/** * Marlin 3D Printer Firmware * Copyright (c) 2019 MarlinFirmware [https://github.com/MarlinFirmware/Marlin] * * Based on Sprinter and grbl. * Copyright (c) 2011 Camiel Gubbels / Erik van der Zalm * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see . * */ #pragma once /** * temperature.h - temperature controller */ #include "thermistor/thermistors.h" #include "../inc/MarlinConfig.h" #if ENABLED(AUTO_POWER_CONTROL) #include "../feature/power.h" #endif #ifndef SOFT_PWM_SCALE #define SOFT_PWM_SCALE 0 #endif #if HOTENDS <= 1 #define HOTEND_INDEX 0 #define E_NAME #else #define HOTEND_INDEX e #define E_NAME e #endif // Identifiers for other heaters typedef enum : int8_t { INDEX_NONE = -5, H_PROBE, H_REDUNDANT, H_CHAMBER, H_BED, H_E0, H_E1, H_E2, H_E3, H_E4, H_E5 } heater_ind_t; // PID storage typedef struct { float Kp, Ki, Kd; } PID_t; typedef struct { float Kp, Ki, Kd, Kc; } PIDC_t; typedef struct { float Kp, Ki, Kd, Kf; } PIDF_t; typedef struct { float Kp, Ki, Kd, Kc, Kf; } PIDCF_t; typedef #if BOTH(PID_EXTRUSION_SCALING, PID_FAN_SCALING) PIDCF_t #elif ENABLED(PID_EXTRUSION_SCALING) PIDC_t #elif ENABLED(PID_FAN_SCALING) PIDF_t #else PID_t #endif hotend_pid_t; #if ENABLED(PID_EXTRUSION_SCALING) typedef IF<(LPQ_MAX_LEN > 255), uint16_t, uint8_t>::type lpq_ptr_t; #endif #define DUMMY_PID_VALUE 3000.0f #if ENABLED(PIDTEMP) #define _PID_Kp(H) Temperature::temp_hotend[H].pid.Kp #define _PID_Ki(H) Temperature::temp_hotend[H].pid.Ki #define _PID_Kd(H) Temperature::temp_hotend[H].pid.Kd #if ENABLED(PID_EXTRUSION_SCALING) #define _PID_Kc(H) Temperature::temp_hotend[H].pid.Kc #else #define _PID_Kc(H) 1 #endif #if ENABLED(PID_FAN_SCALING) #define _PID_Kf(H) Temperature::temp_hotend[H].pid.Kf #else #define _PID_Kf(H) 0 #endif #else #define _PID_Kp(H) DUMMY_PID_VALUE #define _PID_Ki(H) DUMMY_PID_VALUE #define _PID_Kd(H) DUMMY_PID_VALUE #define _PID_Kc(H) 1 #endif #define PID_PARAM(F,H) _PID_##F(H) /** * States for ADC reading in the ISR */ enum ADCSensorState : char { StartSampling, #if HAS_TEMP_ADC_0 PrepareTemp_0, MeasureTemp_0, #endif #if HAS_HEATED_BED PrepareTemp_BED, MeasureTemp_BED, #endif #if HAS_TEMP_CHAMBER PrepareTemp_CHAMBER, MeasureTemp_CHAMBER, #endif #if HAS_TEMP_PROBE PrepareTemp_PROBE, MeasureTemp_PROBE, #endif #if HAS_TEMP_ADC_1 PrepareTemp_1, MeasureTemp_1, #endif #if HAS_TEMP_ADC_2 PrepareTemp_2, MeasureTemp_2, #endif #if HAS_TEMP_ADC_3 PrepareTemp_3, MeasureTemp_3, #endif #if HAS_TEMP_ADC_4 PrepareTemp_4, MeasureTemp_4, #endif #if HAS_TEMP_ADC_5 PrepareTemp_5, MeasureTemp_5, #endif #if HAS_JOY_ADC_X PrepareJoy_X, MeasureJoy_X, #endif #if HAS_JOY_ADC_Y PrepareJoy_Y, MeasureJoy_Y, #endif #if HAS_JOY_ADC_Z PrepareJoy_Z, MeasureJoy_Z, #endif #if ENABLED(FILAMENT_WIDTH_SENSOR) Prepare_FILWIDTH, Measure_FILWIDTH, #endif #if HAS_ADC_BUTTONS Prepare_ADC_KEY, Measure_ADC_KEY, #endif SensorsReady, // Temperatures ready. Delay the next round of readings to let ADC pins settle. StartupDelay // Startup, delay