/** * Marlin 3D Printer Firmware * Copyright (c) 2020 MarlinFirmware [https://github.com/MarlinFirmware/Marlin] * * Based on Sprinter and grbl. * Copyright (c) 2011 Camiel Gubbels / Erik van der Zalm * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see . * */ /** * planner.cpp * * Buffer movement commands and manage the acceleration profile plan * * Derived from Grbl * Copyright (c) 2009-2011 Simen Svale Skogsrud * * Ring buffer gleaned from wiring_serial library by David A. Mellis. * * Fast inverse function needed for Bézier interpolation for AVR * was designed, written and tested by Eduardo José Tagle, April 2018. * * Planner mathematics (Mathematica-style): * * Where: s == speed, a == acceleration, t == time, d == distance * * Basic definitions: * Speed[s_, a_, t_] := s + (a*t) * Travel[s_, a_, t_] := Integrate[Speed[s, a, t], t] * * Distance to reach a specific speed with a constant acceleration: * Solve[{Speed[s, a, t] == m, Travel[s, a, t] == d}, d, t] * d -> (m^2 - s^2) / (2 a) * * Speed after a given distance of travel with constant acceleration: * Solve[{Speed[s, a, t] == m, Travel[s, a, t] == d}, m, t] * m -> Sqrt[2 a d + s^2] * * DestinationSpeed[s_, a_, d_] := Sqrt[2 a d + s^2] * * When to start braking (di) to reach a specified destination speed (s2) after * acceleration from initial speed s1 without ever reaching a plateau: * Solve[{DestinationSpeed[s1, a, di] == DestinationSpeed[s2, a, d - di]}, di] * di -> (2 a d - s1^2 + s2^2)/(4 a) * * We note, as an optimization, that if we have already calculated an * acceleration distance d1 from s1 to m and a deceration distance d2 * from m to s2 then * * d1 -> (m^2 - s1^2) / (2 a) * d2 -> (m^2 - s2^2) / (2 a) * di -> (d + d1 - d2) / 2 */ #include "planner.h" #include "stepper.h" #include "motion.h" #include "temperature.h" #include "../lcd/marlinui.h" #include "../gcode/parser.h" #include "../MarlinCore.h" #if HAS_LEVELING #include "../feature/bedlevel/bedlevel.h" #endif #if ENABLED(FILAMENT_WIDTH_SENSOR) #include "../feature/filwidth.h" #endif #if ENABLED(BARICUDA) #include "../feature/baricuda.h" #endif #if ENABLED(MIXING_EXTRUDER) #include "../feature/mixing.h" #endif #if ENABLED(AUTO_POWER_CONTROL) #include "../feature/power.h" #endif #if ENABLED(BACKLASH_COMPENSATION) #include "../feature/backlash.h" #endif #if ENABLED(CANCEL_OBJECTS) #include "../feature/cancel_object.h" #endif #if ENABLED(POWER_LOSS_RECOVERY) #include "../feature/powerloss.h" #endif #if HAS_CUTTER #include "../feature/spindle_laser.h" #endif // Delay for delivery of first block to the stepper ISR, if the queue contains 2 or // fewer movements. The delay is measured in milliseconds, and must be less than 250ms #define BLOCK_DELAY_FOR_1ST_MOVE 100 Planner planner; // public: /** * A ring buffer of moves described in steps */ block_t Planner::block_buffer[BLOCK_BUFFER_SIZE]; volatile uint8_t Planner::block_buffer_head, // Index of the next block to be pushed Planner::block_buffer_nonbusy, // Index of the first non-busy block Planner::block_buffer_planned, // Index of the optimally planned block Planner::block_buffer_tail; // Index of the busy block, if any uint16_t Planner::cleaning_buffer_counter; // A counter to disable queuing of blocks uint8_t Planner::delay_before_delivering; // This counter delays delivery of blocks when queue becomes empty to allow the opportunity of merging blocks planner_settings_t Planner::settings; // Initialized by settings.load() /** * Set up inline block variables * Set laser_power_floor based on SPEED_POWER_MIN to pevent a zero power output state with LASER_POWER_TRAP */ #if ENABLED(LASER_FEATURE) laser_state_t Planner::laser_inline; // Current state for blocks const uint8_t laser_power_floor = cutter.pct_to_ocr(SPEED_POWER_MIN); #endif uint32_t Planner::max_acceleration_steps_per_s2[DISTINCT_AXES]; // (steps/s^2) Derived from mm_per_s2 float Planner::mm_per_step[DISTINCT_AXES]; // (mm) Millimeters per step #if HAS_JUNCTION_DEVIATION float Planner::junction_deviation_mm; // (mm) M205 J #if HAS_LINEAR_E_JERK float Planner::max_e_jerk[DISTINCT_E]; // Calculated from junction_deviation_mm #endif #endif #if HAS_CLASSIC_JERK TERN(HAS_LINEAR_E_JERK, xyz_pos_t, xyze_pos_t) Planner::max_jerk; #endif #if ENABLED(SD_ABORT_ON_ENDSTOP_HIT) bool Planner::abort_on_endstop_hit = false; #endif #if ENABLED(DISTINCT_E_FACTORS) uint8_t Planner::last_extruder = 0; // Respond to extruder change #endif #if ENABLED(DIRECT_STEPPING) uint32_t Planner::last_page_step_rate = 0; xyze_bool_t Planner::last_page_dir{0}; #endif #if HAS_EXTRUDERS int16_t Planner::flow_percentage[EXTRUDERS] = ARRAY_BY_EXTRUDERS1(100); // Extrusion factor for each extruder float Planner::e_factor[EXTRUDERS] = ARRAY_BY_EXTRUDERS1(1.0f); // The flow percentage and volumetric multiplier combine to scale E movement #endif #if DISABLED(NO_VOLUMETRICS) float Planner::filament_size[EXTRUDERS], // diameter of filament (in millimeters), typically around 1.75 or 2.85, 0 disables the volumetric calculations for the extruder Planner::volumetric_area_nominal = CIRCLE_AREA(float(DEFAULT_NOMINAL_FILAMENT_DIA) * 0.5f), // Nominal cross-sectional area Planner::volumetric_multiplier[EXTRUDERS]; // Reciprocal of cross-sectional area of filament (in mm^2). Pre-calculated to reduce computation in the planner #endif #if ENABLED(VOLUMETRIC_EXTRUDER_LIMIT) float Planner::volumetric_extruder_limit[EXTRUDERS], // max mm^3/sec the extruder is able to handle Planner::volumetric_extruder_feedrate_limit[EXTRUDERS]; // pre calculated extruder feedrate limit based on volumetric_extruder_limit; pre-calculated to reduce computation in the planner #endif #if HAS_LEVELING bool Planner::leveling_active = false; // Flag that auto bed leveling is enabled #if ABL_PLANAR matrix_3x3 Planner::bed_level_matrix; // Transform to compensate for bed level #endif #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT) float Planner::z_fade_height, // Initialized by settings.load() Planner::inverse_z_fade_height, Planner::last_fade_z; #endif #else constexpr bool Planner::leveling_active; #endif skew_factor_t Planner::skew_factor; // Initialized by settings.load() #if ENABLED(AUTOTEMP) celsius_t Planner::autotemp_max = 250, Planner::autotemp_min = 210; float Planner::autotemp_factor = 0.1f; bool Planner::autotemp_enabled = false; #endif // private: xyze_long_t Planner::position{0}; uint32_t Planner::acceleration_long_cutoff; xyze_float_t Planner::previous_speed; float Planner::previous_nominal_speed; #if ENABLED(DISABLE_INACTIVE_EXTRUDER) last_move_t Planner::g_uc_extruder_last_move[E_STEPPERS] = { 0 }; #endif #ifdef XY_FREQUENCY_LIMIT int8_t Planner::xy_freq_limit_hz = XY_FREQUENCY_LIMIT; float Planner::xy_freq_min_speed_factor = (XY_FREQUENCY_MIN_PERCENT) * 0.01f; int32_t Planner::xy_freq_min_interval_us = LROUND(1000000.0f / (XY_FREQUENCY_LIMIT)); #endif #if ENABLED(LIN_ADVANCE) float Planner::extruder_advance_K[DISTINCT_E]; // Initialized by settings.load() #endif #if HAS_POSITION_FLOAT xyze_pos_t Planner::position_float; // Needed for accurate maths. Steps cannot be used! #endif #if IS_KINEMATIC xyze_pos_t Planner::position_cart; #endif #if HAS_WIRED_LCD volatile uint32_t Planner::block_buffer_runtime_us = 0; #endif /** * Class and Instance Methods */ Planner::Planner() { init(); } void Planner::init() { position.reset(); TERN_(HAS_POSITION_FLOAT, position_float.reset()); TERN_(IS_KINEMATIC, position_cart.reset()); previous_speed.reset(); previous_nominal_speed = 0; TERN_(ABL_PLANAR, bed_level_matrix.set_to_identity()); clear_block_buffer(); delay_before_delivering = 0; #if ENABLED(DIRECT_STEPPING) last_page_step_rate = 0; last_page_dir.reset(); #endif } #if ENABLED(S_CURVE_ACCELERATION) #ifdef __AVR__ /** * This routine returns 0x1000000 / d, getting the inverse as fast as possible. * A fast-converging iterative Newton-Raphson method can reach full precision in * just 1 iteration, and takes 211 cycles (worst case; the mean case is less, up * to 30 cycles for small divisors), instead of the 500 cycles a normal division * would take. * * Inspired by the following page: * https://stackoverflow.com/questions/27801397/newton-raphson-division-with-big-integers * * Suppose we want to calculate floor(2 ^ k / B) where B is a positive integer * Then, B must be <= 2^k, otherwise, the quotient is 0. * * The Newton - Raphson iteration for x = B / 2 ^ k yields: * q[n + 1] = q[n] * (2 - q[n] * B / 2 ^ k) * * This can be rearranged to: * q[n + 1] = q[n] * (2 ^ (k + 1) - q[n] * B) >> k * * Each iteration requires only integer multiplications and bit shifts. * It doesn't necessarily converge to floor(2 ^ k / B) but in the worst case * it eventually alternates between floor(2 ^ k / B) and ceil(2 ^ k / B). * So it checks for this case and extracts floor(2 ^ k / B). * * A simple but important optimization for this approach is to truncate * multiplications (i.e., calculate only the higher bits of the product) in the * early iterations of the Newton - Raphson method. This is done so the results * of the early iterations are far from the quotient. Then it doesn't matter if * they are done inaccurately. * It's important to pick a good starting value for x. Knowing how many * digits the divisor has, it can be estimated: * * 2^k / x = 2 ^ log2(2^k / x) * 2^k / x = 2 ^(log2(2^k)-log2(x)) * 2^k / x = 2 ^(k*log2(2)-log2(x)) * 2^k / x = 2 ^ (k-log2(x)) * 2^k / x >= 2 ^ (k-floor(log2(x))) * floor(log2(x)) is simply the index of the most significant bit set. * * If this estimation can be improved even further the number of iterations can be * reduced a lot, saving valuable execution time. * The paper "Software Integer Division" by Thomas L.Rodeheffer, Microsoft * Research, Silicon Valley,August 26, 2008, available at * https://www.microsoft.com/en-us/research/wp-content/uploads/2008/08/tr-2008-141.pdf * suggests, for its integer division algorithm, using a table to supply the first * 8 bits of precision, then, due to the quadratic convergence nature of the * Newton-Raphon iteration, just 2 iterations should be enough to get maximum * precision of the division. * By precomputing values of inverses for small denominator values, just one * Newton-Raphson iteration is enough to reach full precision. * This code uses the top 9 bits of the denominator as index. * * The AVR assembly function implements this C code using the data below: * * // For small divisors, it is best to directly retrieve the results * if (d <= 110) return pgm_read_dword(&small_inv_tab[d]); * * // Compute initial estimation of 0x1000000/x - * // Get most significant bit set on divider * uint8_t idx = 0; * uint32_t nr = d; * if (!(nr & 0xFF0000)) { * nr <<= 8; idx += 8; * if (!(nr & 0xFF0000)) { nr <<= 8; idx += 8; } * } * if (!(nr & 0xF00000)) { nr <<= 4; idx += 4; } * if (!(nr & 0xC00000)) { nr <<= 2; idx += 2; } * if (!(nr & 0x800000)) { nr <<= 1; idx += 1; } * * // Isolate top 9 bits of the denominator, to be used as index into the initial estimation table * uint32_t tidx = nr >> 15, // top 9 bits. bit8 is always set * ie = inv_tab[tidx & 0xFF] + 256, // Get the table value. bit9 is always set * x = idx <= 8 ? (ie >> (8 - idx)) : (ie << (idx - 8)); // Position the estimation at the proper place * * x = uint32_t((x * uint64_t(_BV(25) - x * d)) >> 24); // Refine estimation by newton-raphson. 