_height = DELTA_HEIGHT; delta_endstop_adj = adj; delta_radius = DELTA_RADIUS; delta_diagonal_rod = DELTA_DIAGONAL_ROD; delta_segments_per_second = DELTA_SEGMENTS_PER_SECOND; delta_tower_angle_trim = dta; #elif EITHER(X_DUAL_ENDSTOPS, Y_DUAL_ENDSTOPS) || Z_MULTI_ENDSTOPS #if ENABLED(X_DUAL_ENDSTOPS) endstops.x2_endstop_adj = ( #ifdef X_DUAL_ENDSTOPS_ADJUSTMENT X_DUAL_ENDSTOPS_ADJUSTMENT #else 0 #endif ); #endif #if ENABLED(Y_DUAL_ENDSTOPS) endstops.y2_endstop_adj = ( #ifdef Y_DUAL_ENDSTOPS_ADJUSTMENT Y_DUAL_ENDSTOPS_ADJUSTMENT #else 0 #endif ); #endif #if ENABLED(Z_DUAL_ENDSTOPS) endstops.z2_endstop_adj = ( #ifdef Z_DUAL_ENDSTOPS_ADJUSTMENT Z_DUAL_ENDSTOPS_ADJUSTMENT #else 0 #endif ); #elif ENABLED(Z_TRIPLE_ENDSTOPS) endstops.z2_endstop_adj = ( #ifdef Z_TRIPLE_ENDSTOPS_ADJUSTMENT2 Z_TRIPLE_ENDSTOPS_ADJUSTMENT2 #else 0 #endif ); endstops.z3_endstop_adj = ( #ifdef Z_TRIPLE_ENDSTOPS_ADJUSTMENT3 Z_TRIPLE_ENDSTOPS_ADJUSTMENT3 #else 0 #endif ); #endif #endif // // Preheat parameters // #if HOTENDS && HAS_LCD_MENU ui.preheat_hotend_temp[0] = PREHEAT_1_TEMP_HOTEND; ui.preheat_hotend_temp[1] = PREHEAT_2_TEMP_HOTEND; ui.preheat_bed_temp[0] = PREHEAT_1_TEMP_BED; ui.preheat_bed_temp[1] = PREHEAT_2_TEMP_BED; ui.preheat_fan_speed[0] = PREHEAT_1_FAN_SPEED; ui.preheat_fan_speed[1] = PREHEAT_2_FAN_SPEED; #endif // // Hotend PID // #if ENABLED(PIDTEMP) HOTEND_LOOP() { PID_PARAM(Kp, e) = float(DEFAULT_Kp); PID_PARAM(Ki, e) = scalePID_i(DEFAULT_Ki); PID_PARAM(Kd, e) = scalePID_d(DEFAULT_Kd); #if ENABLED(PID_EXTRUSION_SCALING) PID_PARAM(Kc, e) = DEFAULT_Kc; #endif #if ENABLED(PID_FAN_SCALING) PID_PARAM(Kf, e) = DEFAULT_Kf; #endif } #endif // // PID Extrusion Scaling // #if ENABLED(PID_EXTRUSION_SCALING) thermalManager.lpq_len = 20; // Default last-position-queue size #endif // // Heated Bed PID // #if ENABLED(PIDTEMPBED) thermalManager.temp_bed.pid.Kp = DEFAULT_bedKp; thermalManager.temp_bed.pid.Ki = scalePID_i(DEFAULT_bedKi); thermalManager.temp_bed.pid.Kd = scalePID_d(DEFAULT_bedKd); #endif // // User-Defined Thermistors // #if HAS_USER_THERMISTORS thermalManager.reset_user_thermistors(); #endif // // LCD Contrast // #if HAS_LCD_CONTRAST ui.set_contrast(DEFAULT_LCD_CONTRAST); #endif // // Power-Loss Recovery // #if ENABLED(POWER_LOSS_RECOVERY) recovery.enable(true); #endif // // Firmware Retraction // #if ENABLED(FWRETRACT) fwretract.reset(); #endif // // Volumetric & Filament Size // #if DISABLED(NO_VOLUMETRICS) parser.volumetric_enabled = #if ENABLED(VOLUMETRIC_DEFAULT_ON) true #else false #endif ; for (uint8_t q = 0; q < COUNT(planner.filament_size); q++) planner.filament_size[q] = DEFAULT_NOMINAL_FILAMENT_DIA; #endif endstops.enable_globally( #if ENABLED(ENDSTOPS_ALWAYS_ON_DEFAULT) true #else false #endif ); reset_stepper_drivers(); // // Linear Advance // #if ENABLED(LIN_ADVANCE) LOOP_L_N(i, EXTRUDERS) { planner.extruder_advance_K[i] = LIN_ADVANCE_K; #if ENABLED(EXTRA_LIN_ADVANCE_K) saved_extruder_advance_K[i] = LIN_ADVANCE_K; #endif } #endif // // Motor Current PWM // #if HAS_MOTOR_CURRENT_PWM constexpr uint32_t tmp_motor_current_setting[3] = PWM_MOTOR_CURRENT; for (uint8_t q = 3; q--;) stepper.digipot_current(q, (stepper.motor_current_setting[q] = tmp_motor_current_setting[q])); #endif // // CNC Coordinate System // #if