initial temp reading a tiny bit so the hardware can settle }; // Minimum number of Temperature::ISR loops between sensor readings. // Multiplied by 16 (OVERSAMPLENR) to obtain the total time to // get all oversampled sensor readings #define MIN_ADC_ISR_LOOPS 10 #define ACTUAL_ADC_SAMPLES _MAX(int(MIN_ADC_ISR_LOOPS), int(SensorsReady)) #if HAS_PID_HEATING #define PID_K2 (1-float(PID_K1)) #define PID_dT ((OVERSAMPLENR * float(ACTUAL_ADC_SAMPLES)) / TEMP_TIMER_FREQUENCY) // Apply the scale factors to the PID values #define scalePID_i(i) ( float(i) * PID_dT ) #define unscalePID_i(i) ( float(i) / PID_dT ) #define scalePID_d(d) ( float(d) / PID_dT ) #define unscalePID_d(d) ( float(d) * PID_dT ) #endif #define G26_CLICK_CAN_CANCEL (HAS_LCD_MENU && ENABLED(G26_MESH_VALIDATION)) // A temperature sensor typedef struct TempInfo { uint16_t acc; int16_t raw; float celsius; inline void reset() { acc = 0; } inline void sample(const uint16_t s) { acc += s; } inline void update() { raw = acc; } } temp_info_t; // A PWM heater with temperature sensor typedef struct HeaterInfo : public TempInfo { int16_t target; uint8_t soft_pwm_amount; } heater_info_t; // A heater with PID stabilization template struct PIDHeaterInfo : public HeaterInfo { T pid; // Initialized by settings.load() }; #if ENABLED(PIDTEMP) typedef struct PIDHeaterInfo hotend_info_t; #else typedef heater_info_t hotend_info_t; #endif #if HAS_HEATED_BED #if ENABLED(PIDTEMPBED) typedef struct PIDHeaterInfo bed_info_t; #else typedef heater_info_t bed_info_t; #endif #endif #if HAS_TEMP_PROBE typedef temp_info_t probe_info_t; #endif #if HAS_HEATED_CHAMBER typedef heater_info_t chamber_info_t; #elif HAS_TEMP_CHAMBER typedef temp_info_t chamber_info_t; #endif // Heater idle handling typedef struct { millis_t timeout_ms; bool timed_out; inline void update(const millis_t &ms) { if (!timed_out && timeout_ms && ELAPSED(ms, timeout_ms)) timed_out = true; } inline void start(const millis_t &ms) { timeout_ms = millis() + ms; timed_out = false; } inline void reset() { timeout_ms = 0; timed_out = false; } inline void expire() { start(0); } } heater_idle_t; // Heater watch handling typedef struct { uint16_t target; millis_t next_ms; inline bool elapsed(const millis_t &ms) { return next_ms && ELAPSED(ms, next_ms); } inline bool elapsed() { return elapsed(millis()); } } heater_watch_t; // Temperature sensor read value ranges typedef struct { int16_t raw_min, raw_max; } raw_range_t; typedef struct { int16_t mintemp, maxtemp; } celsius_range_t; typedef struct { int16_t raw_min, raw_max, mintemp, maxtemp; } temp_range_t; #define THERMISTOR_ABS_ZERO_C -273.15f // bbbbrrrrr cold ! #define THERMISTOR_RESISTANCE_NOMINAL_C 25.0f // mmmmm comfortable #if HAS_USER_THERMISTORS enum CustomThermistorIndex : uint8_t { #if ENABLED(HEATER_0_USER_THERMISTOR) CTI_HOTEND_0, #endif #if ENABLED(HEATER_1_USER_THERMISTOR) CTI_HOTEND_1, #endif #if ENABLED(HEATER_2_USER_THERMISTOR) CTI_HOTEND_2, #endif #if