1 iteration is enough * const uint32_t r = _BV(24) - x * d; // Estimate remainder * if (r >= d) x++; // Check whether to adjust result * return uint32_t(x); // x holds the proper estimation */ static uint32_t get_period_inverse(uint32_t d) { static const uint8_t inv_tab[256] PROGMEM = { 255,253,252,250,248,246,244,242,240,238,236,234,233,231,229,227, 225,224,222,220,218,217,215,213,212,210,208,207,205,203,202,200, 199,197,195,194,192,191,189,188,186,185,183,182,180,179,178,176, 175,173,172,170,169,168,166,165,164,162,161,160,158,157,156,154, 153,152,151,149,148,147,146,144,143,142,141,139,138,137,136,135, 134,132,131,130,129,128,127,126,125,123,122,121,120,119,118,117, 116,115,114,113,112,111,110,109,108,107,106,105,104,103,102,101, 100,99,98,97,96,95,94,93,92,91,90,89,88,88,87,86, 85,84,83,82,81,80,80,79,78,77,76,75,74,74,73,72, 71,70,70,69,68,67,66,66,65,64,63,62,62,61,60,59, 59,58,57,56,56,55,54,53,53,52,51,50,50,49,48,48, 47,46,46,45,44,43,43,42,41,41,40,39,39,38,37,37, 36,35,35,34,33,33,32,32,31,30,30,29,28,28,27,27, 26,25,25,24,24,23,22,22,21,21,20,19,19,18,18,17, 17,16,15,15,14,14,13,13,12,12,11,10,10,9,9,8, 8,7,7,6,6,5,5,4,4,3,3,2,2,1,0,0 }; // For small denominators, it is cheaper to directly store the result. // For bigger ones, just ONE Newton-Raphson iteration is enough to get // maximum precision we need static const uint32_t small_inv_tab[111] PROGMEM = { 16777216,16777216,8388608,5592405,4194304,3355443,2796202,2396745,2097152,1864135,1677721,1525201,1398101,1290555,1198372,1118481, 1048576,986895,932067,883011,838860,798915,762600,729444,699050,671088,645277,621378,599186,578524,559240,541200, 524288,508400,493447,479349,466033,453438,441505,430185,419430,409200,399457,390167,381300,372827,364722,356962, 349525,342392,335544,328965,322638,316551,310689,305040,299593,294337,289262,284359,279620,275036,270600,266305, 262144,258111,254200,250406,246723,243148,239674,236298,233016,229824,226719,223696,220752,217885,215092,212369, 209715,207126,204600,202135,199728,197379,195083,192841,190650,188508,186413,184365,182361,180400,178481,176602, 174762,172960,171196,169466,167772,166111,164482,162885,161319,159783,158275,156796,155344,153919,152520 }; // For small divisors, it is best to directly retrieve the results if (d <= 110) return pgm_read_dword(&small_inv_tab[d]); uint8_t r8 = d & 0xFF, r9 = (d >> 8) & 0xFF, r10 = (d >> 16) & 0xFF, r2,r3,r4,r5,r6,r7,r11,r12,r13,r14,r15,r16,r17,r18; const uint8_t *ptab = inv_tab; __asm__ __volatile__( // %8:%7:%6 = interval // r31:r30: MUST be those registers, and they must point to the inv_tab A("clr %13") // %13 = 0 // Now we must compute // result = 0xFFFFFF / d // %8:%7:%6 = interval // %16:%15:%14 = nr // %13 = 0 // A plain division of 24x24 bits should take 388 cycles to complete. We will // use Newton-Raphson for the calculation, and will strive to get way less cycles // for the same result - Using C division, it takes 500cycles to complete . A("clr %3") // idx = 0 A("mov %14,%6") A("mov %15,%7") A("mov %16,%8") // nr = interval A("tst %16") // nr & 0xFF0000 == 0 ? A("brne 2f") // No, skip this A("mov %16,%15") A("mov %15,%14") // nr <<= 8, %14 not needed A("subi %3,-8") // idx += 8 A("tst %16") // nr & 0xFF0000 == 0 ? A("brne 2f") // No, skip this A("mov %16,%15") // nr <<= 8, %14 not needed A("clr %15") // We clear %14 A("subi %3,-8") // idx += 8 // here %16 != 0 and %16:%15 contains at least 9 MSBits, or both %16:%15 are 0 L("2") A("cpi %16,0x10") // (nr & 0xF00000) == 0 ? A("brcc 3f") // No, skip this A("swap %15") // Swap nybbles A("swap %16") // Swap nybbles. Low nybble is 0 A("mov %14, %15") A("andi %14,0x0F") // Isolate low nybble A("andi %15,0xF0") // Keep proper nybble in %15 A("or %16, %14") // %16:%15 <<= 4 A("subi %3,-4") // idx += 4 L("3") A("cpi %16,0x40") // (nr & 0xC00000) == 0 ? A("brcc 4f") // No, skip this A("add %15,%15") A("adc %16,%16") A("add %15,%15") A("adc %16,%16") // %16:%15 <<= 2 A("subi %3,-2") // idx += 2 L("4") A("cpi %16,0x80") // (nr & 0x800000) == 0 ? A("brcc 5f") // No, skip this A("add %15,%15") A("adc %16,%16") // %16:%15 <<= 1 A("inc %3") // idx += 1 // Now %16:%15 contains its MSBit set to 1, or %16:%15 is == 0. We are now absolutely sure // we have at least 9 MSBits available to enter the initial estimation table L("5") A("add %15,%15") A("adc %16,%16") // %16:%15 = tidx = (nr <<= 1), we lose the top MSBit (always set to 1, %16 is the index into the inverse table) A("add r30,%16") // Only use top 8 bits A("adc r31,%13") // r31:r30 = inv_tab + (tidx) A("lpm %14, Z") // %14 = inv_tab[tidx] A("ldi %15, 1") // %15 = 1 %15:%14 = inv_tab[tidx] + 256 // We must scale the approximation to the proper place A("clr %16") // %16 will always be 0 here A("subi %3,8") // idx == 8 ? A("breq 6f") // yes, no need to scale A("brcs 7f") // If C=1, means idx < 8, result was negative! // idx > 8, now %3 = idx - 8. We must perform a left shift. idx range:[1-8] A("sbrs %3,0") // shift by 1bit position? A("rjmp 8f") // No A("add %14,%14") A("adc %15,%15") // %15:16 <<= 1 L("8") A("sbrs %3,1") // shift by 2bit position? A("rjmp 9f") // No A("add %14,%14") A("adc %15,%15") A("add %14,%14") A("adc %15,%15") // %15:16 <<= 1 L("9") A("sbrs %3,2") // shift by 4bits position? A("rjmp 16f") // No A("swap %15") // Swap nybbles. lo nybble of %15 will always be 0 A("swap %14") // Swap nybbles A("mov %12,%14") A("andi %12,0x0F") // isolate low nybble A("andi %14,0xF0") // and clear it A("or %15,%12") // %15:%16 <<= 4 L("16") A("sbrs %3,3") // shift by 8bits position? A("rjmp 6f") // No, we are done A("mov %16,%15") A("mov %15,%14") A("clr %14") A("jmp 6f") // idx < 8, now %3 = idx - 8. Get the count of bits L("7") A("neg %3") // %3 = -idx = count of bits to move right. idx range:[1...8] A("sbrs %3,0") // shift by 1 bit position ? A("rjmp 10f") // No, skip it A("asr %15") // (bit7 is always 0 here) A("ror %14") L("10") A("sbrs %3,1") // shift by 2 bit position ? A("rjmp 11f") // No, skip it A("asr %15") // (bit7 is always 0 here) A("ror %14") A("asr %15") // (bit7 is always 0 here) A("ror %14") L("11") A("sbrs %3,2") // shift by 4 bit position ? A("rjmp 12f") // No, skip it A("swap %15") // Swap nybbles A("andi %14, 0xF0") // Lose the lowest nybble A("swap %14") // Swap nybbles. Upper nybble is 0 A("or %14,%15") // Pass nybble from upper byte A("andi %15, 0x0F") // And get rid of that nybble L("12") A("sbrs %3,3") // shift by 8 bit position ? A("rjmp 6f") // No, skip it A("mov %14,%15") A("clr %15") L("6") // %16:%15:%14 = initial estimation of 0x1000000 / d // Now, we must refine the estimation present on %16:%15:%14 using 1 iteration // of Newton-Raphson. As it has a quadratic convergence, 1 iteration is enough // to get more than 18bits of precision (the initial table lookup gives 9 bits of // precision to start from). 18bits of precision is all what is needed here for result // %8:%7:%6 = d = interval // %16:%15:%14 = x = initial estimation of 0x1000000 / d // %13 = 0 // %3:%2:%1:%0 = working accumulator // Compute 1<<25 - x*d. Result should never exceed 25 bits and should always be positive A("clr %0") A("clr %1") A("clr %2") A("ldi %3,2") // %3:%2:%1:%0 = 0x2000000 A("mul %6,%14") // r1:r0 = LO(d) * LO(x) A("sub %0,r0") A("sbc %1,r1") A("sbc %2,%13") A("sbc %3,%13") // %3:%2:%1:%0 -= LO(d) * LO(x) A("mul %7,%14") // r1:r0 = MI(d) * LO(x) A("sub %1,r0") A("sbc %2,r1" ) A("sbc %3,%13") // %3:%2:%1:%0 -= MI(d) * LO(x) << 8 A("mul %8,%14") // r1:r0 = HI(d) * LO(x) A("sub %2,r0") A("sbc %3,r1") // %3:%2:%1:%0 -= MIL(d) * LO(x) << 16 A("mul %6,%15") // r1:r0 = LO(d) * MI(x) A("sub %1,r0") A("sbc %2,r1") A("sbc %3,%13") // %3:%2:%1:%0 -= LO(d) * MI(x) << 8 A("mul %7,%15") // r1:r0 = MI(d) * MI(x) A("sub %2,r0") A("sbc %3,r1") // %3:%2:%1:%0 -= MI(d) * MI(x) << 16 A("mul %8,%15") // r1:r0 = HI(d) * MI(x) A("sub %3,r0") // %3:%2:%1:%0 -= MIL(d) * MI(x) << 24 A("mul %6,%16") // r1:r0 = LO(d) * HI(x) A("sub %2,r0") A("sbc %3,r1") // %3:%2:%1:%0 -= LO(d) * HI(x) << 16 A("mul %7,%16") // r1:r0 = MI(d) * HI(x) A("sub %3,r0") // %3:%2:%1:%0 -= MI(d) * HI(x) << 24 // %3:%2:%1:%0 = (1<<25) - x*d [169] // We need to multiply that result by x, and we are only interested in the top 24bits of that multiply // %16:%15:%14 = x = initial estimation of 0x1000000 / d // %3:%2:%1:%0 = (1<<25) - x*d = acc // %13 = 0 // result = %11:%10:%9:%5:%4 A("mul %14,%0") // r1:r0 = LO(x) * LO(acc) A("mov %4,r1") A("clr %5") A("clr %9") A("clr %10") A("clr %11") // %11:%10:%9:%5:%4 = LO(x) * LO(acc) >> 8 A("mul %15,%0") // r1:r0 = MI(x) * LO(acc) A("add %4,r0") A("adc %5,r1") A("adc %9,%13") A("adc %10,%13") A("adc %11,%13") // %11:%10:%9:%5:%4 += MI(x) * LO(acc) A("mul %16,%0") // r1:r0 = HI(x) * LO(acc) A("add %5,r0") A("adc %9,r1") A("adc %10,%13") A("adc %11,%13") // %11:%10:%9:%5:%4 += MI(x) * LO(acc) << 8 A("mul %14,%1") // r1:r0 = LO(x) * MIL(acc) A("add %4,r0") A("adc %5,r1") A("adc %9,%13") A("adc %10,%13") A("adc %11,%13") // %11:%10:%9:%5:%4 = LO(x) * MIL(acc) A("mul %15,%1") // r1:r0 = MI(x) * MIL(acc) A("add %5,r0") A("adc %9,r1") A("adc %10,%13") A("adc %11,%13") // %11:%10:%9:%5:%4 += MI(x) * MIL(acc) << 8 A("mul %16,%1") // r1:r0 = HI(x) * MIL(acc) A("add %9,r0") A("adc %10,r1") A("adc %11,%13") // %11:%10:%9:%5:%4 += MI(x) * MIL(acc) << 16 A("mul %14,%2") // r1:r0 = LO(x) * MIH(acc) A("add %5,r0") A("adc %9,r1") A("adc %10,%13") A("adc %11,%13") // %11:%10:%9:%5:%4 = LO(x) * MIH(acc) << 8 A("mul %15,%2") // r1:r0 = MI(x) * MIH(acc) A("add %9,r0") A("adc %10,r1") A("adc %11,%13") // %11:%10:%9:%5:%4 += MI(x) * MIH(acc) << 16 A("mul %16,%2") // r1:r0 = HI(x) * MIH(acc) A("add %10,r0") A("adc %11,r1") // %11:%10:%9:%5:%4 += MI(x) * MIH(acc) << 24 A("mul %14,%3") // r1:r0 = LO(x) * HI(acc) A("add %9,r0") A("adc %10,r1") A("adc %11,%13") // %11:%10:%9:%5:%4 = LO(x) * HI(acc) << 16 A("mul %15,%3") // r1:r0 = MI(x) * HI(acc) A("add %10,r0") A("adc %11,r1") // %11:%10:%9:%5:%4 += MI(x) * HI(acc) << 24 A("mul %16,%3") // r1:r0 = HI(x) * HI(acc) A("add %11,r0") // %11:%10:%9:%5:%4 += MI(x) * HI(acc) << 32 // At this point, %11:%10:%9 contains the new estimation of x. // Finally, we must correct the result. Estimate remainder as // (1<<24) - x*d // %11:%10:%9 = x // %8:%7:%6 = d = interval" "\n\t" A("ldi %3,1") A("clr %2") A("clr %1") A("clr %0") // %3:%2:%1:%0 = 0x1000000 A("mul %6,%9") // r1:r0 = LO(d) * LO(x) A("sub %0,r0") A("sbc %1,r1") A("sbc %2,%13") A("sbc %3,%13") // %3:%2:%1:%0 -= LO(d) * LO(x) A("mul %7,%9") // r1:r0 = MI(d) * LO(x) A("sub %1,r0") A("sbc %2,r1") A("sbc %3,%13") // %3:%2:%1:%0 -= MI(d) * LO(x) << 8 A("mul %8,%9") // r1:r0 = HI(d) * LO(x) A("sub %2,r0") A("sbc %3,r1") // %3:%2:%1:%0 -= MIL(d) * LO(x) << 16 A("mul %6,%10") // r1:r0 = LO(d) * MI(x) A("sub %1,r0") A("sbc %2,r1") A("sbc %3,%13") // %3:%2:%1:%0 -= LO(d) * MI(x) << 8 A("mul %7,%10") // r1:r0 = MI(d) * MI(x) A("sub %2,r0") A("sbc %3,r1") // %3:%2:%1:%0 -= MI(d) * MI(x) << 16 A("mul %8,%10") // r1:r0 = HI(d) * MI(x) A("sub %3,r0") // %3:%2:%1:%0 -= MIL(d) * MI(x) << 24 A("mul %6,%11") // r1:r0 = LO(d) * HI(x) A("sub %2,r0") A("sbc %3,r1") // %3:%2:%1:%0 -= LO(d) * HI(x) << 16 A("mul %7,%11") // r1:r0 = MI(d) * HI(x) A("sub %3,r0") // %3:%2:%1:%0 -= MI(d) * HI(x) << 24 // %3:%2:%1:%0 = r = (1<<24) - x*d // %8:%7:%6 = d = interval // Perform the final correction A("sub %0,%6") A("sbc %1,%7") A("sbc %2,%8") // r -= d A("brcs 14f") // if ( r >= d) // %11:%10:%9 = x A("ldi %3,1") A("add %9,%3") A("adc %10,%13") A("adc %11,%13") // x++ L("14") // Estimation is done. %11:%10:%9 = x A("clr __zero_reg__") // Make C runtime happy // [211 cycles total] : "=r" (r2), "=r" (r3), "=r" (r4), "=d" (r5), "=r" (r6), "=r" (r7), "+r" (r8), "+r" (r9), "+r" (r10), "=d" (r11), "=r" (r12), "=r" (r13), "=d" (r14), "=d" (r15), "=d" (r16), "=d" (r17), "=d" (r18), "+z" (ptab) : : "r0", "r1", "cc" ); // Return the result return r11 | (uint16_t(r12) << 8) | (uint32_t(r13) << 16); } #else // All other 32-bit MPUs can easily do inverse using hardware division, // so we don't need to reduce precision or to use assembly language at all. // This routine, for all other archs, returns 0x100000000 / d ~= 0xFFFFFFFF / d FORCE_INLINE static uint32_t get_period_inverse(const uint32_t d) { return d ? 