ENABLED(CNC_COORDINATE_SYSTEMS) (void)gcode.select_coordinate_system(-1); // Go back to machine space #endif // // Skew Correction // #if ENABLED(SKEW_CORRECTION_GCODE) planner.skew_factor.xy = XY_SKEW_FACTOR; #if ENABLED(SKEW_CORRECTION_FOR_Z) planner.skew_factor.xz = XZ_SKEW_FACTOR; planner.skew_factor.yz = YZ_SKEW_FACTOR; #endif #endif // // Advanced Pause filament load & unload lengths // #if ENABLED(ADVANCED_PAUSE_FEATURE) for (uint8_t e = 0; e < EXTRUDERS; e++) { fc_settings[e].unload_length = FILAMENT_CHANGE_UNLOAD_LENGTH; fc_settings[e].load_length = FILAMENT_CHANGE_FAST_LOAD_LENGTH; } #endif postprocess(); DEBUG_ECHO_START(); DEBUG_ECHOLNPGM("Hardcoded Default Settings Loaded"); #if ENABLED(EXTENSIBLE_UI) ExtUI::onFactoryReset(); #endif } #if DISABLED(DISABLE_M503) #define CONFIG_ECHO_START() do{ if (!forReplay) SERIAL_ECHO_START(); }while(0) #define CONFIG_ECHO_MSG(STR) do{ CONFIG_ECHO_START(); SERIAL_ECHOLNPGM(STR); }while(0) #define CONFIG_ECHO_HEADING(STR) do{ if (!forReplay) { CONFIG_ECHO_START(); SERIAL_ECHOLNPGM(STR); } }while(0) #if HAS_TRINAMIC inline void say_M906(const bool forReplay) { CONFIG_ECHO_START(); SERIAL_ECHOPGM(" M906"); } #if HAS_STEALTHCHOP void say_M569(const bool forReplay, const char * const etc=nullptr, const bool newLine = false) { CONFIG_ECHO_START(); SERIAL_ECHOPGM(" M569 S1"); if (etc) { SERIAL_CHAR(' '); serialprintPGM(etc); } if (newLine) SERIAL_EOL(); } #endif #if ENABLED(HYBRID_THRESHOLD) inline void say_M913(const bool forReplay) { CONFIG_ECHO_START(); SERIAL_ECHOPGM(" M913"); } #endif #if USE_SENSORLESS inline void say_M914() { SERIAL_ECHOPGM(" M914"); } #endif #endif #if ENABLED(ADVANCED_PAUSE_FEATURE) inline void say_M603(const bool forReplay) { CONFIG_ECHO_START(); SERIAL_ECHOPGM(" M603 "); } #endif inline void say_units(const bool colon) { serialprintPGM( #if ENABLED(INCH_MODE_SUPPORT) parser.linear_unit_factor != 1.0 ? PSTR(" (in)") : #endif PSTR(" (mm)") ); if (colon) SERIAL_ECHOLNPGM(":"); } void report_M92(const bool echo=true, const int8_t e=-1); /** * M503 - Report current settings in RAM * * Unless specifically disabled, M503 is available even without EEPROM */ void MarlinSettings::report(const bool forReplay) { /** * Announce current units, in case inches are being displayed */ CONFIG_ECHO_START(); #if ENABLED(INCH_MODE_SUPPORT) SERIAL_ECHOPGM(" G2"); SERIAL_CHAR(parser.linear_unit_factor == 1.0 ? '1' : '0'); SERIAL_ECHOPGM(" ;"); say_units(false); #else SERIAL_ECHOPGM(" G21 ; Units in mm"); say_units(false); #endif SERIAL_EOL(); #if HAS_LCD_MENU // Temperature units - for Ultipanel temperature options CONFIG_ECHO_START(); #if ENABLED(TEMPERATURE_UNITS_SUPPORT) SERIAL_ECHOPGM(" M149 "); SERIAL_CHAR(parser.temp_units_code()); SERIAL_ECHOPGM(" ; Units in "); serialprintPGM(parser.temp_units_name()); #else SERIAL_ECHOLNPGM(" M149 C ; Units in Celsius"); #endif #endif SERIAL_EOL(); #if DISABLED(NO_VOLUMETRICS) /** * Volumetric extrusion M200 */ if (!forReplay) { CONFIG_ECHO_START(); SERIAL_ECHOPGM("Filament settings:"); if (parser.volumetric_enabled) SERIAL_EOL(); else SERIAL_ECHOLNPGM(" Disabled"); } CONFIG_ECHO_START(); SERIAL_ECHOLNPAIR(" M200 D", LINEAR_UNIT(planner.filament_size[0])); #if EXTRUDERS > 1 CONFIG_ECHO_START(); SERIAL_ECHOLNPAIR(" M200 T1 D", LINEAR_UNIT(planner.filament_size[1])); #if EXTRUDERS > 2 