ENABLED(HEATER_3_USER_THERMISTOR) CTI_HOTEND_3, #endif #if ENABLED(HEATER_4_USER_THERMISTOR) CTI_HOTEND_4, #endif #if ENABLED(HEATER_5_USER_THERMISTOR) CTI_HOTEND_5, #endif #if ENABLED(HEATER_BED_USER_THERMISTOR) CTI_BED, #endif #if ENABLED(HEATER_PROBE_USER_THERMISTOR) CTI_PROBE, #endif #if ENABLED(HEATER_CHAMBER_USER_THERMISTOR) CTI_CHAMBER, #endif USER_THERMISTORS }; // User-defined thermistor typedef struct { bool pre_calc; // true if pre-calculations update needed float sh_c_coeff, // Steinhart-Hart C coefficient .. defaults to '0.0' sh_alpha, series_res, res_25, res_25_recip, res_25_log, beta, beta_recip; } user_thermistor_t; #endif class Temperature { public: #if HOTENDS #if ENABLED(TEMP_SENSOR_1_AS_REDUNDANT) #define HOTEND_TEMPS (HOTENDS + 1) #else #define HOTEND_TEMPS HOTENDS #endif static hotend_info_t temp_hotend[HOTEND_TEMPS]; #endif #if HAS_HEATED_BED static bed_info_t temp_bed; #endif #if HAS_TEMP_PROBE static probe_info_t temp_probe; #endif #if HAS_TEMP_CHAMBER static chamber_info_t temp_chamber; #endif #if ENABLED(AUTO_POWER_E_FANS) static uint8_t autofan_speed[HOTENDS]; #endif #if ENABLED(AUTO_POWER_CHAMBER_FAN) static uint8_t chamberfan_speed; #endif #if ENABLED(FAN_SOFT_PWM) static uint8_t soft_pwm_amount_fan[FAN_COUNT], soft_pwm_count_fan[FAN_COUNT]; #endif #if ENABLED(PREVENT_COLD_EXTRUSION) static bool allow_cold_extrude; static int16_t extrude_min_temp; FORCE_INLINE static bool tooCold(const int16_t temp) { return allow_cold_extrude ? false : temp < extrude_min_temp; } FORCE_INLINE static bool tooColdToExtrude(const uint8_t E_NAME) { return tooCold(degHotend(HOTEND_INDEX)); } FORCE_INLINE static bool targetTooColdToExtrude(const uint8_t E_NAME) { return tooCold(degTargetHotend(HOTEND_INDEX)); } #else FORCE_INLINE static bool tooColdToExtrude(const uint8_t) { return false; } FORCE_INLINE static bool targetTooColdToExtrude(const uint8_t) { return false; } #endif FORCE_INLINE static bool hotEnoughToExtrude(const uint8_t e) { return !tooColdToExtrude(e); } FORCE_INLINE static bool targetHotEnoughToExtrude(const uint8_t e) { return !targetTooColdToExtrude(e); } #if HEATER_IDLE_HANDLER static heater_idle_t hotend_idle[HOTENDS]; #if HAS_HEATED_BED static heater_idle_t bed_idle; #endif #if HAS_HEATED_CHAMBER static heater_idle_t chamber_idle; #endif #endif private: #if EARLY_WATCHDOG static bool inited; // If temperature controller is running #endif static volatile bool temp_meas_ready; #if WATCH_HOTENDS static heater_watch_t watch_hotend[HOTENDS]; #endif #if ENABLED(TEMP_SENSOR_1_AS_REDUNDANT) static uint16_t redundant_temperature_raw; static float redundant_temperature; #endif #if ENABLED(PID_EXTRUSION_SCALING) static int32_t last_e_position, lpq[LPQ_MAX_LEN]; static lpq_ptr_t lpq_ptr; #endif #if HOTENDS static temp_range_t temp_range[HOTENDS]; #endif #if HAS_HEATED_BED #if WATCH_BED static heater_watch_t watch_bed; #endif #if DISABLED(PIDTEMPBED) static millis_t next_bed_check_ms; #endif #ifdef BED_MINTEMP static int16_t mintemp_raw_BED; #endif #ifdef BED_MAXTEMP static int16_t maxtemp_raw_BED; #endif #endif #if HAS_HEATED_CHAMBER #if WATCH_CHAMBER static heater_watch_t watch_chamber; #endif static millis_t next_chamber_check_ms; #ifdef CHAMBER_MINTEMP static int16_t mintemp_raw_CHAMBER; #endif #ifdef CHAMBER_MAXTEMP static int16_t maxtemp_raw_CHAMBER; #endif #endif #ifdef MAX_CONSECUTIVE_LOW_TEMPERATURE_ERROR_ALLOWED static uint8_t consecutive_low_temperature_error[HOTENDS]; #endif #ifdef MILLISECONDS_PREHEAT_TIME static millis_t preheat_end_time[HOTENDS]; #endif #if HAS_AUTO_FAN static millis_t next_auto_fan_check_ms; #endif #if ENABLED(PROBING_HEATERS_OFF) static bool paused; #endif public: #if HAS_ADC_BUTTONS static uint32_t current_ADCKey_raw; static uint8_t ADCKey_count; #endif #if ENABLED(PID_EXTRUSION_SCALING) static int16_t lpq_len; #endif /** * Instance Methods */ void init(); /** * Static (class) methods */ #if HAS_USER_THERMISTORS static user_thermistor_t user_thermistor[USER_THERMISTORS]; static void log_user_thermistor(const uint8_t t_index, const bool eprom=false); static void reset_user_thermistors(); static float user_thermistor_to_deg_c(const uint8_t t_index, const int raw); static bool set_pull_up_res(int8_t t_index, float value) { //if (!WITHIN(t_index, 0, USER_THERMISTORS - 1)) return false; if (!WITHIN(value, 1, 1000000)) return false; user_thermistor[t_index].series_res = value; return true; } static bool set_res25(int8_t t_index, float value) { if (!WITHIN(value, 1, 10000000)) return false; user_thermistor[t_index].res_25 = value; user_thermistor[t_index].pre_calc = true; return true; } static bool set_beta(int8_t t_index, float value) { if (!WITHIN(value, 1, 1000000)) return false; user_thermistor[t_index].beta = value; user_thermistor[t_index].pre_calc = true; return true; } static bool set_sh_coeff(int8_t t_index, float value) { if (!WITHIN(value, -0.01f, 0.01f)) return false; user_thermistor[t_index].sh_c_coeff = value; user_thermistor[t_index].pre_calc = true; return true; } #endif #if HOTENDS static float analog_to_celsius_hotend(const int raw, const uint8_t e); #endif #if HAS_HEATED_BED static float analog_to_celsius_bed(const int raw); #endif #if HAS_TEMP_PROBE static float analog_to_celsius_probe(const int raw); #endif #if HAS_TEMP_CHAMBER static float analog_to_celsius_chamber(const int raw); #endif #if FAN_COUNT > 0 static uint8_t fan_speed[FAN_COUNT]; #define FANS_LOOP(I) LOOP_L_N(I, FAN_COUNT) static void set_fan_speed(const uint8_t target, const uint16_t speed); #if EITHER(PROBING_FANS_OFF, ADVANCED_PAUSE_FANS_PAUSE) static bool fans_paused; static uint8_t saved_fan_speed[FAN_COUNT]; #endif static constexpr inline uint8_t fanPercent(const uint8_t speed) { return ui8_to_percent(speed); } #if ENABLED(ADAPTIVE_FAN_SLOWING) static uint8_t fan_speed_scaler[FAN_COUNT]; #endif static inline uint8_t scaledFanSpeed(const uint8_t target, const uint8_t