0xFFFFFFFF / d : 0xFFFFFFFF; } #endif #endif #define MINIMAL_STEP_RATE 120 /** * Get the current block for processing * and mark the block as busy. * Return nullptr if the buffer is empty * or if there is a first-block delay. * * WARNING: Called from Stepper ISR context! */ block_t* Planner::get_current_block() { // Get the number of moves in the planner queue so far const uint8_t nr_moves = movesplanned(); // If there are any moves queued ... if (nr_moves) { // If there is still delay of delivery of blocks running, decrement it if (delay_before_delivering) { --delay_before_delivering; // If the number of movements queued is less than 3, and there is still time // to wait, do not deliver anything if (nr_moves < 3 && delay_before_delivering) return nullptr; delay_before_delivering = 0; } // If we are here, there is no excuse to deliver the block block_t * const block = &block_buffer[block_buffer_tail]; // No trapezoid calculated? Don't execute yet. if (block->flag.recalculate) return nullptr; // We can't be sure how long an active block will take, so don't count it. TERN_(HAS_WIRED_LCD, block_buffer_runtime_us -= block->segment_time_us); // As this block is busy, advance the nonbusy block pointer block_buffer_nonbusy = next_block_index(block_buffer_tail); // Push block_buffer_planned pointer, if encountered. if (block_buffer_tail == block_buffer_planned) block_buffer_planned = block_buffer_nonbusy; // Return the block return block; } // The queue became empty TERN_(HAS_WIRED_LCD, clear_block_buffer_runtime()); // paranoia. Buffer is empty now - so reset accumulated time to zero. return nullptr; } /** * Calculate trapezoid parameters, multiplying the entry- and exit-speeds * by the provided factors. ** * ############ VERY IMPORTANT ############ * NOTE that the PRECONDITION to call this function is that the block is * NOT BUSY and it is marked as RECALCULATE. That WARRANTIES the Stepper ISR * is not and will not use the block while we modify it, so it is safe to * alter its values. */ void Planner::calculate_trapezoid_for_block(block_t * const block, const_float_t entry_factor, const_float_t exit_factor) { uint32_t initial_rate = CEIL(block->nominal_rate * entry_factor), final_rate = CEIL(block->nominal_rate * exit_factor); // (steps per second) // Limit minimal step rate (Otherwise the timer will overflow.) NOLESS(initial_rate, uint32_t(MINIMAL_STEP_RATE)); NOLESS(final_rate, uint32_t(MINIMAL_STEP_RATE)); #if EITHER(S_CURVE_ACCELERATION, LIN_ADVANCE) // If we have some plateau time, the cruise rate will be the nominal rate uint32_t cruise_rate = block->nominal_rate; #endif // Steps for acceleration, plateau and deceleration int32_t plateau_steps = block->step_event_count; uint32_t accelerate_steps = 0, decelerate_steps = 0; const int32_t accel = block->acceleration_steps_per_s2; float inverse_accel = 0.0f; if (accel != 0) { inverse_accel = 1.0f / accel; const float half_inverse_accel = 0.5f * inverse_accel, nominal_rate_sq = sq(float(block->nominal_rate)), // Steps required for acceleration, deceleration to/from nominal rate decelerate_steps_float = half_inverse_accel * (nominal_rate_sq - sq(float(final_rate))); float accelerate_steps_float = half_inverse_accel * (nominal_rate_sq - sq(float(initial_rate))); accelerate_steps = CEIL(accelerate_steps_float); decelerate_steps = FLOOR(decelerate_steps_float); // Steps between acceleration and deceleration, if any plateau_steps -= accelerate_steps + decelerate_steps; // Does accelerate_steps + decelerate_steps exceed step_event_count? // Then we can't possibly reach the nominal rate, there will be no cruising. // Calculate accel / braking time in order to reach the final_rate exactly // at the end of this block. if (plateau_steps < 0) { accelerate_steps_float = CEIL((block->step_event_count + accelerate_steps_float - decelerate_steps_float) * 0.5f); accelerate_steps = _MIN(uint32_t(_MAX(accelerate_steps_float, 0)), block->step_event_count); decelerate_steps = block->step_event_count - accelerate_steps; #if EITHER(S_CURVE_ACCELERATION, LIN_ADVANCE) // We won't reach the cruising rate. Let's calculate the speed we will reach cruise_rate = final_speed(initial_rate, accel, accelerate_steps); #endif } } #if ENABLED(S_CURVE_ACCELERATION) const float rate_factor = inverse_accel * (STEPPER_TIMER_RATE); // Jerk controlled speed requires to express speed versus time, NOT steps uint32_t acceleration_time = rate_factor * float(cruise_rate - initial_rate), deceleration_time = rate_factor * float(cruise_rate - final_rate), // And to offload calculations from the ISR, we also calculate the inverse of those times here acceleration_time_inverse = get_period_inverse(acceleration_time), deceleration_time_inverse = get_period_inverse(deceleration_time); #endif // Store new block parameters block->accelerate_until = accelerate_steps; block->decelerate_after = block->step_event_count - decelerate_steps; block->initial_rate = initial_rate; #if ENABLED(S_CURVE_ACCELERATION) block->acceleration_time = acceleration_time; block->deceleration_time = deceleration_time; block->acceleration_time_inverse = acceleration_time_inverse; block->deceleration_time_inverse = deceleration_time_inverse; block->cruise_rate = cruise_rate; #endif block->final_rate = final_rate; #if ENABLED(LIN_ADVANCE) if (block->la_advance_rate) { const float comp = extruder_advance_K[E_INDEX_N(block->extruder)] * block->steps.e / block->step_event_count; block->max_adv_steps = cruise_rate * comp; block->final_adv_steps = final_rate * comp; } #endif #if ENABLED(LASER_POWER_TRAP) /** * Laser Trapezoid Calculations * * Approximate the trapezoid with the laser, incrementing the power every `trap_ramp_entry_incr` * steps while accelerating, and decrementing the power every `trap_ramp_exit_decr` while decelerating, * to keep power proportional to feedrate. Laser power trap will reduce the initial power to no less * than the laser_power_floor value. Based on the number of calculated accel/decel steps the power is * distributed over the trapezoid entry- and exit-ramp steps. * * trap_ramp_active_pwr - The active power is initially set at a reduced level factor of initial * power / accel steps and will be additively incremented using a trap_ramp_entry_incr value for each * accel step processed later in the stepper code. The trap_ramp_exit_decr value is calculated as * power / decel steps and is also adjusted to no less than the power floor. * * If the power == 0 the inline mode variables need to be set to zero to prevent stepper processing. * The method allows for simpler non-powered moves like G0 or G28. * * Laser Trap Power works for all Jerk and Curve modes; however Arc-based moves will have issues since * the segments are usually too small. */ if (cutter.cutter_mode == CUTTER_MODE_CONTINUOUS) { if (planner.laser_inline.status.isPowered && planner.laser_inline.status.isEnabled) { if (block->laser.power > 0) { NOLESS(block->laser.power, laser_power_floor); block->laser.trap_ramp_active_pwr = (block->laser.power - laser_power_floor) * (initial_rate / float(block->nominal_rate)) + laser_power_floor; block->laser.trap_ramp_entry_incr = (block->laser.power - block->laser.trap_ramp_active_pwr) / accelerate_steps; float laser_pwr = block->laser.power * (final_rate / float(block->nominal_rate)); NOLESS(laser_pwr, laser_power_floor); block->laser.trap_ramp_exit_decr = (block->laser.power - laser_pwr) / decelerate_steps; #if ENABLED(DEBUG_LASER_TRAP) SERIAL_ECHO_MSG("lp:",block->laser.power); SERIAL_ECHO_MSG("as:",accelerate_steps); SERIAL_ECHO_MSG("ds:",decelerate_steps); SERIAL_ECHO_MSG("p.trap:",block->laser.trap_ramp_active_pwr); SERIAL_ECHO_MSG("p.incr:",block->laser.trap_ramp_entry_incr); SERIAL_ECHO_MSG("p.decr:",block->laser.trap_ramp_exit_decr); #endif } else { block->laser.trap_ramp_active_pwr = 0; block->laser.trap_ramp_entry_incr = 0; block->laser.trap_ramp_exit_decr = 0; } } } #endif // LASER_POWER_TRAP } /** * PLANNER SPEED DEFINITION * +--------+ <- current->nominal_speed * / \ * current->entry_speed -> + \ * | + <- next->entry_speed (aka exit speed) * +-------------+ * time --> * * Recalculates the motion plan according to the following basic guidelines: * * 1. Go over every feasible block sequentially in reverse order and calculate the junction speeds * (i.e. current->entry_speed) such that: * a. No junction speed exceeds the pre-computed maximum junction speed limit or nominal speeds of * neighboring blocks. * b. A block entry speed cannot exceed one reverse-computed from its exit speed (next->entry_speed) * with a maximum allowable deceleration over the block travel distance. * c. The last (or newest appended) block is planned from a complete stop (an exit speed of zero). * 2. Go over every block in chronological (forward) order and dial down junction speed values if * a. The exit speed exceeds the one forward-computed from its entry speed with the maximum allowable * acceleration over the block travel distance. * * When these stages are complete, the planner will have maximized the velocity profiles throughout the all * of the planner blocks, where every block is operating at its maximum allowable acceleration limits. In * other words, for all of the blocks in the planner, the plan is optimal and no further speed improvements * are possible. If a new block is added to the buffer, the plan is recomputed according to the said * guidelines for a new optimal plan. * * To increase computational efficiency of these guidelines, a set of planner block pointers have been * created to indicate stop-compute points for when the planner guidelines cannot logically make any further * changes or improvements to the plan when in normal operation and new blocks are streamed and added to the * planner buffer. For example, if a subset of sequential blocks in the planner have been planned and are * bracketed by junction velocities at their maximums (or by the first planner block as well), no new block * added to the planner buffer will alter the velocity profiles within them. So we no longer have to compute * them. Or, if a set of sequential blocks from the first block in the planner (or a optimal stop-compute * point) are all accelerating, they are all optimal and can not be altered by a new block added to the * planner buffer, as this will only further increase the plan speed to chronological blocks until a maximum * junction velocity is reached. However, if the operational conditions of the plan changes from infrequently * used feed holds or feedrate overrides, the stop-compute pointers will be reset and the entire plan is * recomputed as stated in the general guidelines. * * Planner buffer index mapping: * - block_buffer_tail: Points to the beginning of the planner buffer. First to be executed or being executed. * - block_buffer_head: Points to the buffer block after the last block in the buffer. Used to indicate whether * the buffer is full or empty. As described for standard ring buffers, this block is always empty. * - block_buffer_planned: Points to the first buffer block after the last optimally planned block for normal * streaming operating conditions. Use for planning optimizations by avoiding recomputing parts of the * planner buffer that don't change with the addition of a new block, as describe above. In addition, * this block can never be less than block_buffer_tail and will always be pushed forward and maintain * this requirement when encountered by the Planner::release_current_block() routine during a cycle. * * NOTE: Since the planner only computes on what's in the planner buffer, some motions with many short * segments (e.g., complex curves) may seem to move slowly. This is because there simply isn't * enough combined distance traveled in the entire buffer to accelerate up to the nominal speed and * then decelerate to a complete stop at the end of the buffer, as stated by the guidelines. If this * happens and becomes an annoyance, there are a few simple solutions: * * - Maximize the machine acceleration. The planner will be able to compute higher velocity profiles * within the same combined distance. * * - Maximize line motion(s) distance per block to a desired tolerance. The more combined distance the * planner has to use, the faster it can go. * * - Maximize the planner buffer size. This also will increase the combined distance for the planner to * compute over. It also increases the number of computations the planner has to perform to compute an * optimal plan, so select carefully. * * - Use G2/G3 arcs instead of many short segments. Arcs inform the planner of a safe exit speed at the * end of the last segment, which alleviates this problem. */ // The kernel called by recalculate() when scanning the plan from last to first entry. void Planner::reverse_pass_kernel(block_t * const current, const block_t * const next OPTARG(HINTS_SAFE_EXIT_SPEED, const_float_t safe_exit_speed_sqr) ) { if (current) { // If entry speed is already at the maximum entry speed, and there was no change of speed // in the next block, there is no need to recheck. Block is cruising and there is no need to // compute anything for this block, // If not, block entry speed needs to be recalculated to ensure maximum possible planned speed. const float max_entry_speed_sqr = current->max_entry_speed_sqr; // Compute maximum entry speed decelerating over the current block from its exit speed. // If not at the maximum entry speed, or the previous block entry speed changed if (current->entry_speed_sqr != max_entry_speed_sqr || (next && next->flag.recalculate)) { // If nominal length true, max junction speed is guaranteed to be reached. // If a block can de/ac-celerate from nominal speed to zero within the length of the block, then // the current block and next block junction speeds are guaranteed to always be at their maximum // junction speeds in deceleration and acceleration, respectively. This is due to how the current // block nominal speed limits both the current and next maximum junction speeds. Hence, in both // the reverse and forward planners, the corresponding block junction speed will always be at the // the maximum junction speed and may always be ignored for any speed reduction checks. const float next_entry_speed_sqr = next ? next->entry_speed_sqr : _MAX(TERN0(HINTS_SAFE_EXIT_SPEED, safe_exit_speed_sqr), sq(float(MINIMUM_PLANNER_SPEED))), new_entry_speed_sqr = current->flag.nominal_length ? max_entry_speed_sqr : _MIN(max_entry_speed_sqr, max_allowable_speed_sqr(-current->acceleration, next_entry_speed_sqr, current->millimeters)); if (current->entry_speed_sqr != new_entry_speed_sqr) { // Need to recalculate the block speed - Mark it now, so the stepper // ISR does not consume the block before being recalculated current->flag.recalculate = true; // But there is an inherent race condition here, as the block may have // become BUSY just before being marked RECALCULATE, so check for that! if (stepper.is_block_busy(current)) { // Block became busy. Clear the RECALCULATE flag (no point in // recalculating BUSY blocks). And don't set its speed, as it can't // be updated at this time. current->flag.recalculate = false; } else { // Block is not BUSY so this is ahead of the Stepper ISR: // Just Set the new entry speed. current->entry_speed_sqr = new_entry_speed_sqr; } } } } } /** * recalculate() needs to go over the current plan twice. * Once in reverse and once forward. This implements the reverse pass. */ void Planner::reverse_pass(TERN_(HINTS_SAFE_EXIT_SPEED, const_float_t safe_exit_speed_sqr)) { // Initialize block index to the last block in the planner buffer. uint8_t block_index = prev_block_index(block_buffer_head); // Read the index of the last buffer planned block. // The ISR may change it so get a stable local copy. uint8_t planned_block_index = block_buffer_planned; // If there was a race condition and block_buffer_planned was incremented // or was pointing at the head (queue empty) break loop now and avoid // planning already consumed blocks if (planned_block_index == block_buffer_head) return; // Reverse Pass: Coarsely maximize all possible deceleration curves back-planning from the last // block in buffer. Cease planning when the last optimal planned or tail pointer is reached. // NOTE: Forward pass will later refine and correct the reverse pass to create an optimal plan. const block_t *next = nullptr; while (block_index != planned_block_index) { // Perform the reverse pass block_t *current = &block_buffer[block_index]; // Only process movement blocks if (current->is_move()) { reverse_pass_kernel(current, next OPTARG(HINTS_SAFE_EXIT_SPEED, safe_exit_speed_sqr)); next = current; } // Advance to the next block_index = prev_block_index(block_index); // The ISR could advance the block_buffer_planned while we were doing the reverse pass. // We must try to avoid using an already consumed block as the last one - So follow // changes to the pointer and make sure to limit the loop to the currently busy block while (planned_block_index != block_buffer_planned) { // If we reached the busy block or an already processed block, break the loop now if (block_index == planned_block_index) return; // Advance the pointer, following the busy block planned_block_index = next_block_index(planned_block_index); } } } // The kernel called by recalculate() when scanning the plan from first to last entry. void Planner::forward_pass_kernel(const block_t * const previous, block_t * const current, const uint8_t block_index) { if (previous) { // If the previous block is an acceleration block, too short to complete the full speed // change, adjust the entry speed accordingly. Entry speeds have already been reset, // maximized, and reverse-planned. If nominal length is set, max junction speed is // guaranteed to be reached. No need to recheck. if (!previous->flag.nominal_length && previous->entry_speed_sqr < current->entry_speed_sqr) { // Compute the maximum allowable speed const float new_entry_speed_sqr = max_allowable_speed_sqr(-previous->acceleration, previous->entry_speed_sqr, previous->millimeters); // If true, current block is full-acceleration and we can move the planned pointer forward. if (new_entry_speed_sqr < current->entry_speed_sqr) { // Mark we need to recompute the trapezoidal shape, and do it now, // so the stepper ISR does not consume the block before being recalculated current->flag.recalculate = true; // But there is an inherent race condition here, as the block maybe // became BUSY, just before it was marked as RECALCULATE, so check // if that is the case! if (stepper.is_block_busy(current)) { // Block became busy. Clear the RECALCULATE flag (no point in // recalculating BUSY blocks and don't set its speed, as it can't // be updated at this time. current->flag.recalculate = false; } else { // Block is not BUSY, we won the race against the Stepper ISR: // Always <= max_entry_speed_sqr. Backward pass sets this. current->entry_speed_sqr = new_entry_speed_sqr; // Always <= max_entry_speed_sqr. Backward pass sets this. // Set optimal plan pointer. block_buffer_planned = block_index; } } } // Any block set at its maximum entry speed also creates an optimal plan up to this // point in the buffer. When the plan is bracketed by either the beginning of the // buffer and a maximum entry speed or two maximum entry speeds, every block in between // cannot logically be further improved. Hence, we don't have to recompute them anymore. if (current->entry_speed_sqr == current->max_entry_speed_sqr) block_buffer_planned = block_index; } } /** * recalculate() needs to go over the current plan twice. * Once in reverse and once forward. This implements the forward pass. */ void Planner::forward_pass() { // Forward Pass: Forward plan the acceleration curve from the planned pointer onward. // Also scans for optimal plan breakpoints and appropriately updates the planned pointer. // Begin at buffer planned pointer. Note that block_buffer_planned can be modified // by the stepper ISR, so read it ONCE. It it guaranteed that block_buffer_planned // will never lead head, so the loop is safe to execute. Also note that the forward // pass will never modify the values at the tail. uint8_t block_index = block_buffer_planned; block_t *block; const block_t * previous = nullptr; while (block_index != block_buffer_head) { // Perform the forward pass block = &block_buffer[block_index]; // Only process movement blocks if (block->is_move()) { // If there's no previous block or the previous block is not // BUSY (thus, modifiable) run the forward_pass_kernel. Otherwise, // the previous block became BUSY, so assume the current block's // entry speed can't be altered (since that would also require // updating the exit speed of the previous block). if (!previous || !stepper.is_block_busy(previous)) forward_pass_kernel(previous, block, block_index); previous = block; } // Advance to the previous block_index = next_block_index(block_index); } } /** * Recalculate the trapezoid speed profiles for all blocks in the plan * according to the entry_factor for each junction. Must be called by * recalculate() after updating the blocks. */ void Planner::recalculate_trapezoids(TERN_(HINTS_SAFE_EXIT_SPEED, const_float_t safe_exit_speed_sqr)) { // The tail may be changed by the ISR so get a local copy. uint8_t block_index = block_buffer_tail, head_block_index = block_buffer_head; // Since there could be a sync block in the head of the queue, and the // next loop must not recalculate the head block (as it needs to be // specially handled), scan backwards to the first non-SYNC block. while (head_block_index != block_index) { // Go back (head always point to the first free block) const uint8_t prev_index = prev_block_index(head_block_index); // Get the pointer to the block block_t *prev = &block_buffer[prev_index]; // It the block is a move, we're done with this loop if (prev->is_move()) break; // Examine the previous block. This and all following are SYNC blocks head_block_index = prev_index; } // Go from the tail (currently executed block) to the first block, without including it) block_t *block = nullptr, *next = nullptr; float current_entry_speed = 0.0f, next_entry_speed = 0.0f; while (block_index != head_block_index) { next = &block_buffer[block_index]; // Only process movement blocks if (next->is_move()) { next_entry_speed = SQRT(next->entry_speed_sqr); if (block) { // If the next block is marked to RECALCULATE, also mark the previously-fetched one if (next->flag.recalculate) block->flag.recalculate = true; // Recalculate if current block entry or exit junction speed has changed. if (block->flag.recalculate) { // But there is an inherent race condition here, as the block maybe // became BUSY, just before it was marked as RECALCULATE, so check // if that is the case! if (!stepper.is_block_busy(block)) { // Block is not BUSY, we won the race against the Stepper ISR: // NOTE: Entry and exit factors always > 0 by all previous logic operations. const float nomr = 1.0f / block->nominal_speed; calculate_trapezoid_for_block(block, current_entry_speed * nomr, next_entry_speed * nomr); } // Reset current only to ensure next trapezoid is computed - The // stepper is free to use the block from now on. block->flag.recalculate = false; } } block = next; current_entry_speed = next_entry_speed; } block_index = next_block_index(block_index); } // Last/newest block in buffer. Always recalculated. if (block) { // Exit speed is set with MINIMUM_PLANNER_SPEED unless some code higher up knows better. next_entry_speed = _MAX(TERN0(HINTS_SAFE_EXIT_SPEED, SQRT(safe_exit_speed_sqr)), float(MINIMUM_PLANNER_SPEED)); // Mark the next(last) block as RECALCULATE, to prevent the Stepper ISR running it. // As the last block is always recalculated here, there is a chance the block isn't // marked as RECALCULATE yet. That's the reason for the following line. block->flag.recalculate = true; // But there is an inherent race condition here, as the block maybe // became BUSY, just before it was marked as RECALCULATE, so check // if that is the case! if (!stepper.is_block_busy(block)) { // Block is not BUSY, we won the race against the Stepper ISR: const float nomr = 1.0f / block->nominal_speed; calculate_trapezoid_for_block(block, current_entry_speed * nomr, next_entry_speed * nomr); } // Reset block to ensure its trapezoid is computed - The stepper is free to use // the block from now on. block->flag.recalculate = false; } } void Planner::recalculate(TERN_(HINTS_SAFE_EXIT_SPEED, const_float_t safe_exit_speed_sqr)) { // Initialize block index to the last block in the planner buffer. const uint8_t block_index = prev_block_index(block_buffer_head); // If there is just one block, no planning can be