CONFIG_ECHO_START(); SERIAL_ECHOLNPAIR(" M200 T2 D", LINEAR_UNIT(planner.filament_size[2])); #if EXTRUDERS > 3 CONFIG_ECHO_START(); SERIAL_ECHOLNPAIR(" M200 T3 D", LINEAR_UNIT(planner.filament_size[3])); #if EXTRUDERS > 4 CONFIG_ECHO_START(); SERIAL_ECHOLNPAIR(" M200 T4 D", LINEAR_UNIT(planner.filament_size[4])); #if EXTRUDERS > 5 CONFIG_ECHO_START(); SERIAL_ECHOLNPAIR(" M200 T5 D", LINEAR_UNIT(planner.filament_size[5])); #endif // EXTRUDERS > 5 #endif // EXTRUDERS > 4 #endif // EXTRUDERS > 3 #endif // EXTRUDERS > 2 #endif // EXTRUDERS > 1 if (!parser.volumetric_enabled) CONFIG_ECHO_MSG(" M200 D0"); #endif // !NO_VOLUMETRICS CONFIG_ECHO_HEADING("Steps per unit:"); report_M92(!forReplay); CONFIG_ECHO_HEADING("Maximum feedrates (units/s):"); CONFIG_ECHO_START(); SERIAL_ECHOLNPAIR_P( PSTR(" M203 X"), LINEAR_UNIT(planner.settings.max_feedrate_mm_s[X_AXIS]) , SP_Y_STR, LINEAR_UNIT(planner.settings.max_feedrate_mm_s[Y_AXIS]) , SP_Z_STR, LINEAR_UNIT(planner.settings.max_feedrate_mm_s[Z_AXIS]) #if DISABLED(DISTINCT_E_FACTORS) , SP_E_STR, VOLUMETRIC_UNIT(planner.settings.max_feedrate_mm_s[E_AXIS]) #endif ); #if ENABLED(DISTINCT_E_FACTORS) CONFIG_ECHO_START(); for (uint8_t i = 0; i < E_STEPPERS; i++) { SERIAL_ECHOLNPAIR_P( PSTR(" M203 T"), (int)i , SP_E_STR, VOLUMETRIC_UNIT(planner.settings.max_feedrate_mm_s[E_AXIS_N(i)]) ); } #endif CONFIG_ECHO_HEADING("Maximum Acceleration (units/s2):"); CONFIG_ECHO_START(); SERIAL_ECHOLNPAIR_P( PSTR(" M201 X"), LINEAR_UNIT(planner.settings.max_acceleration_mm_per_s2[X_AXIS]) , SP_Y_STR, LINEAR_UNIT(planner.settings.max_acceleration_mm_per_s2[Y_AXIS]) , SP_Z_STR, LINEAR_UNIT(planner.settings.max_acceleration_mm_per_s2[Z_AXIS]) #if DISABLED(DISTINCT_E_FACTORS) , SP_E_STR, VOLUMETRIC_UNIT(planner.settings.max_acceleration_mm_per_s2[E_AXIS]) #endif ); #if ENABLED(DISTINCT_E_FACTORS) CONFIG_ECHO_START(); for (uint8_t i = 0; i < E_STEPPERS; i++) SERIAL_ECHOLNPAIR_P( PSTR(" M201 T"), (int)i , SP_E_STR, VOLUMETRIC_UNIT(planner.settings.max_acceleration_mm_per_s2[E_AXIS_N(i)]) ); #endif CONFIG_ECHO_HEADING("Acceleration (units/s2): P R T"); CONFIG_ECHO_START(); SERIAL_ECHOLNPAIR( " M204 P", LINEAR_UNIT(planner.settings.acceleration) , " R", LINEAR_UNIT(planner.settings.retract_acceleration) , " T", LINEAR_UNIT(planner.settings.travel_acceleration) ); if (!forReplay) { CONFIG_ECHO_START(); SERIAL_ECHOPGM("Advanced: B S T"); #if DISABLED(CLASSIC_JERK) SERIAL_ECHOPGM(" J"); #endif #if HAS_CLASSIC_JERK SERIAL_ECHOPGM(" X Y Z"); #if HAS_CLASSIC_E_JERK SERIAL_ECHOPGM(" E"); #endif #endif SERIAL_EOL(); } CONFIG_ECHO_START(); SERIAL_ECHOLNPAIR_P( PSTR(" M205 B"), LINEAR_UNIT(planner.settings.min_segment_time_us) , PSTR(" S"), LINEAR_UNIT(planner.settings.min_feedrate_mm_s) , PSTR(" T"), LINEAR_UNIT(planner.settings.min_travel_feedrate_mm_s) #if DISABLED(CLASSIC_JERK) , PSTR(" J"), LINEAR_UNIT(planner.junction_deviation_mm) #endif #if HAS_CLASSIC_JERK , SP_X_STR, LINEAR_UNIT(planner.max_jerk.x) , SP_Y_STR, LINEAR_UNIT(planner.max_jerk.y) , SP_Z_STR, LINEAR_UNIT(planner.max_jerk.z) #if HAS_CLASSIC_E_JERK , SP_E_STR, LINEAR_UNIT(planner.max_jerk.e) #endif #endif ); #if HAS_M206_COMMAND CONFIG_ECHO_HEADING("Home offset:"); CONFIG_ECHO_START(); SERIAL_ECHOLNPAIR_P( #if IS_CARTESIAN PSTR(" M206 