fs) { UNUSED(target); // Potentially unused! return (fs * uint16_t( #if ENABLED(ADAPTIVE_FAN_SLOWING) fan_speed_scaler[target] #else 128 #endif )) >> 7; } static inline uint8_t scaledFanSpeed(const uint8_t target) { return scaledFanSpeed(target, fan_speed[target]); } #if ENABLED(EXTRA_FAN_SPEED) static uint8_t old_fan_speed[FAN_COUNT], new_fan_speed[FAN_COUNT]; static void set_temp_fan_speed(const uint8_t fan, const uint16_t tmp_temp); #endif #if EITHER(PROBING_FANS_OFF, ADVANCED_PAUSE_FANS_PAUSE) void set_fans_paused(const bool p); #endif #endif // FAN_COUNT > 0 static inline void zero_fan_speeds() { #if FAN_COUNT > 0 FANS_LOOP(i) set_fan_speed(i, 0); #endif } /** * Called from the Temperature ISR */ static void readings_ready(); static void tick(); /** * Call periodically to manage heaters */ static void manage_heater() _O2; // Added _O2 to work around a compiler error /** * Preheating hotends */ #ifdef MILLISECONDS_PREHEAT_TIME static bool is_preheating(const uint8_t E_NAME) { return preheat_end_time[HOTEND_INDEX] && PENDING(millis(), preheat_end_time[HOTEND_INDEX]); } static void start_preheat_time(const uint8_t E_NAME) { preheat_end_time[HOTEND_INDEX] = millis() + MILLISECONDS_PREHEAT_TIME; } static void reset_preheat_time(const uint8_t E_NAME) { preheat_end_time[HOTEND_INDEX] = 0; } #else #define is_preheating(n) (false) #endif //high level conversion routines, for use outside of temperature.cpp //inline so that there is no performance decrease. //deg=degreeCelsius FORCE_INLINE static float degHotend(const uint8_t E_NAME) { return (0 #if HOTENDS + temp_hotend[HOTEND_INDEX].celsius #endif ); } #if ENABLED(SHOW_TEMP_ADC_VALUES) FORCE_INLINE static int16_t rawHotendTemp(const uint8_t E_NAME) { return (0 #if HOTENDS + temp_hotend[HOTEND_INDEX].raw #endif ); } #endif FORCE_INLINE static int16_t degTargetHotend(const uint8_t E_NAME) { return (0 #if HOTENDS + temp_hotend[HOTEND_INDEX].target #endif ); } #if WATCH_HOTENDS static void start_watching_hotend(const uint8_t e=0); #else static inline void start_watching_hotend(const uint8_t=0) {} #endif #if HOTENDS static void setTargetHotend(const int16_t celsius, const uint8_t E_NAME) { const uint8_t ee = HOTEND_INDEX; #ifdef MILLISECONDS_PREHEAT_TIME if (celsius == 0) reset_preheat_time(ee); else if (temp_hotend[ee].target == 0) start_preheat_time(ee); #endif #if ENABLED(AUTO_POWER_CONTROL) powerManager.power_on(); #endif temp_hotend[ee].target = _MIN(celsius, temp_range[ee].maxtemp - 15); start_watching_hotend(ee); } FORCE_INLINE static bool isHeatingHotend(const uint8_t E_NAME) { return temp_hotend[HOTEND_INDEX].target > temp_hotend[HOTEND_INDEX].celsius; } FORCE_INLINE static bool isCoolingHotend(const uint8_t E_NAME) { return temp_hotend[HOTEND_INDEX].target < temp_hotend[HOTEND_INDEX].celsius; } #if HAS_TEMP_HOTEND static bool wait_for_hotend(const uint8_t target_extruder, const bool no_wait_for_cooling=true #if G26_CLICK_CAN_CANCEL , const bool click_to_cancel=false #endif ); #endif FORCE_INLINE static bool still_heating(const uint8_t e) { return degTargetHotend(e) > TEMP_HYSTERESIS && ABS(degHotend(e) - degTargetHotend(e)) > TEMP_HYSTERESIS; } #endif // HOTENDS #if HAS_HEATED_BED #if ENABLED(SHOW_TEMP_ADC_VALUES) FORCE_INLINE static int16_t rawBedTemp() { return temp_bed.raw; } #endif FORCE_INLINE static float degBed() { return temp_bed.celsius; } FORCE_INLINE static int16_t degTargetBed() { return temp_bed.target; } FORCE_INLINE static bool isHeatingBed() { return temp_bed.target > temp_bed.celsius; } FORCE_INLINE static bool isCoolingBed() { return temp_bed.target < temp_bed.celsius; } #if WATCH_BED static void start_watching_bed(); #else static inline void start_watching_bed() {} #endif static void setTargetBed(const int16_t celsius) { #if ENABLED(AUTO_POWER_CONTROL) powerManager.power_on(); #endif temp_bed.target = #ifdef BED_MAXTEMP _MIN(celsius, BED_MAXTEMP - 10) #else celsius #endif ; start_watching_bed(); } static bool wait_for_bed(const bool no_wait_for_cooling=true #if G26_CLICK_CAN_CANCEL , const bool click_to_cancel=false #endif ); #endif // HAS_HEATED_BED #if HAS_TEMP_PROBE #if ENABLED(SHOW_TEMP_ADC_VALUES) FORCE_INLINE static int16_t rawProbeTemp() { return temp_probe.raw; } #endif FORCE_INLINE static float degProbe() { return temp_probe.celsius; } #endif #if WATCH_PROBE static void start_watching_probe(); #else static inline void start_watching_probe() {} #endif #if HAS_TEMP_CHAMBER #if ENABLED(SHOW_TEMP_ADC_VALUES) FORCE_INLINE static int16_t rawChamberTemp() { return temp_chamber.raw; } #endif FORCE_INLINE static float degChamber() { return temp_chamber.celsius; } #if HAS_HEATED_CHAMBER FORCE_INLINE static int16_t degTargetChamber() { return temp_chamber.target; } FORCE_INLINE static bool isHeatingChamber() { return temp_chamber.target > temp_chamber.celsius; } FORCE_INLINE static bool isCoolingChamber() { return temp_chamber.target < temp_chamber.celsius; } static bool wait_for_chamber(const bool no_wait_for_cooling=true); #endif #endif // HAS_TEMP_CHAMBER #if WATCH_CHAMBER static void start_watching_chamber(); #else static inline void start_watching_chamber() {} #endif #if HAS_HEATED_CHAMBER static void setTargetChamber(const int16_t celsius) { temp_chamber.target = #ifdef CHAMBER_MAXTEMP _MIN(celsius, CHAMBER_MAXTEMP) #else celsius #endif ; start_watching_chamber(); } #endif // HAS_HEATED_CHAMBER /** * The software PWM power for a heater */ static int16_t getHeaterPower(const heater_ind_t heater); /** * Switch off all heaters, set all target temperatures to 0 */ static void disable_all_heaters(); /** * Perform auto-tuning for hotend or bed in response to M303 */ #if HAS_PID_HEATING static void PID_autotune(const float &target, const heater_ind_t hotend, const int8_t ncycles, const bool set_result=false); #if ENABLED(NO_FAN_SLOWING_IN_PID_TUNING) static bool adaptive_fan_slowing; #elif ENABLED(ADAPTIVE_FAN_SLOWING) static constexpr bool adaptive_fan_slowing = true; #endif /** * Update the temp manager when PID values change */ #if ENABLED(PIDTEMP) FORCE_INLINE static void updatePID() { #if ENABLED(PID_EXTRUSION_SCALING) last_e_position = 0; #endif } #endif #endif #if ENABLED(PROBING_HEATERS_OFF) static void pause(const bool p); FORCE_INLINE static bool is_paused() { return paused; } #endif #if HEATER_IDLE_HANDLER static void reset_heater_idle_timer(const uint8_t E_NAME) { hotend_idle[HOTEND_INDEX].reset(); start_watching_hotend(HOTEND_INDEX); } #if HAS_HEATED_BED static void reset_bed_idle_timer() { bed_idle.reset(); start_watching_bed(); } #endif #endif // HEATER_IDLE_HANDLER #if HAS_TEMP_SENSOR static void print_heater_states(const uint8_t target_extruder #if ENABLED(TEMP_SENSOR_1_AS_REDUNDANT) , const bool include_r=false #endif ); #if ENABLED(AUTO_REPORT_TEMPERATURES) static uint8_t auto_report_temp_interval; static millis_t next_temp_report_ms; static void auto_report_temperatures(); static inline void set_auto_report_interval(uint8_t v) { NOMORE(v, 60); auto_report_temp_interval = v; next_temp_report_ms = millis() + 1000UL * v; } #endif #endif #if HAS_DISPLAY static void set_heating_message(const uint8_t e); #endif private: static void set_current_temp_raw(); static void updateTemperaturesFromRawValues(); #define HAS_MAX6675 EITHER(HEATER_0_USES_MAX6675, HEATER_1_USES_MAX6675) #if HAS_MAX6675 #if BOTH(HEATER_0_USES_MAX6675, HEATER_1_USES_MAX6675) #define COUNT_6675 2 #else #define COUNT_6675 1 #endif #if COUNT_6675 > 1 #define READ_MAX6675(N) read_max6675(N) #else #define READ_MAX6675(N) read_max6675() #endif static int read_max6675( #if COUNT_6675 > 1 const uint8_t hindex=0 #endif ); #endif static void checkExtruderAutoFans(); static float get_pid_output_hotend(const uint8_t e); #if ENABLED(PIDTEMPBED) static float get_pid_output_bed(); #endif #if HAS_HEATED_CHAMBER static float get_pid_output_chamber(); #endif static void _temp_error(const heater_ind_t e, PGM_P const serial_msg, PGM_P const lcd_msg); static void min_temp_error(const heater_ind_t e); static void max_temp_error(const heater_ind_t e); #define HAS_THERMAL_PROTECTION (EITHER(THERMAL_PROTECTION_HOTENDS, THERMAL_PROTECTION_CHAMBER) || HAS_THERMALLY_PROTECTED_BED) #if HAS_THERMAL_PROTECTION enum TRState : char { TRInactive, TRFirstHeating, TRStable, TRRunaway }; typedef struct { millis_t timer = 0; TRState state = TRInactive; } tr_state_machine_t; #if ENABLED(THERMAL_PROTECTION_HOTENDS) static tr_state_machine_t tr_state_machine[HOTENDS]; #endif #if HAS_THERMALLY_PROTECTED_BED static tr_state_machine_t tr_state_machine_bed; #endif #if ENABLED(THERMAL_PROTECTION_CHAMBER) static tr_state_machine_t tr_state_machine_chamber; #endif static void thermal_runaway_protection(tr_state_machine_t &state, const float ¤t, const float &target, const heater_ind_t heater_id, const uint16_t period_seconds, const uint16_t hysteresis_degc); #endif // HAS_THERMAL_PROTECTION }; extern Temperature thermalManager;