done. Avoid it! if (block_index != block_buffer_planned) { reverse_pass(TERN_(HINTS_SAFE_EXIT_SPEED, safe_exit_speed_sqr)); forward_pass(); } recalculate_trapezoids(TERN_(HINTS_SAFE_EXIT_SPEED, safe_exit_speed_sqr)); } /** * Apply fan speeds */ #if HAS_FAN void Planner::sync_fan_speeds(uint8_t (&fan_speed)[FAN_COUNT]) { #if ENABLED(FAN_SOFT_PWM) #define _FAN_SET(F) thermalManager.soft_pwm_amount_fan[F] = CALC_FAN_SPEED(fan_speed[F]); #else #define _FAN_SET(F) hal.set_pwm_duty(pin_t(FAN##F##_PIN), CALC_FAN_SPEED(fan_speed[F])); #endif #define FAN_SET(F) do{ kickstart_fan(fan_speed, ms, F); _FAN_SET(F); }while(0) const millis_t ms = millis(); TERN_(HAS_FAN0, FAN_SET(0)); TERN_(HAS_FAN1, FAN_SET(1)); TERN_(HAS_FAN2, FAN_SET(2)); TERN_(HAS_FAN3, FAN_SET(3)); TERN_(HAS_FAN4, FAN_SET(4)); TERN_(HAS_FAN5, FAN_SET(5)); TERN_(HAS_FAN6, FAN_SET(6)); TERN_(HAS_FAN7, FAN_SET(7)); } #if FAN_KICKSTART_TIME void Planner::kickstart_fan(uint8_t (&fan_speed)[FAN_COUNT], const millis_t &ms, const uint8_t f) { static millis_t fan_kick_end[FAN_COUNT] = { 0 }; if (fan_speed[f] > FAN_OFF_PWM) { if (fan_kick_end[f] == 0) { fan_kick_end[f] = ms + FAN_KICKSTART_TIME; fan_speed[f] = FAN_KICKSTART_POWER; } else if (PENDING(ms, fan_kick_end[f])) fan_speed[f] = FAN_KICKSTART_POWER; } else fan_kick_end[f] = 0; } #endif #endif // HAS_FAN /** * Maintain fans, paste extruder pressure, spindle/laser power */ void Planner::check_axes_activity() { #if ANY(DISABLE_X, DISABLE_Y, DISABLE_Z, DISABLE_I, DISABLE_J, DISABLE_K, DISABLE_U, DISABLE_V, DISABLE_W, DISABLE_E) xyze_bool_t axis_active = { false }; #endif #if HAS_FAN && DISABLED(LASER_SYNCHRONOUS_M106_M107) #define HAS_TAIL_FAN_SPEED 1 static uint8_t tail_fan_speed[FAN_COUNT] = ARRAY_N_1(FAN_COUNT, 13); bool fans_need_update = false; #endif #if ENABLED(BARICUDA) #if HAS_HEATER_1 uint8_t tail_valve_pressure; #endif #if HAS_HEATER_2 uint8_t tail_e_to_p_pressure; #endif #endif if (has_blocks_queued()) { #if EITHER(HAS_TAIL_FAN_SPEED, BARICUDA) block_t *block = &block_buffer[block_buffer_tail]; #endif #if HAS_TAIL_FAN_SPEED FANS_LOOP(i) { const uint8_t spd = thermalManager.scaledFanSpeed(i, block->fan_speed[i]); if (tail_fan_speed[i] != spd) { fans_need_update = true; tail_fan_speed[i] = spd; } } #endif #if ENABLED(BARICUDA) TERN_(HAS_HEATER_1, tail_valve_pressure = block->valve_pressure); TERN_(HAS_HEATER_2, tail_e_to_p_pressure = block->e_to_p_pressure); #endif #if ANY(DISABLE_X, DISABLE_Y, DISABLE_Z, DISABLE_I, DISABLE_J, DISABLE_K, DISABLE_E) for (uint8_t b = block_buffer_tail; b != block_buffer_head; b = next_block_index(b)) { block_t * const bnext = &block_buffer[b]; LOGICAL_AXIS_CODE( if (TERN0(DISABLE_E, bnext->steps.e)) axis_active.e = true, if (TERN0(DISABLE_X, bnext->steps.x)) axis_active.x = true, if (TERN0(DISABLE_Y, bnext->steps.y)) axis_active.y = true, if (TERN0(DISABLE_Z, bnext->steps.z)) axis_active.z = true, if (TERN0(DISABLE_I, bnext->steps.i)) axis_active.i = true, if (TERN0(DISABLE_J, bnext->steps.j)) axis_active.j = true, if (TERN0(DISABLE_K, bnext->steps.k)) axis_active.k = true, if (TERN0(DISABLE_U, bnext->steps.u)) axis_active.u = true, if (TERN0(DISABLE_V, bnext->steps.v)) axis_active.v = true, if (TERN0(DISABLE_W, bnext->steps.w)) axis_active.w = true ); } #endif } else { TERN_(HAS_CUTTER, if (cutter.cutter_mode == CUTTER_MODE_STANDARD) cutter.refresh()); #if HAS_TAIL_FAN_SPEED FANS_LOOP(i) { const uint8_t spd = thermalManager.scaledFanSpeed(i); if (tail_fan_speed[i] != spd) { fans_need_update = true; tail_fan_speed[i] = spd; } } #endif #if ENABLED(BARICUDA) TERN_(HAS_HEATER_1, tail_valve_pressure = baricuda_valve_pressure); TERN_(HAS_HEATER_2, tail_e_to_p_pressure = baricuda_e_to_p_pressure); #endif } // // Disable inactive axes // LOGICAL_AXIS_CODE( if (TERN0(DISABLE_E, !axis_active.e)) stepper.disable_e_steppers(), if (TERN0(DISABLE_X, !axis_active.x)) stepper.disable_axis(X_AXIS), if (TERN0(DISABLE_Y, !axis_active.y)) stepper.disable_axis(Y_AXIS), if (TERN0(DISABLE_Z, !axis_active.z)) stepper.disable_axis(Z_AXIS), if (TERN0(DISABLE_I, !axis_active.i)) stepper.disable_axis(I_AXIS), if (TERN0(DISABLE_J, !axis_active.j)) stepper.disable_axis(J_AXIS), if (TERN0(DISABLE_K, !axis_active.k)) stepper.disable_axis(K_AXIS), if (TERN0(DISABLE_U, !axis_active.u)) stepper.disable_axis(U_AXIS), if (TERN0(DISABLE_V, !axis_active.v)) stepper.disable_axis(V_AXIS), if (TERN0(DISABLE_W, !axis_active.w)) stepper.disable_axis(W_AXIS) ); // // Update Fan speeds // Only if synchronous M106/M107 is disabled // TERN_(HAS_TAIL_FAN_SPEED, if (fans_need_update) sync_fan_speeds(tail_fan_speed)); TERN_(AUTOTEMP, autotemp_task()); #if ENABLED(BARICUDA) TERN_(HAS_HEATER_1, hal.set_pwm_duty(pin_t(HEATER_1_PIN), tail_valve_pressure)); TERN_(HAS_HEATER_2, hal.set_pwm_duty(pin_t(HEATER_2_PIN), tail_e_to_p_pressure)); #endif } #if ENABLED(AUTOTEMP) #if ENABLED(AUTOTEMP_PROPORTIONAL) void Planner::_autotemp_update_from_hotend() { const celsius_t target = thermalManager.degTargetHotend(active_extruder); autotemp_min = target + AUTOTEMP_MIN_P; autotemp_max = target + AUTOTEMP_MAX_P; } #endif /** * Called after changing tools to: * - Reset or re-apply the default proportional autotemp factor. * - Enable autotemp if the factor is non-zero. */ void Planner::autotemp_update() { _autotemp_update_from_hotend(); autotemp_factor = TERN(AUTOTEMP_PROPORTIONAL, AUTOTEMP_FACTOR_P, 0); autotemp_enabled = autotemp_factor != 0; } /** * Called by the M104/M109 commands after setting Hotend Temperature * */ void Planner::autotemp_M104_M109() { _autotemp_update_from_hotend(); if (parser.seenval('S')) autotemp_min = parser.value_celsius(); if (parser.seenval('B')) autotemp_max = parser.value_celsius(); // When AUTOTEMP_PROPORTIONAL is enabled, F0 disables autotemp. // Normally, leaving off F also disables autotemp. autotemp_factor = parser.seen('F') ? parser.value_float() : TERN(AUTOTEMP_PROPORTIONAL, AUTOTEMP_FACTOR_P, 0); autotemp_enabled = autotemp_factor != 0; } /** * Called every so often to adjust the hotend target temperature * based on the extrusion speed, which is calculated from the blocks * currently in the planner. */ void Planner::autotemp_task() { static float oldt = 0.0f; if (!autotemp_enabled) return; if (thermalManager.degTargetHotend(active_extruder) < autotemp_min - 2) return; // Below the min? float high = 0.0f; for (uint8_t b = block_buffer_tail; b != block_buffer_head; b = next_block_index(b)) { const block_t * const block = &block_buffer[b]; if (NUM_AXIS_GANG(block->steps.x, || block->steps.y, || block->steps.z, || block->steps.i, || block->steps.j, || block->steps.k, || block->steps.u, || block->steps.v, || block->steps.w)) { const float se = float(block->steps.e) / block->step_event_count * block->nominal_speed; // mm/sec NOLESS(high, se); } } float t = autotemp_min + high * autotemp_factor; LIMIT(t, autotemp_min, autotemp_max); if (t < oldt) t = t * (1.0f - (AUTOTEMP_OLDWEIGHT)) + oldt * (AUTOTEMP_OLDWEIGHT); oldt = t; thermalManager.setTargetHotend(t, active_extruder); } #endif #if DISABLED(NO_VOLUMETRICS) /** * Get a volumetric multiplier from a filament diameter. * This is the reciprocal of the circular cross-section area. * Return 1.0 with volumetric off or a diameter of 0.0. */ inline float calculate_volumetric_multiplier(const_float_t diameter) { return (parser.volumetric_enabled && diameter) ? 1.0f / CIRCLE_AREA(diameter * 0.5f) : 1; } /** * Convert the filament sizes into volumetric multipliers. * The multiplier converts a given E value into a length. */ void Planner::calculate_volumetric_multipliers() { LOOP_L_N(i, COUNT(filament_size)) { volumetric_multiplier[i] = calculate_volumetric_multiplier(filament_size[i]); refresh_e_factor(i); } #if ENABLED(VOLUMETRIC_EXTRUDER_LIMIT) calculate_volumetric_extruder_limits(); // update volumetric_extruder_limits as well. #endif } #endif // !NO_VOLUMETRICS #if ENABLED(VOLUMETRIC_EXTRUDER_LIMIT) /** * Convert volumetric based limits into pre calculated extruder feedrate limits. */ void Planner::calculate_volumetric_extruder_limit(const uint8_t e) { const float &lim = volumetric_extruder_limit[e], &siz = filament_size[e]; volumetric_extruder_feedrate_limit[e] = (lim && siz) ? lim / CIRCLE_AREA(siz * 0.5f) : 0; } void Planner::calculate_volumetric_extruder_limits() { EXTRUDER_LOOP() calculate_volumetric_extruder_limit(e); } #endif #if ENABLED(FILAMENT_WIDTH_SENSOR) /** * Convert the ratio value given by the filament width sensor * into a volumetric multiplier. Conversion differs when using * linear extrusion vs volumetric extrusion. */ void Planner::apply_filament_width_sensor(const int8_t encoded_ratio) { // Reconstitute the nominal/measured ratio const float nom_meas_ratio = 1 + 0.01f * encoded_ratio, ratio_2 = sq(nom_meas_ratio); volumetric_multiplier[FILAMENT_SENSOR_EXTRUDER_NUM] = parser.volumetric_enabled ? ratio_2 / CIRCLE_AREA(filwidth.nominal_mm * 0.5f) // Volumetric uses a true volumetric multiplier : ratio_2; // Linear squares the ratio, which scales the volume refresh_e_factor(FILAMENT_SENSOR_EXTRUDER_NUM); } #endif #if ENABLED(IMPROVE_HOMING_RELIABILITY) void Planner::enable_stall_prevention(const bool onoff) { static motion_state_t saved_motion_state; if (onoff) { saved_motion_state.acceleration.x = settings.max_acceleration_mm_per_s2[X_AXIS]; saved_motion_state.acceleration.y = settings.max_acceleration_mm_per_s2[Y_AXIS]; settings.max_acceleration_mm_per_s2[X_AXIS] = settings.max_acceleration_mm_per_s2[Y_AXIS] = 100; #if ENABLED(DELTA) saved_motion_state.acceleration.z = settings.max_acceleration_mm_per_s2[Z_AXIS]; settings.max_acceleration_mm_per_s2[Z_AXIS] = 100; #endif #if HAS_CLASSIC_JERK saved_motion_state.jerk_state = max_jerk; max_jerk.set(0, 0 OPTARG(DELTA, 0)); #endif } else { settings.max_acceleration_mm_per_s2[X_AXIS] = saved_motion_state.acceleration.x; settings.max_acceleration_mm_per_s2[Y_AXIS] = saved_motion_state.acceleration.y; TERN_(DELTA, settings.max_acceleration_mm_per_s2[Z_AXIS] = saved_motion_state.acceleration.z); TERN_(HAS_CLASSIC_JERK, max_jerk = saved_motion_state.jerk_state); } refresh_acceleration_rates(); } #endif #if HAS_LEVELING constexpr xy_pos_t level_fulcrum = { TERN(Z_SAFE_HOMING, Z_SAFE_HOMING_X_POINT, X_HOME_POS), TERN(Z_SAFE_HOMING, Z_SAFE_HOMING_Y_POINT, Y_HOME_POS) }; /** * rx, ry, rz - Cartesian positions in mm * Leveled XYZ on completion */ void Planner::apply_leveling(xyz_pos_t &raw) { if (!leveling_active) return; #if ABL_PLANAR xy_pos_t d = raw - level_fulcrum; bed_level_matrix.apply_rotation_xyz(d.x, d.y, raw.z); raw = d + level_fulcrum; #elif HAS_MESH #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT) const float fade_scaling_factor = fade_scaling_factor_for_z(raw.z); if (fade_scaling_factor) raw.z += fade_scaling_factor * bedlevel.get_z_correction(raw); #else raw.z += bedlevel.get_z_correction(raw); #endif TERN_(MESH_BED_LEVELING, raw.z += bedlevel.get_z_offset()); #endif } void Planner::unapply_leveling(xyz_pos_t &raw) { if (!leveling_active) return; #if ABL_PLANAR matrix_3x3 inverse = matrix_3x3::transpose(bed_level_matrix); xy_pos_t d = raw - level_fulcrum; inverse.apply_rotation_xyz(d.x, d.y, raw.z); raw = d + level_fulcrum; #elif HAS_MESH const float z_correction = bedlevel.get_z_correction(raw), z_full_fade = DIFF_TERN(MESH_BED_LEVELING, raw.z, bedlevel.get_z_offset()), z_no_fade = z_full_fade - z_correction; #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT) if (!z_fade_height || z_no_fade <= 0.0f) // Not fading or at bed level? raw.z = z_no_fade; // Unapply full mesh Z. else if (z_full_fade >= z_fade_height) // Above the fade height? raw.z = z_full_fade; // Nothing more to unapply. else // Within the fade zone? raw.z = z_no_fade / (1.0f - z_correction * inverse_z_fade_height); // Unapply the faded Z offset #else raw.z = z_no_fade; #endif #endif } #endif // HAS_LEVELING #if ENABLED(FWRETRACT) /** * rz, e - Cartesian positions in mm */ void Planner::apply_retract(float &rz, float &e) { rz += fwretract.current_hop; e -= fwretract.current_retract[active_extruder]; } void Planner::unapply_retract(float &rz, float &e) { rz -= fwretract.current_hop; e += fwretract.current_retract[active_extruder]; } #endif void Planner::quick_stop() { // Remove all the queued blocks. Note that this function is NOT // called from the Stepper ISR, so we must consider tail as readonly! // that is why we set head to tail - But there is a race condition that // must be handled: The tail could change between the read and the assignment // so this must be enclosed in a critical section const bool was_enabled = stepper.suspend(); // Drop all queue entries block_buffer_nonbusy = block_buffer_planned = block_buffer_head = block_buffer_tail; // Restart the block delay for the first movement - As the queue was // forced to empty, there's no risk the ISR will touch this. delay_before_delivering = BLOCK_DELAY_FOR_1ST_MOVE; TERN_(HAS_WIRED_LCD, clear_block_buffer_runtime()); // Clear the accumulated runtime // Make sure to drop any attempt of queuing moves for 1 second cleaning_buffer_counter = TEMP_TIMER_FREQUENCY; // Reenable Stepper ISR if (was_enabled) stepper.wake_up(); // And stop the stepper ISR stepper.quick_stop(); } #if ENABLED(REALTIME_REPORTING_COMMANDS) void Planner::quick_pause() { // Suspend until quick_resume is called // Don't empty buffers or queues const bool did_suspend = stepper.suspend(); if (did_suspend) TERN_(FULL_REPORT_TO_HOST_FEATURE, set_and_report_grblstate(M_HOLD)); } // Resume if suspended void Planner::quick_resume() { TERN_(FULL_REPORT_TO_HOST_FEATURE, set_and_report_grblstate(grbl_state_for_marlin_state())); stepper.wake_up(); } #endif void Planner::endstop_triggered(const AxisEnum axis) { // Record stepper position and discard the current block stepper.endstop_triggered(axis); } float Planner::triggered_position_mm(const AxisEnum axis) { const float result = DIFF_TERN(BACKLASH_COMPENSATION, stepper.triggered_position(axis), backlash.get_applied_steps(axis)); return result * mm_per_step[axis]; } void Planner::finish_and_disable() { while (has_blocks_queued() || cleaning_buffer_counter) idle(); stepper.disable_all_steppers(); } /** * Get an axis position according to stepper position(s) * For CORE machines apply translation from ABC to XYZ. */ float Planner::get_axis_position_mm(const AxisEnum axis) { float axis_steps; #if IS_CORE // Requesting one of the "core" axes? if (axis == CORE_AXIS_1 || axis == CORE_AXIS_2) { // Protect the access to the position. const bool was_enabled = stepper.suspend(); const int32_t p1 = DIFF_TERN(BACKLASH_COMPENSATION, stepper.position(CORE_AXIS_1), backlash.get_applied_steps(CORE_AXIS_1)), p2 = DIFF_TERN(BACKLASH_COMPENSATION, stepper.position(CORE_AXIS_2), backlash.get_applied_steps(CORE_AXIS_2)); if (was_enabled) stepper.wake_up(); // ((a1+a2)+(a1-a2))/2 -> (a1+a2+a1-a2)/2 -> (a1+a1)/2 -> a1 // ((a1+a2)-(a1-a2))/2 -> (a1+a2-a1+a2)/2 -> (a2+a2)/2 -> a2 axis_steps = (axis == CORE_AXIS_2 ? CORESIGN(p1 - p2) : p1 + p2) * 0.5f; } else axis_steps = DIFF_TERN(BACKLASH_COMPENSATION, stepper.position(axis), backlash.get_applied_steps(axis)); #elif EITHER(MARKFORGED_XY, MARKFORGED_YX) // Requesting one of the joined axes? if (axis == CORE_AXIS_1 || axis == CORE_AXIS_2) { // Protect the access to the position. const bool was_enabled = stepper.suspend(); const int32_t p1 = stepper.position(CORE_AXIS_1), p2 = stepper.position(CORE_AXIS_2); if (was_enabled) stepper.wake_up(); axis_steps = ((axis == CORE_AXIS_1) ? p1 - p2 : p2); } else axis_steps = DIFF_TERN(BACKLASH_COMPENSATION, stepper.position(axis), backlash.get_applied_steps(axis)); #else axis_steps = stepper.position(axis); TERN_(BACKLASH_COMPENSATION, axis_steps -= backlash.get_applied_steps(axis)); #endif return axis_steps * mm_per_step[axis]; } /** * Block until the planner is finished processing */ void Planner::synchronize() { while (busy()) idle(); } /** * @brief Add a new linear movement to the planner queue (in terms of steps). * * @param target Target position in steps units * @param target_float Target position in direct (mm, degrees) units. * @param cart_dist_mm The pre-calculated move lengths for all axes, in mm * @param fr_mm_s (target) speed of the move * @param extruder target extruder * @param hints parameters to aid planner calculations * * @return true if movement was properly queued, false otherwise (if cleaning) */ bool Planner::_buffer_steps(const xyze_long_t &target OPTARG(HAS_POSITION_FLOAT, const xyze_pos_t &target_float) OPTARG(HAS_DIST_MM_ARG, const xyze_float_t &cart_dist_mm) , feedRate_t fr_mm_s, const uint8_t extruder, const PlannerHints &hints ) { // Wait for the next available block uint8_t next_buffer_head; block_t * const block = get_next_free_block(next_buffer_head); // If we are cleaning, do not accept queuing of movements // This must be after get_next_free_block() because it calls idle() // where cleaning_buffer_counter can be changed if (cleaning_buffer_counter) return false; // Fill the block with the specified movement if (!_populate_block(block, target OPTARG(HAS_POSITION_FLOAT, target_float) OPTARG(HAS_DIST_MM_ARG, cart_dist_mm) , fr_mm_s, extruder, hints ) ) { // Movement was not queued, probably because it was too short. // Simply accept that as movement queued and done return true; } // If this is the first added movement, reload the delay, otherwise, cancel it. if (block_buffer_head == block_buffer_tail) { // If it was the first queued block, restart the 1st block delivery delay, to // give the planner an opportunity to queue more movements and plan them // As there are no queued movements, the Stepper ISR will not touch this // variable, so there is no risk setting this here (but it MUST be done // before the following line!!) delay_before_delivering = BLOCK_DELAY_FOR_1ST_MOVE; } // Move buffer head block_buffer_head = next_buffer_head; // Recalculate and optimize trapezoidal speed profiles recalculate(TERN_(HINTS_SAFE_EXIT_SPEED, hints.safe_exit_speed_sqr)); // Movement successfully queued! return true; } /** * @brief Populate a block in preparation for insertion * @details Populate the fields of a new linear movement block * that will be added to the queue and processed soon * by the Stepper ISR. * * @param block A block to populate * @param target Target position in steps units * @param target_float Target position in native mm * @param cart_dist_mm The pre-calculated move lengths for all axes, in mm * @param fr_mm_s (target) speed of the move * @param extruder target extruder * @param hints parameters to aid planner calculations * * @return true if movement is acceptable, false otherwise */ bool Planner::_populate_block( block_t * const block, const abce_long_t &target OPTARG(HAS_POSITION_FLOAT, const xyze_pos_t &target_float) OPTARG(HAS_DIST_MM_ARG, const xyze_float_t &cart_dist_mm) , feedRate_t fr_mm_s, const uint8_t extruder, const PlannerHints &hints ) { int32_t LOGICAL_AXIS_LIST( de = target.e - position.e, da = target.a - position.a, db = target.b - position.b, dc = target.c - position.c, di = target.i - position.i, dj = target.j - position.j, dk = target.k - position.k, du = target.u - position.u, dv = target.v - position.v, dw = target.w - position.w ); /* <-- add a slash to enable SERIAL_ECHOLNPGM( " _populate_block FR:", fr_mm_s, " A:", target.a, " (", da, " steps)" #if HAS_Y_AXIS " B:", target.b, " (", db, " steps)" #endif #if HAS_Z_AXIS " C:", target.c, " (", dc, " steps)" #endif #if HAS_I_AXIS " " STR_I ":", target.i, " (", di, " steps)" #endif #if HAS_J_AXIS " " STR_J ":", target.j, " (", dj, " steps)" #endif #if HAS_K_AXIS " " STR_K ":", target.k, " (", dk, " steps)" #endif #if HAS_U_AXIS " " STR_U ":", target.u, " (", du, " steps)" #endif #if HAS_V_AXIS " " STR_V ":", target.v, " (", dv, " steps)" #endif #if HAS_W_AXIS " " STR_W ":", target.w, " (", dw, " steps)" #if HAS_EXTRUDERS " E:", target.e, " (", de, " steps)" #endif ); //*/ #if EITHER(PREVENT_COLD_EXTRUSION, PREVENT_LENGTHY_EXTRUDE) if (de) { #if ENABLED(PREVENT_COLD_EXTRUSION) if (thermalManager.tooColdToExtrude(extruder)) { position.e = target.e; // Behave as if the move really took place, but ignore E part TERN_(HAS_POSITION_FLOAT, position_float.e = target_float.e); de = 0; // no difference SERIAL_ECHO_MSG(STR_ERR_COLD_EXTRUDE_STOP); } #endif // PREVENT_COLD_EXTRUSION #if ENABLED(PREVENT_LENGTHY_EXTRUDE) const float e_steps = ABS(de * e_factor[extruder]); const float max_e_steps = settings.axis_steps_per_mm[E_AXIS_N(extruder)] * (EXTRUDE_MAXLENGTH); if (e_steps > max_e_steps) { #if ENABLED(MIXING_EXTRUDER) bool ignore_e = false; float collector[MIXING_STEPPERS]; mixer.refresh_collector(1.0f, mixer.get_current_vtool(), collector); MIXER_STEPPER_LOOP(e) if (e_steps * collector[e] > max_e_steps) { ignore_e = true; break; } #else constexpr bool ignore_e = true; #endif if (ignore_e) { position.e = target.e; // Behave as if the move really took place, but ignore E part TERN_(HAS_POSITION_FLOAT, position_float.e = target_float.e); de = 0; // no difference SERIAL_ECHO_MSG(STR_ERR_LONG_EXTRUDE_STOP); } } #endif // PREVENT_LENGTHY_EXTRUDE } #endif // PREVENT_COLD_EXTRUSION || PREVENT_LENGTHY_EXTRUDE // Compute direction bit-mask for this block axis_bits_t dm = 0; #if ANY(CORE_IS_XY, MARKFORGED_XY, MARKFORGED_YX) if (da < 0) SBI(dm, X_HEAD); // Save the toolhead's true direction in X if (db < 0) SBI(dm, Y_HEAD); // ...and Y if (dc < 0) SBI(dm, Z_AXIS); #endif #if IS_CORE #if CORE_IS_XY if (da + db < 0) SBI(dm, A_AXIS); // Motor A direction if (CORESIGN(da - db) < 0) SBI(dm, B_AXIS); // Motor B direction #elif CORE_IS_XZ if (da < 0) SBI(dm, X_HEAD); // Save the toolhead's true direction in X if (db < 0) SBI(dm, Y_AXIS); if (dc < 0) SBI(dm, Z_HEAD); // ...and Z if (da + dc < 0) SBI(dm, A_AXIS); // Motor A direction if (CORESIGN(da - dc) < 0) SBI(dm, C_AXIS); // Motor C direction #elif CORE_IS_YZ if (da < 0) SBI(dm, X_AXIS); if (db < 0) SBI(dm, Y_HEAD); // Save the toolhead's true direction in Y if (dc < 0) SBI(dm, Z_HEAD); // ...and Z if (db + dc < 0) SBI(dm, B_AXIS); // Motor B direction if (CORESIGN(db - dc) < 0) SBI(dm, C_AXIS); // Motor C direction #endif #elif ENABLED(MARKFORGED_XY) if (da + db < 0) SBI(dm, A_AXIS); // Motor A direction if (db < 0) SBI(dm, B_AXIS); // Motor B direction #elif ENABLED(MARKFORGED_YX) if (da < 0) SBI(dm, A_AXIS); // Motor A direction if (db + da < 0) SBI(dm, B_AXIS); // Motor B direction #else XYZ_CODE( if (da < 0) SBI(dm, X_AXIS), if (db < 0) SBI(dm, Y_AXIS), if (dc < 0) SBI(dm, Z_AXIS) ); #endif SECONDARY_AXIS_CODE( if (di < 0) SBI(dm, I_AXIS), if (dj < 0) SBI(dm, J_AXIS), if (dk < 0) SBI(dm, K_AXIS), if (du < 0) SBI(dm, U_AXIS), if (dv < 0) SBI(dm, V_AXIS), if (dw < 0) SBI(dm, W_AXIS) ); #if HAS_EXTRUDERS if (de < 0) SBI(dm, E_AXIS); const float esteps_float = de * e_factor[extruder]; const uint32_t esteps = ABS(esteps_float) + 0.5f; #else constexpr uint32_t esteps = 0; #endif // Clear all flags, including the "busy" bit block->flag.clear(); // Set direction bits block->direction_bits = dm; /** * Update block laser power * For standard mode get the cutter.power value for processing, since it's * only set by apply_power(). */ #if HAS_CUTTER switch (cutter.cutter_mode) { default: break; case CUTTER_MODE_STANDARD: block->cutter_power = cutter.power; break; #if ENABLED(LASER_FEATURE) /** * For inline mode get the laser_inline variables, including power and status. * Dynamic mode only needs to update if the feedrate has changed, since it's * calculated from the current feedrate and power level. */ case CUTTER_MODE_CONTINUOUS: block->laser.power = laser_inline.power; block->laser.status = laser_inline.status; break; case CUTTER_MODE_DYNAMIC: if (cutter.laser_feedrate_changed()) // Only process changes in rate block->laser.power = laser_inline.power = cutter.calc_dynamic_power(); break; #endif } #endif // Number of steps for each axis // See https://www.corexy.com/theory.html block->steps.set(NUM_AXIS_LIST( #if CORE_IS_XY ABS(da + db), ABS(da - db), ABS(dc) #elif CORE_IS_XZ ABS(da + dc), ABS(db), ABS(da - dc) #elif CORE_IS_YZ ABS(da), ABS(db + dc), ABS(db - dc) #elif ENABLED(MARKFORGED_XY) ABS(da + db), ABS(db), ABS(dc) #elif ENABLED(MARKFORGED_YX) ABS(da), ABS(db + da), ABS(dc) #elif IS_SCARA ABS(da), ABS(db), ABS(dc) #else // default non-h-bot planning ABS(da), ABS(db), ABS(dc) #endif , ABS(di), ABS(dj), ABS(dk), ABS(du), ABS(dv), ABS(dw) )); /** * This part of the code calculates the total length of the movement. * For cartesian bots, the X_AXIS is the real X movement and same for Y_AXIS. * But for corexy bots, that is not true. The "X_AXIS" and "Y_AXIS" motors (that should be named to A_AXIS * and B_AXIS) cannot be used for X and Y length, because A=X+Y and B=X-Y. * So we need to create other 2 "AXIS", named X_HEAD and Y_HEAD, meaning the real displacement of the Head. * Having the real displacement of the head, we can calculate the total movement length and apply the desired speed. */ struct DistanceMM : abce_float_t { #if ANY(IS_CORE, MARKFORGED_XY, MARKFORGED_YX) struct { float x, y, z; } head; #endif } steps_dist_mm; #if ANY(CORE_IS_XY, MARKFORGED_XY, MARKFORGED_YX) steps_dist_mm.head.x = da * mm_per_step[A_AXIS]; steps_dist_mm.head.y = db * mm_per_step[B_AXIS]; steps_dist_mm.z = dc * mm_per_step[Z_AXIS]; #endif #if IS_CORE #if CORE_IS_XY steps_dist_mm.a = (da + db) * mm_per_step[A_AXIS]; steps_dist_mm.b = CORESIGN(da - db) * mm_per_step[B_AXIS]; #elif CORE_IS_XZ steps_dist_mm.head.x = da * mm_per_step[A_AXIS]; steps_dist_mm.y = db * mm_per_step[Y_AXIS]; steps_dist_mm.head.z = dc * mm_per_step[C_AXIS]; steps_dist_mm.a = (da + dc) * mm_per_step[A_AXIS]; steps_dist_mm.c = CORESIGN(da - dc) * mm_per_step[C_AXIS]; #elif CORE_IS_YZ steps_dist_mm.x = da * mm_per_step[X_AXIS]; steps_dist_mm.head.y = db * mm_per_step[B_AXIS]; steps_dist_mm.head.z = dc * mm_per_step[C_AXIS]; steps_dist_mm.b = (db + dc) * mm_per_step[B_AXIS]; steps_dist_mm.c = CORESIGN(db - dc) * mm_per_step[C_AXIS]; #endif #elif ENABLED(MARKFORGED_XY) steps_dist_mm.a = (da - db) * mm_per_step[A_AXIS]; steps_dist_mm.b = db * mm_per_step[B_AXIS]; #elif ENABLED(MARKFORGED_YX) steps_dist_mm.a = da * mm_per_step[A_AXIS]; steps_dist_mm.b = (db - da) * mm_per_step[B_AXIS]; #else XYZ_CODE( steps_dist_mm.a = da * mm_per_step[A_AXIS], steps_dist_mm.b = db * mm_per_step[B_AXIS], steps_dist_mm.c = dc * mm_per_step[C_AXIS] ); #endif SECONDARY_AXIS_CODE( steps_dist_mm.i = di * mm_per_step[I_AXIS], steps_dist_mm.j = dj * mm_per_step[J_AXIS], steps_dist_mm.k = dk * mm_per_step[K_AXIS], steps_dist_mm.u = du * mm_per_step[U_AXIS], steps_dist_mm.v = dv * mm_per_step[V_AXIS], steps_dist_mm.w = dw * mm_per_step[W_AXIS] ); TERN_(HAS_EXTRUDERS, steps_dist_mm.e = esteps_float * mm_per_step[E_AXIS_N(extruder)]); TERN_(LCD_SHOW_E_TOTAL, e_move_accumulator += steps_dist_mm.e); #if BOTH(HAS_ROTATIONAL_AXES, INCH_MODE_SUPPORT) bool cartesian_move = true; #endif if (true NUM_AXIS_GANG( && block->steps.a < MIN_STEPS_PER_SEGMENT, && block->steps.b < MIN_STEPS_PER_SEGMENT, && block->steps.c < MIN_STEPS_PER_SEGMENT, && block->steps.i < MIN_STEPS_PER_SEGMENT, && block->steps.j < MIN_STEPS_PER_SEGMENT, && block->steps.k < MIN_STEPS_PER_SEGMENT, && block->steps.u < MIN_STEPS_PER_SEGMENT, && block->steps.v < MIN_STEPS_PER_SEGMENT, && block->steps.w < MIN_STEPS_PER_SEGMENT ) ) { block->millimeters = TERN0(HAS_EXTRUDERS, ABS(steps_dist_mm.e)); } else { if (hints.millimeters) block->millimeters = hints.millimeters; else { /** * Distance for interpretation of feedrate in accordance with LinuxCNC (the successor of NIST * RS274NGC interpreter - version 3) and its default CANON_XYZ feed reference mode. * Assume that X, Y, Z are the primary linear axes and U, V, W are secondary linear axes and A, B, C are * rotational axes. Then dX, dY, dZ are the displacements of the primary linear axes and dU, dV, dW are the displacements of linear axes and * dA, dB, dC are the displacements of rotational axes. * The time it takes to execute move command with feedrate F is t = D/F, where D is the total distance, calculated as follows: * D^2 = dX^2 + dY^2 + dZ^2 * if D^2 == 0 (none of XYZ move but any secondary linear axes move, whether other axes are moved or not): * D^2 = dU^2 + dV^2 + dW^2 * if D^2 == 0 (only rotational axes are moved): * D^2 = dA^2 + dB^2 + dC^2 */ float distance_sqr = ( #if ENABLED(ARTICULATED_ROBOT_ARM) // For articulated robots, interpreting feedrate like LinuxCNC would require inverse kinematics. As a workaround, pretend that motors sit on n mutually orthogonal // axes and assume that we could think of distance as magnitude of an n-vector in an n-dimensional Euclidian space. NUM_AXIS_GANG( sq(steps_dist_mm.x), + sq(steps_dist_mm.y), + sq(steps_dist_mm.z), + sq(steps_dist_mm.i), + sq(steps_dist_mm.j), + sq(steps_dist_mm.k), + sq(steps_dist_mm.u), + sq(steps_dist_mm.v), + sq(steps_dist_mm.w) ); #elif ENABLED(FOAMCUTTER_XYUV) #if HAS_J_AXIS // Special 5 axis kinematics. Return the largest distance move from either X/Y or I/J plane _MAX(sq(steps_dist_mm.x) + sq(steps_dist_mm.y), sq(steps_dist_mm.i) + sq(steps_dist_mm.j)) #else // Foamcutter with only two axes (XY) sq(steps_dist_mm.x) + sq(steps_dist_mm.y) #endif #elif ANY(CORE_IS_XY, MARKFORGED_XY, MARKFORGED_YX) XYZ_GANG(sq(steps_dist_mm.head.x), + sq(steps_dist_mm.head.y), + sq(steps_dist_mm.z)) #elif CORE_IS_XZ XYZ_GANG(sq(steps_dist_mm.head.x), + sq(steps_dist_mm.y), + sq(steps_dist_mm.head.z)) #elif CORE_IS_YZ XYZ_GANG(sq(steps_dist_mm.x), + sq(steps_dist_mm.head.y), + sq(steps_dist_mm.head.z)) #else XYZ_GANG(sq(steps_dist_mm.x), + sq(steps_dist_mm.y), + sq(steps_dist_mm.z)) #endif ); #if SECONDARY_LINEAR_AXES >= 1 && NONE(FOAMCUTTER_XYUV, ARTICULATED_ROBOT_ARM) if (UNEAR_ZERO(distance_sqr)) { // Move does not involve any primary linear axes (xyz) but might involve secondary linear axes distance_sqr = (0.0f SECONDARY_AXIS_GANG( IF_DISABLED(AXIS4_ROTATES, + sq(steps_dist_mm.i)), IF_DISABLED(AXIS5_ROTATES, + sq(steps_dist_mm.j)), IF_DISABLED(AXIS6_ROTATES, + sq(steps_dist_mm.k)), IF_DISABLED(AXIS7_ROTATES, + sq(steps_dist_mm.u)), IF_DISABLED(AXIS8_ROTATES, + sq(steps_dist_mm.v)), IF_DISABLED(AXIS9_ROTATES, + sq(steps_dist_mm.w)) ) ); } #endif #if HAS_ROTATIONAL_AXES && NONE(FOAMCUTTER_XYUV, ARTICULATED_ROBOT_ARM) if (UNEAR_ZERO(distance_sqr)) { // Move involves only rotational axes. Calculate angular distance in accordance with LinuxCNC TERN_(INCH_MODE_SUPPORT, cartesian_move = false); distance_sqr = ROTATIONAL_AXIS_GANG(sq(steps_dist_mm.i), + sq(steps_dist_mm.j), + sq(steps_dist_mm.k), + sq(steps_dist_mm.u), + sq(steps_dist_mm.v), + sq(steps_dist_mm.w)); } #endif block->millimeters = SQRT(distance_sqr); } /** * At this point at least one of the axes has more steps than * MIN_STEPS_PER_SEGMENT, ensuring the segment won't get dropped as * zero-length. It's important to not apply corrections * to blocks that would get dropped! * * A correction function is permitted to add steps to an axis, it * should *never* remove steps! */ TERN_(BACKLASH_COMPENSATION, backlash.add_correction_steps(da, db, dc, dm, block)); } TERN_(HAS_EXTRUDERS, block->steps.e = esteps); block->step_event_count = _MAX(LOGICAL_AXIS_LIST(esteps, block->steps.a, block->steps.b, block->steps.c, block->steps.i, block->steps.j, block->steps.k, block->steps.u, block->steps.v, block->steps.w )); // Bail if this is a zero-length block if (block->step_event_count < MIN_STEPS_PER_SEGMENT) return false; TERN_(MIXING_EXTRUDER, mixer.populate_block(block->b_color)); #if HAS_FAN FANS_LOOP(i) block->fan_speed[i] = thermalManager.fan_speed[i]; #endif #if ENABLED(BARICUDA) block->valve_pressure = baricuda_valve_pressure; block->e_to_p_pressure = baricuda_e_to_p_pressure; #endif E_TERN_(block->extruder = extruder); #if ENABLED(AUTO_POWER_CONTROL) if (NUM_AXIS_GANG( block->steps.x, || block->steps.y, || block->steps.z, || block->steps.i, || block->steps.j, || block->steps.k, || block->steps.u, || block->steps.v, || block->steps.w )) powerManager.power_on(); #endif // Enable active axes #if ANY(CORE_IS_XY, MARKFORGED_XY, MARKFORGED_YX) if (block->steps.a || block->steps.b) { stepper.enable_axis(X_AXIS); stepper.enable_axis(Y_AXIS); } #if DISABLED(Z_LATE_ENABLE) if (block->steps.z) stepper.enable_axis(Z_AXIS); #endif #elif CORE_IS_XZ if (block->steps.a || block->steps.c) { stepper.enable_axis(X_AXIS); stepper.enable_axis(Z_AXIS); } if (block->steps.y) stepper.enable_axis(Y_AXIS); #elif CORE_IS_YZ if (block->steps.b || block->steps.c) { stepper.enable_axis(Y_AXIS); stepper.enable_axis(Z_AXIS); } if (block->steps.x) stepper.enable_axis(X_AXIS); #else NUM_AXIS_CODE( if (block->steps.x) stepper.enable_axis(X_AXIS), if (block->steps.y) stepper.enable_axis(Y_AXIS), if (TERN(Z_LATE_ENABLE, 0, block->steps.z)) stepper.enable_axis(Z_AXIS), if (block->steps.i) stepper.enable_axis(I_AXIS), if (block->steps.j) stepper.enable_axis(J_AXIS), if (block->steps.k) stepper.enable_axis(K_AXIS), if (block->steps.u) stepper.enable_axis(U_AXIS), if (block->steps.v) stepper.enable_axis(V_AXIS), if (block->steps.w) stepper.enable_axis(W_AXIS) ); #endif #if ANY(CORE_IS_XY, MARKFORGED_XY, MARKFORGED_YX) SECONDARY_AXIS_CODE( if (block->steps.i) stepper.enable_axis(I_AXIS), if (block->steps.j) stepper.enable_axis(J_AXIS), if (block->steps.k) stepper.enable_axis(K_AXIS), if (block->steps.u) stepper.enable_axis(U_AXIS), if (block->steps.v) stepper.enable_axis(V_AXIS), if (block->steps.w) stepper.enable_axis(W_AXIS) ); #endif // Enable extruder(s) #if HAS_EXTRUDERS if (esteps) { TERN_(AUTO_POWER_CONTROL, powerManager.power_on()); #if ENABLED(DISABLE_INACTIVE_EXTRUDER) // Enable only the selected extruder // Count down all steppers that were recently moved LOOP_L_N(i, E_STEPPERS) if (g_uc_extruder_last_move[i]) g_uc_extruder_last_move[i]--; // Switching Extruder uses one E stepper motor per two nozzles #define E_STEPPER_INDEX(E) TERN(SWITCHING_EXTRUDER, (E) / 2, E) // Enable all (i.e., both) E steppers for IDEX-style duplication, but only active E steppers for multi-nozzle (i.e., single wide X carriage) duplication #define _IS_DUPE(N) TERN0(HAS_DUPLICATION_MODE, (extruder_duplication_enabled && TERN1(MULTI_NOZZLE_DUPLICATION, TEST(duplication_e_mask, N)))) #define ENABLE_ONE_E(N) do{ \ if (N == E_STEPPER_INDEX(extruder) || _IS_DUPE(N)) { /* N is 'extruder', or N is duplicating */ \ stepper.ENABLE_EXTRUDER(N); /* Enable the relevant E stepper... */ \ g_uc_extruder_last_move[N] = (BLOCK_BUFFER_SIZE) * 2; /* ...and reset its counter */ \ } \ else if (!g_uc_extruder_last_move[N]) /* Counter expired since last E stepper enable */ \ stepper.DISABLE_EXTRUDER(N); /* Disable the E stepper */ \ }while(0); #else #define ENABLE_ONE_E(N) stepper.ENABLE_EXTRUDER(N); #endif REPEAT(E_STEPPERS, ENABLE_ONE_E); // (ENABLE_ONE_E must end with semicolon) } #endif // HAS_EXTRUDERS if (esteps) NOLESS(fr_mm_s, settings.min_feedrate_mm_s); else NOLESS(fr_mm_s, settings.min_travel_feedrate_mm_s); const float inverse_millimeters = 1.0f / block->millimeters; // Inverse millimeters to remove multiple divides // Calculate inverse time for this move. No divide by zero due to previous checks. // Example: At 120mm/s a 60mm move involving XYZ axes takes 0.5s. So this will give 2.0. // Example 2: At 120°/s a 60° move involving only rotational axes takes 0.5s. So this will give 2.0. float inverse_secs; #if BOTH(HAS_ROTATIONAL_AXES, INCH_MODE_SUPPORT) inverse_secs = inverse_millimeters * (cartesian_move ? fr_mm_s : LINEAR_UNIT(fr_mm_s)); #else inverse_secs = fr_mm_s * inverse_millimeters; #endif // Get the number of non busy movements in queue (non busy means that they can be altered) const uint8_t moves_queued = nonbusy_movesplanned(); // Slow down when the buffer starts to empty, rather than wait at the corner for a buffer refill #if EITHER(SLOWDOWN, HAS_WIRED_LCD) || defined(XY_FREQUENCY_LIMIT) // Segment time in microseconds int32_t segment_time_us = LROUND(1000000.0f / inverse_secs); #endif #if ENABLED(SLOWDOWN) #ifndef SLOWDOWN_DIVISOR #define SLOWDOWN_DIVISOR 2 #endif if (WITHIN(moves_queued, 2, (BLOCK_BUFFER_SIZE) / (SLOWDOWN_DIVISOR) - 1)) { const int32_t time_diff = settings.min_segment_time_us - segment_time_us; if (time_diff > 0) { // Buffer is draining so add extra time. The