X"), LINEAR_UNIT(home_offset.x) , SP_Y_STR, LINEAR_UNIT(home_offset.y) , SP_Z_STR #else PSTR(" M206 Z") #endif , LINEAR_UNIT(home_offset.z) ); #endif #if HAS_HOTEND_OFFSET CONFIG_ECHO_HEADING("Hotend offsets:"); CONFIG_ECHO_START(); for (uint8_t e = 1; e < HOTENDS; e++) { SERIAL_ECHOPAIR_P( PSTR(" M218 T"), (int)e, SP_X_STR, LINEAR_UNIT(hotend_offset[e].x), SP_Y_STR, LINEAR_UNIT(hotend_offset[e].y) ); SERIAL_ECHOLNPAIR_F_P(SP_Z_STR, LINEAR_UNIT(hotend_offset[e].z), 3); } #endif /** * Bed Leveling */ #if HAS_LEVELING #if ENABLED(MESH_BED_LEVELING) CONFIG_ECHO_HEADING("Mesh Bed Leveling:"); #elif ENABLED(AUTO_BED_LEVELING_UBL) if (!forReplay) { CONFIG_ECHO_START(); ubl.echo_name(); SERIAL_ECHOLNPGM(":"); } #elif HAS_ABL_OR_UBL CONFIG_ECHO_HEADING("Auto Bed Leveling:"); #endif CONFIG_ECHO_START(); SERIAL_ECHOLNPAIR_P( PSTR(" M420 S"), planner.leveling_active ? 1 : 0 #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT) , SP_Z_STR, LINEAR_UNIT(planner.z_fade_height) #endif ); #if ENABLED(MESH_BED_LEVELING) if (leveling_is_valid()) { for (uint8_t py = 0; py < GRID_MAX_POINTS_Y; py++) { for (uint8_t px = 0; px < GRID_MAX_POINTS_X; px++) { CONFIG_ECHO_START(); SERIAL_ECHOPAIR_P(PSTR(" G29 S3 I"), (int)px, PSTR(" J"), (int)py); SERIAL_ECHOLNPAIR_F_P(SP_Z_STR, LINEAR_UNIT(mbl.z_values[px][py]), 5); } } CONFIG_ECHO_START(); SERIAL_ECHOLNPAIR_F_P(PSTR(" G29 S4 Z"), LINEAR_UNIT(mbl.z_offset), 5); } #elif ENABLED(AUTO_BED_LEVELING_UBL) if (!forReplay) { SERIAL_EOL(); ubl.report_state(); SERIAL_ECHOLNPAIR("\nActive Mesh Slot: ", ubl.storage_slot); SERIAL_ECHOLNPAIR("EEPROM can hold ", calc_num_meshes(), " meshes.\n"); } //ubl.report_current_mesh(); // This is too verbose for large meshes. A better (more terse) // solution needs to be found. #elif ENABLED(AUTO_BED_LEVELING_BILINEAR) if (leveling_is_valid()) { for (uint8_t py = 0; py < GRID_MAX_POINTS_Y; py++) { for (uint8_t px = 0; px < GRID_MAX_POINTS_X; px++) { CONFIG_ECHO_START(); SERIAL_ECHOPAIR(" G29 W I", (int)px, " J", (int)py); SERIAL_ECHOLNPAIR_F_P(SP_Z_STR, LINEAR_UNIT(z_values[px][py]), 5); } } } #endif #endif // HAS_LEVELING #if ENABLED(EDITABLE_SERVO_ANGLES) CONFIG_ECHO_HEADING("Servo Angles:"); for (uint8_t i = 0; i < NUM_SERVOS; i++) { switch (i) { #if ENABLED(SWITCHING_EXTRUDER) case SWITCHING_EXTRUDER_SERVO_NR: #if EXTRUDERS > 3 case SWITCHING_EXTRUDER_E23_SERVO_NR: #endif #elif ENABLED(SWITCHING_NOZZLE) case SWITCHING_NOZZLE_SERVO_NR: #elif (ENABLED(BLTOUCH) && defined(BLTOUCH_ANGLES)) || (defined(Z_SERVO_ANGLES) && defined(Z_PROBE_SERVO_NR)) case Z_PROBE_SERVO_NR: #endif CONFIG_ECHO_START(); SERIAL_ECHOLNPAIR(" M281 P", int(i), " L", servo_angles[i][0], " U", servo_angles[i][1]); default: break; } } #endif // EDITABLE_SERVO_ANGLES #if HAS_SCARA_OFFSET CONFIG_ECHO_HEADING("SCARA settings: S P T"); CONFIG_ECHO_START(); SERIAL_ECHOLNPAIR_P( PSTR(" M665 S"), delta_segments_per_second , PSTR(" P"), scara_home_offset.a , PSTR(" T"), scara_home_offset.b , SP_Z_STR, LINEAR_UNIT(scara_home_offset.z) ); #elif ENABLED(DELTA) CONFIG_ECHO_HEADING("Endstop adjustment:"); CONFIG_ECHO_START(); SERIAL_ECHOLNPAIR_P( PSTR(" M666 X"), LINEAR_UNIT(delta_endstop_adj.a) , SP_Y_STR, LINEAR_UNIT(delta_endstop_adj.b) , SP_Z_STR, LINEAR_UNIT(delta_endstop_adj.c) ); CONFIG_ECHO_HEADING("Delta settings: L R H S XYZ"); CONFIG_ECHO_START(); SERIAL_ECHOLNPAIR_P( PSTR(" M665 L"), LINEAR_UNIT(delta_diagonal_rod) , PSTR(" R"), LINEAR_UNIT(delta_radius) , PSTR(" H"), LINEAR_UNIT(delta_height) , PSTR(" S"), delta_segments_per_second , SP_X_STR, LINEAR_UNIT(delta_tower_angle_trim.a) , SP_Y_STR, LINEAR_UNIT(delta_tower_angle_trim.b) , SP_Z_STR, LINEAR_UNIT(delta_tower_angle_trim.c) ); #elif EITHER(X_DUAL_ENDSTOPS, Y_DUAL_ENDSTOPS) || Z_MULTI_ENDSTOPS CONFIG_ECHO_HEADING("Endstop adjustment:"); CONFIG_ECHO_START(); SERIAL_ECHOPGM(" M666"); #if ENABLED(X_DUAL_ENDSTOPS) SERIAL_ECHOPAIR_P(SP_X_STR, LINEAR_UNIT(endstops.x2_endstop_adj)); #endif #if ENABLED(Y_DUAL_ENDSTOPS) SERIAL_ECHOPAIR_P(SP_Y_STR, LINEAR_UNIT(endstops.y2_endstop_adj)); #endif #if ENABLED(Z_TRIPLE_ENDSTOPS) SERIAL_ECHOLNPAIR("S1 Z", LINEAR_UNIT(endstops.z2_endstop_adj)); CONFIG_ECHO_START(); SERIAL_ECHOPAIR(" M666 S2 Z", LINEAR_UNIT(endstops.z3_endstop_adj)); #elif ENABLED(Z_DUAL_ENDSTOPS) SERIAL_ECHOPAIR_P(SP_Z_STR, LINEAR_UNIT(endstops.z2_endstop_adj)); #endif SERIAL_EOL(); #endif // [XYZ]_DUAL_ENDSTOPS #if HOTENDS && HAS_LCD_MENU CONFIG_ECHO_HEADING("Material heatup parameters:"); for (uint8_t i = 0; i < COUNT(ui.preheat_hotend_temp); i++) { CONFIG_ECHO_START(); SERIAL_ECHOLNPAIR( " M145 S", (int)i , " H", TEMP_UNIT(ui.preheat_hotend_temp[i]) , " B", TEMP_UNIT(ui.preheat_bed_temp[i]) , " F", int(ui.preheat_fan_speed[i]) ); } #endif #if HAS_PID_HEATING CONFIG_ECHO_HEADING("PID settings:"); #if ENABLED(PIDTEMP) HOTEND_LOOP() { CONFIG_ECHO_START(); SERIAL_ECHOPAIR_P( #if HOTENDS > 1 && ENABLED(PID_PARAMS_PER_HOTEND) PSTR(" M301 E"), e, PSTR(" P") #else PSTR(" M301 P") #endif , PID_PARAM(Kp, e) , PSTR(" I"), unscalePID_i(PID_PARAM(Ki, e)) , PSTR(" D"), unscalePID_d(PID_PARAM(Kd, e)) ); #if ENABLED(PID_EXTRUSION_SCALING) SERIAL_ECHOPAIR(" C", PID_PARAM(Kc, e)); if (e == 0) SERIAL_ECHOPAIR(" L", thermalManager.lpq_len); #endif #if ENABLED(PID_FAN_SCALING) SERIAL_ECHOPAIR(" F", PID_PARAM(Kf, e)); #endif SERIAL_EOL(); } #endif // PIDTEMP #if ENABLED(PIDTEMPBED) CONFIG_ECHO_START(); SERIAL_ECHOLNPAIR( " M304 P", thermalManager.temp_bed.pid.Kp , " I", unscalePID_i(thermalManager.temp_bed.pid.Ki) , " D", unscalePID_d(thermalManager.temp_bed.pid.Kd) ); #endif #endif // PIDTEMP || PIDTEMPBED #if HAS_USER_THERMISTORS CONFIG_ECHO_HEADING("User thermistors:"); for (uint8_t i = 0; i < USER_THERMISTORS; i++) thermalManager.log_user_thermistor(i, true); #endif #if HAS_LCD_CONTRAST CONFIG_ECHO_HEADING("LCD Contrast:"); CONFIG_ECHO_START(); SERIAL_ECHOLNPAIR(" M250 C", ui.contrast); #endif #if ENABLED(POWER_LOSS_RECOVERY) CONFIG_ECHO_HEADING("Power-Loss Recovery:"); CONFIG_ECHO_START(); SERIAL_ECHOLNPAIR(" M413 S", int(recovery.enabled)); #endif #if ENABLED(FWRETRACT) CONFIG_ECHO_HEADING("Retract: S F Z"); CONFIG_ECHO_START(); SERIAL_ECHOLNPAIR_P( PSTR(" M207 S"), LINEAR_UNIT(fwretract.settings.retract_length) , PSTR(" W"), LINEAR_UNIT(fwretract.settings.swap_retract_length) , PSTR(" F"), LINEAR_UNIT(MMS_TO_MMM(fwretract.settings.retract_feedrate_mm_s)) , SP_Z_STR, LINEAR_UNIT(fwretract.settings.retract_zraise) ); CONFIG_ECHO_HEADING("Recover: S F"); CONFIG_ECHO_START(); SERIAL_ECHOLNPAIR( " M208 S", LINEAR_UNIT(fwretract.settings.retract_recover_extra) , " W", LINEAR_UNIT(fwretract.settings.swap_retract_recover_extra) , " F", LINEAR_UNIT(MMS_TO_MMM(fwretract.settings.retract_recover_feedrate_mm_s)) ); #if ENABLED(FWRETRACT_AUTORETRACT) CONFIG_ECHO_HEADING("Auto-Retract: S=0 to disable, 1 to interpret E-only moves as retract/recover"); CONFIG_ECHO_START(); SERIAL_ECHOLNPAIR(" M209 S", fwretract.autoretract_enabled ? 1 : 0); #endif // FWRETRACT_AUTORETRACT #endif // FWRETRACT /** * Probe Offset */ #if HAS_BED_PROBE if (!forReplay) { CONFIG_ECHO_START(); SERIAL_ECHOPGM("Z-Probe Offset"); say_units(true); } CONFIG_ECHO_START(); SERIAL_ECHOLNPAIR_P( #if HAS_PROBE_XY_OFFSET PSTR(" M851 X"), LINEAR_UNIT(probe_offset_xy.x), SP_Y_STR, LINEAR_UNIT(probe_offset_xy.y), SP_Z_STR #else PSTR(" M851 X0 Y0 Z") #endif , LINEAR_UNIT(probe_offset.z) ); #endif /** * Bed Skew Correction */ #if ENABLED(SKEW_CORRECTION_GCODE) CONFIG_ECHO_HEADING("Skew Factor: "); CONFIG_ECHO_START(); #if ENABLED(SKEW_CORRECTION_FOR_Z) SERIAL_ECHOPAIR_F(" M852 I", LINEAR_UNIT(planner.skew_factor.xy), 6); SERIAL_ECHOPAIR_F(" J", LINEAR_UNIT(planner.skew_factor.xz), 6); SERIAL_ECHOLNPAIR_F(" K", LINEAR_UNIT(planner.skew_factor.yz), 6); #else SERIAL_ECHOLNPAIR_F(" M852 S", LINEAR_UNIT(planner.skew_factor.xy), 6); #endif #endif #if HAS_TRINAMIC /** * TMC stepper driver current */ CONFIG_ECHO_HEADING("Stepper driver current:"); #if AXIS_IS_TMC(X) || AXIS_IS_TMC(Y) || AXIS_IS_TMC(Z) say_M906(forReplay); #if AXIS_IS_TMC(X) SERIAL_ECHOPAIR_P(SP_X_STR, stepperX.getMilliamps()); #endif #if AXIS_IS_TMC(Y) SERIAL_ECHOPAIR_P(SP_Y_STR, stepperY.getMilliamps()); #endif #if AXIS_IS_TMC(Z) SERIAL_ECHOPAIR_P(SP_Z_STR, stepperZ.getMilliamps()); #endif SERIAL_EOL(); #endif #if AXIS_IS_TMC(X2) || AXIS_IS_TMC(Y2) || AXIS_IS_TMC(Z2) say_M906(forReplay); SERIAL_ECHOPGM(" I1"); #if AXIS_IS_TMC(X2) SERIAL_ECHOPAIR_P(SP_X_STR, stepperX2.getMilliamps()); #endif #if AXIS_IS_TMC(Y2) SERIAL_ECHOPAIR_P(SP_Y_STR, stepperY2.getMilliamps()); #endif #if AXIS_IS_TMC(Z2) SERIAL_ECHOPAIR_P(SP_Z_STR, stepperZ2.getMilliamps()); #endif SERIAL_EOL(); #endif #if AXIS_IS_TMC(Z3) say_M906(forReplay); SERIAL_ECHOLNPAIR(" I2 Z", stepperZ3.getMilliamps()); #endif #if AXIS_IS_TMC(E0) say_M906(forReplay); SERIAL_ECHOLNPAIR(" T0 E", stepperE0.getMilliamps()); #endif #if AXIS_IS_TMC(E1) say_M906(forReplay); SERIAL_ECHOLNPAIR(" T1 E", stepperE1.getMilliamps()); #endif #if AXIS_IS_TMC(E2) say_M906(forReplay); SERIAL_ECHOLNPAIR(" T2 E", stepperE2.getMilliamps()); #endif #if AXIS_IS_TMC(E3) say_M906(forReplay); SERIAL_ECHOLNPAIR(" T3 E", stepperE3.getMilliamps()); #endif #if AXIS_IS_TMC(E4) say_M906(forReplay); SERIAL_ECHOLNPAIR(" T4 E", stepperE4.getMilliamps()); #endif #if AXIS_IS_TMC(E5) say_M906(forReplay); SERIAL_ECHOLNPAIR(" T5 E", stepperE5.getMilliamps()); #endif SERIAL_EOL(); /** * TMC Hybrid Threshold */ #if ENABLED(HYBRID_THRESHOLD) CONFIG_ECHO_HEADING("Hybrid Threshold:"); #if AXIS_HAS_STEALTHCHOP(X) || AXIS_HAS_STEALTHCHOP(Y) || AXIS_HAS_STEALTHCHOP(Z) say_M913(forReplay); #endif #if AXIS_HAS_STEALTHCHOP(X) SERIAL_ECHOPAIR_P(SP_X_STR, stepperX.get_pwm_thrs()); #endif #if AXIS_HAS_STEALTHCHOP(Y) SERIAL_ECHOPAIR_P(SP_Y_STR, stepperY.get_pwm_thrs()); #endif #if AXIS_HAS_STEALTHCHOP(Z) SERIAL_ECHOPAIR_P(SP_Z_STR, stepperZ.get_pwm_thrs()); #endif #if AXIS_HAS_STEALTHCHOP(X) || AXIS_HAS_STEALTHCHOP(Y) || AXIS_HAS_STEALTHCHOP(Z) SERIAL_EOL(); #endif #if AXIS_HAS_STEALTHCHOP(X2) || AXIS_HAS_STEALTHCHOP(Y2) || AXIS_HAS_STEALTHCHOP(Z2) say_M913(forReplay); SERIAL_ECHOPGM(" I1"); #endif #if AXIS_HAS_STEALTHCHOP(X2) SERIAL_ECHOPAIR_P(SP_X_STR, stepperX2.get_pwm_thrs()); #endif #if AXIS_HAS_STEALTHCHOP(Y2) SERIAL_ECHOPAIR_P(SP_Y_STR, stepperY2.get_pwm_thrs()); #endif #if AXIS_HAS_STEALTHCHOP(Z2) SERIAL_ECHOPAIR_P(SP_Z_STR, stepperZ2.get_pwm_thrs()); #endif #if AXIS_HAS_STEALTHCHOP(X2) || AXIS_HAS_STEALTHCHOP(Y2) || AXIS_HAS_STEALTHCHOP(Z2) SERIAL_EOL(); #endif #if AXIS_HAS_STEALTHCHOP(Z3) say_M913(forReplay); SERIAL_ECHOLNPAIR(" I2 Z", stepperZ3.get_pwm_thrs()); #endif #if AXIS_HAS_STEALTHCHOP(E0) say_M913(forReplay); SERIAL_ECHOLNPAIR(" T0 E", stepperE0.get_pwm_thrs()); #endif #if AXIS_HAS_STEALTHCHOP(E1) say_M913(forReplay); SERIAL_ECHOLNPAIR(" T1 E", stepperE1.get_pwm_thrs()); #endif #if AXIS_HAS_STEALTHCHOP(E2) say_M913(forReplay); SERIAL_ECHOLNPAIR(" T2 E", stepperE2.get_pwm_thrs()); #endif #if AXIS_HAS_STEALTHCHOP(E3) say_M913(forReplay); SERIAL_ECHOLNPAIR(" T3 E", stepperE3.get_pwm_thrs()); #endif #if AXIS_HAS_STEALTHCHOP(E4) say_M913(forReplay); SERIAL_ECHOLNPAIR(" T4 E", stepperE4.get_pwm_thrs()); #endif #if AXIS_HAS_STEALTHCHOP(E5) say_M913(forReplay); SERIAL_ECHOLNPAIR(" T5 E", stepperE5.get_pwm_thrs()); #endif SERIAL_EOL(); #endif // HYBRID_THRESHOLD /** * TMC Sensorless homing thresholds */ #if USE_SENSORLESS CONFIG_ECHO_HEADING("StallGuard threshold:"); #if X_SENSORLESS || Y_SENSORLESS || Z_SENSORLESS CONFIG_ECHO_START(); say_M914(); #if X_SENSORLESS SERIAL_ECHOPAIR_P(SP_X_STR, stepperX.homing_threshold()); #endif #if Y_SENSORLESS SERIAL_ECHOPAIR_P(SP_Y_STR, stepperY.homing_threshold()); #endif #if Z_SENSORLESS SERIAL_ECHOPAIR_P(SP_Z_STR, stepperZ.homing_threshold()); #endif SERIAL_EOL(); #endif #if X2_SENSORLESS || Y2_SENSORLESS || Z2_SENSORLESS CONFIG_ECHO_START(); say_M914(); SERIAL_ECHOPGM(" I1"); #if X2_SENSORLESS SERIAL_ECHOPAIR_P(SP_X_STR, stepperX2.homing_threshold()); #endif #if Y2_SENSORLESS SERIAL_ECHOPAIR_P(SP_Y_STR, stepperY2.homing_threshold()); #endif #if Z2_SENSORLESS SERIAL_ECHOPAIR_P(SP_Z_STR, stepperZ2.homing_threshold()); #endif SERIAL_EOL(); #endif #if Z3_SENSORLESS CONFIG_ECHO_START(); say_M914(); SERIAL_ECHOLNPAIR(" I2 Z", stepperZ3.homing_threshold()); #endif #endif // USE_SENSORLESS /** * TMC stepping mode */ #if HAS_STEALTHCHOP CONFIG_ECHO_HEADING("Driver stepping mode:"); #if AXIS_HAS_STEALTHCHOP(X) const bool chop_x = stepperX.get_stealthChop_status(); #else constexpr bool chop_x = false; #endif #if AXIS_HAS_STEALTHCHOP(Y) const bool chop_y = stepperY.get_stealthChop_status(); #else constexpr bool chop_y = false; #endif #if AXIS_HAS_STEALTHCHOP(Z) const bool chop_z = stepperZ.get_stealthChop_status(); #else constexpr bool chop_z = false; #endif if (chop_x || chop_y || chop_z) { say_M569(forReplay); if (chop_x) SERIAL_ECHO_P(SP_X_STR); if (chop_y) SERIAL_ECHO_P(SP_Y_STR); if (chop_z) SERIAL_ECHO_P(SP_Z_STR); SERIAL_EOL(); } #if AXIS_HAS_STEALTHCHOP(X2) const bool chop_x2 = stepperX2.get_stealthChop_status(); #else constexpr bool chop_x2 = false; #endif #if AXIS_HAS_STEALTHCHOP(Y2) const bool chop_y2 = stepperY2.get_stealthChop_status(); #else constexpr bool chop_y2 = false; #endif #if AXIS_HAS_STEALTHCHOP(Z2) const bool chop_z2 = stepperZ2.get_stealthChop_status(); #else constexpr bool chop_z2 = false; #endif if (chop_x2 || chop_y2 || chop_z2) { say_M569(forReplay, PSTR("I1")); if (chop_x2) SERIAL_ECHO_P(SP_X_STR); if (chop_y2) SERIAL_ECHO_P(SP_Y_STR); if (chop_z2) SERIAL_ECHO_P(SP_Z_STR); SERIAL_EOL(); } #if AXIS_HAS_STEALTHCHOP(Z3) if (stepperZ3.get_stealthChop_status()) { say_M569(forReplay, PSTR("I2 Z"), true); } #endif #if AXIS_HAS_STEALTHCHOP(E0) if (stepperE0.get_stealthChop_status()) { say_M569(forReplay, PSTR("T0 E"), true); } #endif #if AXIS_HAS_STEALTHCHOP(E1) if (stepperE1.get_stealthChop_status()) { say_M569(forReplay, PSTR("T1 E"), true); } #endif #if AXIS_HAS_STEALTHCHOP(E2) if (stepperE2.get_stealthChop_status()) { say_M569(forReplay, PSTR("T2 E"), true); } #endif #if AXIS_HAS_STEALTHCHOP(E3) if (stepperE3.get_stealthChop_status()) { say_M569(forReplay, PSTR("T3 E"), true); } #endif #if AXIS_HAS_STEALTHCHOP(E4) if (stepperE4.get_stealthChop_status()) { say_M569(forReplay, PSTR("T4 E"), true); } #endif #if AXIS_HAS_STEALTHCHOP(E5) if (stepperE5.get_stealthChop_status()) { say_M569(forReplay, PSTR("T5 E"), true); } #endif #endif // HAS_STEALTHCHOP #endif // HAS_TRINAMIC /** * Linear Advance */ #if ENABLED(LIN_ADVANCE) CONFIG_ECHO_HEADING("Linear Advance:"); CONFIG_ECHO_START(); #if EXTRUDERS < 2 SERIAL_ECHOLNPAIR(" M900 K", planner.extruder_advance_K[0]); #else LOOP_L_N(i, EXTRUDERS) SERIAL_ECHOLNPAIR(" M900 T", int(i), " K", planner.extruder_advance_K[i]); #endif #endif #if HAS_MOTOR_CURRENT_PWM CONFIG_ECHO_HEADING("Stepper motor currents:"); CONFIG_ECHO_START(); SERIAL_ECHOLNPAIR_P( PSTR(" M907 X"), stepper.motor_current_setting[0] , SP_Z_STR, stepper.motor_current_setting[1] , SP_E_STR, stepper.motor_current_setting[2] ); #endif /** * Advanced Pause filament load & unload lengths */ #if ENABLED(ADVANCED_PAUSE_FEATURE) CONFIG_ECHO_HEADING("Filament load/unload lengths:"); #if EXTRUDERS == 1 say_M603(forReplay); SERIAL_ECHOLNPAIR("L", LINEAR_UNIT(fc_settings[0].load_length), " U", LINEAR_UNIT(fc_settings[0].unload_length)); #else #define _ECHO_603(N) do{ say_M603(forReplay); SERIAL_ECHOLNPAIR("T" STRINGIFY(N) " L", LINEAR_UNIT(fc_settings[N].load_length), " U", LINEAR_UNIT(fc_settings[N].unload_length)); }while(0) _ECHO_603(0); _ECHO_603(1); #if EXTRUDERS > 2 _ECHO_603(2); #if EXTRUDERS > 3 _ECHO_603(3); #if EXTRUDERS > 4 _ECHO_603(4); #if EXTRUDERS > 5 _ECHO_603(5); #endif // EXTRUDERS > 5 #endif // EXTRUDERS > 4 #endif // EXTRUDERS > 3 #endif // EXTRUDERS > 2 #endif // EXTRUDERS == 1 #endif // ADVANCED_PAUSE_FEATURE #if EXTRUDERS > 1 CONFIG_ECHO_HEADING("Tool-changing:"); CONFIG_ECHO_START(); M217_report(true); #endif #if ENABLED(BACKLASH_GCODE) CONFIG_ECHO_HEADING("Backlash compensation:"); CONFIG_ECHO_START(); SERIAL_ECHOLNPAIR_P( PSTR(" M425 F"), backlash.get_correction() , SP_X_STR, LINEAR_UNIT(backlash.distance_mm.x) , SP_Y_STR, LINEAR_UNIT(backlash.distance_mm.y) , SP_Z_STR, LINEAR_UNIT(backlash.distance_mm.z) #ifdef BACKLASH_SMOOTHING_MM , PSTR(" S"), LINEAR_UNIT(backlash.smoothing_mm) #endif ); #endif #if HAS_FILAMENT_SENSOR CONFIG_ECHO_HEADING("Filament runout sensor:"); CONFIG_ECHO_START(); SERIAL_ECHOLNPAIR( " M412 S", int(runout.enabled) #ifdef FILAMENT_RUNOUT_DISTANCE_MM , " D", LINEAR_UNIT(runout.runout_distance()) #endif ); #endif } #endif // !DISABLE_M503 #pragma pack(pop)