amount of time added increases if the buffer is still emptied more. const int32_t nst = segment_time_us + LROUND(2 * time_diff / moves_queued); inverse_secs = 1000000.0f / nst; #if defined(XY_FREQUENCY_LIMIT) || HAS_WIRED_LCD segment_time_us = nst; #endif } } #endif #if HAS_WIRED_LCD // Protect the access to the position. const bool was_enabled = stepper.suspend(); block_buffer_runtime_us += segment_time_us; block->segment_time_us = segment_time_us; if (was_enabled) stepper.wake_up(); #endif block->nominal_speed = block->millimeters * inverse_secs; // (mm/sec) Always > 0 block->nominal_rate = CEIL(block->step_event_count * inverse_secs); // (step/sec) Always > 0 #if ENABLED(FILAMENT_WIDTH_SENSOR) if (extruder == FILAMENT_SENSOR_EXTRUDER_NUM) // Only for extruder with filament sensor filwidth.advance_e(steps_dist_mm.e); #endif // Calculate and limit speed in mm/sec (linear) or degrees/sec (rotational) xyze_float_t current_speed; float speed_factor = 1.0f; // factor <1 decreases speed // Linear axes first with less logic LOOP_NUM_AXES(i) { current_speed[i] = steps_dist_mm[i] * inverse_secs; const feedRate_t cs = ABS(current_speed[i]), max_fr = settings.max_feedrate_mm_s[i]; if (cs > max_fr) NOMORE(speed_factor, max_fr / cs); } // Limit speed on extruders, if any #if HAS_EXTRUDERS { current_speed.e = steps_dist_mm.e * inverse_secs; #if HAS_MIXER_SYNC_CHANNEL // Move all mixing extruders at the specified rate if (mixer.get_current_vtool() == MIXER_AUTORETRACT_TOOL) current_speed.e *= MIXING_STEPPERS; #endif const feedRate_t cs = ABS(current_speed.e), max_fr = settings.max_feedrate_mm_s[E_AXIS_N(extruder)] * TERN(HAS_MIXER_SYNC_CHANNEL, MIXING_STEPPERS, 1); if (cs > max_fr) NOMORE(speed_factor, max_fr / cs); //respect max feedrate on any movement (doesn't matter if E axes only or not) #if ENABLED(VOLUMETRIC_EXTRUDER_LIMIT) const feedRate_t max_vfr = volumetric_extruder_feedrate_limit[extruder] * TERN(HAS_MIXER_SYNC_CHANNEL, MIXING_STEPPERS, 1); // TODO: Doesn't work properly for joined segments. Set MIN_STEPS_PER_SEGMENT 1 as workaround. if (block->steps.a || block->steps.b || block->steps.c) { if (max_vfr > 0 && cs > max_vfr) { NOMORE(speed_factor, max_vfr / cs); // respect volumetric extruder limit (if any) /* <-- add a slash to enable SERIAL_ECHOPGM("volumetric extruder limit enforced: ", (cs * CIRCLE_AREA(filament_size[extruder] * 0.5f))); SERIAL_ECHOPGM(" mm^3/s (", cs); SERIAL_ECHOPGM(" mm/s) limited to ", (max_vfr * CIRCLE_AREA(filament_size[extruder] * 0.5f))); SERIAL_ECHOPGM(" mm^3/s (", max_vfr); SERIAL_ECHOLNPGM(" mm/s)"); //*/ } } #endif } #endif #ifdef XY_FREQUENCY_LIMIT static axis_bits_t old_direction_bits; // = 0 if (xy_freq_limit_hz) { // Check and limit the xy direction change frequency const axis_bits_t direction_change = block->direction_bits ^ old_direction_bits; old_direction_bits = block->direction_bits; segment_time_us = LROUND(float(segment_time_us) / speed_factor); static int32_t xs0, xs1, xs2, ys0, ys1, ys2; if (segment_time_us > xy_freq_min_interval_us) xs2 = xs1 = ys2 = ys1 = xy_freq_min_interval_us; else { xs2 = xs1; xs1 = xs0; ys2 = ys1; ys1 = ys0; } xs0 = TEST(direction_change, X_AXIS) ? segment_time_us : xy_freq_min_interval_us; ys0 = TEST(direction_change, Y_AXIS) ? segment_time_us : xy_freq_min_interval_us; if (segment_time_us < xy_freq_min_interval_us) { const int32_t least_xy_segment_time = _MIN(_MAX(xs0, xs1, xs2), _MAX(ys0, ys1, ys2)); if (least_xy_segment_time < xy_freq_min_interval_us) { float freq_xy_feedrate = (speed_factor * least_xy_segment_time) / xy_freq_min_interval_us; NOLESS(freq_xy_feedrate, xy_freq_min_speed_factor); NOMORE(speed_factor, freq_xy_feedrate); } } } #endif // XY_FREQUENCY_LIMIT #if ENABLED(INPUT_SHAPING) const float top_freq = _MIN(float(0x7FFFFFFFL) OPTARG(HAS_SHAPING_X, stepper.get_shaping_frequency(X_AXIS)) OPTARG(HAS_SHAPING_Y, stepper.get_shaping_frequency(Y_AXIS))), max_factor = (top_freq * float(shaping_dividends - 3) * 2.0f) / block->nominal_rate; NOMORE(speed_factor, max_factor); #endif // Correct the speed if (speed_factor < 1.0f) { current_speed *= speed_factor; block->nominal_rate *= speed_factor; block->nominal_speed *= speed_factor; } // Compute and limit the acceleration rate for the trapezoid generator. const float steps_per_mm = block->step_event_count * inverse_millimeters; uint32_t accel; #if ENABLED(LIN_ADVANCE) bool use_advance_lead = false; #endif if (NUM_AXIS_GANG( !block->steps.a, && !block->steps.b, && !block->steps.c, && !block->steps.i, && !block->steps.j, && !block->steps.k, && !block->steps.u, && !block->steps.v, && !block->steps.w) ) { // Is this a retract / recover move? accel = CEIL(settings.retract_acceleration * steps_per_mm); // Convert to: acceleration steps/sec^2 } else { #define LIMIT_ACCEL_LONG(AXIS,INDX) do{ \ if (block->steps[AXIS] && max_acceleration_steps_per_s2[AXIS+INDX] < accel) { \ const uint32_t max_possible = max_acceleration_steps_per_s2[AXIS+INDX] * block->step_event_count / block->steps[AXIS]; \ NOMORE(accel, max_possible); \ } \ }while(0) #define LIMIT_ACCEL_FLOAT(AXIS,INDX) do{ \ if (block->steps[AXIS] && max_acceleration_steps_per_s2[AXIS+INDX] < accel) { \ const float max_possible = float(max_acceleration_steps_per_s2[AXIS+INDX]) * float(block->step_event_count) / float(block->steps[AXIS]); \ NOMORE(accel, max_possible); \ } \ }while(0) // Start with print or travel acceleration accel = CEIL((esteps ? settings.acceleration : settings.travel_acceleration) * steps_per_mm); #if ENABLED(LIN_ADVANCE) // Linear advance is currently not ready for HAS_I_AXIS #define MAX_E_JERK(N) TERN(HAS_LINEAR_E_JERK, max_e_jerk[E_INDEX_N(N)], max_jerk.e) /** * Use LIN_ADVANCE for blocks if all these are true: * * esteps : This is a print move, because we checked for A, B, C steps before. * * extruder_advance_K[extruder] : There is an advance factor set for this extruder. * * de > 0 : Extruder is running forward (e.g., for "Wipe while retracting" (Slic3r) or "Combing" (Cura) moves) */ use_advance_lead = esteps && extruder_advance_K[E_INDEX_N(extruder)] && de > 0; if (use_advance_lead) { float e_D_ratio = (target_float.e - position_float.e) / TERN(IS_KINEMATIC, block->millimeters, SQRT(sq(target_float.x - position_float.x) + sq(target_float.y - position_float.y) + sq(target_float.z - position_float.z)) ); // Check for unusual high e_D ratio to detect if a retract move was combined with the last print move due to min. steps per segment. Never execute this with advance! // This assumes no one will use a retract length of 0mm < retr_length < ~0.2mm and no one will print 100mm wide lines using 3mm filament or 35mm wide lines using 1.75mm filament. if (e_D_ratio > 3.0f) use_advance_lead = false; else { // Scale E acceleration so that it will be possible to jump to the advance speed. const uint32_t max_accel_steps_per_s2 = MAX_E_JERK(extruder) / (extruder_advance_K[E_INDEX_N(extruder)] * e_D_ratio) * steps_per_mm; if (TERN0(LA_DEBUG, accel > max_accel_steps_per_s2)) SERIAL_ECHOLNPGM("Acceleration limited."); NOMORE(accel, max_accel_steps_per_s2); } } #endif // Limit acceleration per axis if (block->step_event_count <= acceleration_long_cutoff) { LOGICAL_AXIS_CODE( LIMIT_ACCEL_LONG(E_AXIS, E_INDEX_N(extruder)), LIMIT_ACCEL_LONG(A_AXIS, 0), LIMIT_ACCEL_LONG(B_AXIS, 0), LIMIT_ACCEL_LONG(C_AXIS, 0), LIMIT_ACCEL_LONG(I_AXIS, 0), LIMIT_ACCEL_LONG(J_AXIS, 0), LIMIT_ACCEL_LONG(K_AXIS, 0), LIMIT_ACCEL_LONG(U_AXIS, 0), LIMIT_ACCEL_LONG(V_AXIS, 0), LIMIT_ACCEL_LONG(W_AXIS, 0) ); } else { LOGICAL_AXIS_CODE( LIMIT_ACCEL_FLOAT(E_AXIS, E_INDEX_N(extruder)), LIMIT_ACCEL_FLOAT(A_AXIS, 0), LIMIT_ACCEL_FLOAT(B_AXIS, 0), LIMIT_ACCEL_FLOAT(C_AXIS, 0), LIMIT_ACCEL_FLOAT(I_AXIS, 0), LIMIT_ACCEL_FLOAT(J_AXIS, 0), LIMIT_ACCEL_FLOAT(K_AXIS, 0), LIMIT_ACCEL_FLOAT(U_AXIS, 0), LIMIT_ACCEL_FLOAT(V_AXIS, 0), LIMIT_ACCEL_FLOAT(W_AXIS, 0) ); } } block->acceleration_steps_per_s2 = accel; block->acceleration = accel / steps_per_mm; #if DISABLED(S_CURVE_ACCELERATION) block->acceleration_rate = (uint32_t)(accel * (float(1UL << 24) / (STEPPER_TIMER_RATE))); #endif #if ENABLED(LIN_ADVANCE) block->la_advance_rate = 0; block->la_scaling = 0; if (use_advance_lead) { // the Bresenham algorithm will convert this step rate into extruder steps block->la_advance_rate = extruder_advance_K[E_INDEX_N(extruder)] * block->acceleration_steps_per_s2; // reduce LA ISR frequency by calling it only often enough to ensure that there will // never be more than four extruder steps per call for (uint32_t dividend = block->steps.e << 1; dividend <= (block->step_event_count >> 2); dividend <<= 1) block->la_scaling++; #if ENABLED(LA_DEBUG) if (block->la_advance_rate >> block->la_scaling > 10000) SERIAL_ECHOLNPGM("eISR running at > 10kHz: ", block->la_advance_rate); #endif } #endif float vmax_junction_sqr; // Initial limit on the segment entry velocity (mm/s)^2 #if HAS_JUNCTION_DEVIATION /** * Compute maximum allowable entry speed at junction by centripetal acceleration approximation. * Let a circle be tangent to both previous and current path line segments, where the junction * deviation is defined as the distance from the junction to the closest edge of the circle, * colinear with the circle center. The circular segment joining the two paths represents the * path of centripetal acceleration. Solve for max velocity based on max acceleration about the * radius of the circle, defined indirectly by junction deviation. This may be also viewed as * path width or max_jerk in the previous Grbl version. This approach does not actually deviate * from path, but used as a robust way to compute cornering speeds, as it takes into account the * nonlinearities of both the junction angle and junction velocity. * * NOTE: If the junction deviation value is finite, Grbl executes the motions in an exact path * mode (G61). If the junction deviation value is zero, Grbl will execute the motion in an exact * stop mode (G61.1) manner. In the future, if continuous mode (G64) is desired, the math here * is exactly the same. Instead of motioning all the way to junction point, the machine will * just follow the arc circle defined here. The Arduino doesn't have the CPU cycles to perform * a continuous mode path, but ARM-based microcontrollers most certainly do. * * NOTE: The max junction speed is a fixed value, since machine acceleration limits cannot be * changed dynamically during operation nor can the line move geometry. This must be kept in * memory in the event of a feedrate override changing the nominal speeds of blocks, which can * change the overall maximum entry speed conditions of all blocks. * * ####### * https://github.com/MarlinFirmware/Marlin/issues/10341#issuecomment-388191754 * * hoffbaked: on May 10 2018 tuned and improved the GRBL algorithm for Marlin: Okay! It seems to be working good. I somewhat arbitrarily cut it off at 1mm on then on anything with less sides than an octagon. With this, and the reverse pass actually recalculating things, a corner acceleration value of 1000 junction deviation of .05 are pretty reasonable. If the cycles can be spared, a better acos could be used. For all I know, it may be already calculated in a different place. */ // Unit vector of previous path line segment static xyze_float_t prev_unit_vec; xyze_float_t unit_vec = #if HAS_DIST_MM_ARG cart_dist_mm #else LOGICAL_AXIS_ARRAY(steps_dist_mm.e, steps_dist_mm.x, steps_dist_mm.y, steps_dist_mm.z, steps_dist_mm.i, steps_dist_mm.j, steps_dist_mm.k, steps_dist_mm.u, steps_dist_mm.v, steps_dist_mm.w) #endif ; /** * On CoreXY the length of the vector [A,B] is SQRT(2) times the length of the head movement vector [X,Y]. * So taking Z and E into account, we cannot scale to a unit vector with "inverse_millimeters". * => normalize the complete junction vector. * Elsewise, when needed JD will factor-in the E component */ if (ANY(IS_CORE, MARKFORGED_XY, MARKFORGED_YX) || esteps > 0) normalize_junction_vector(unit_vec); // Normalize with XYZE components else unit_vec *= inverse_millimeters; // Use pre-calculated (1 / SQRT(x^2 + y^2 + z^2)) // Skip first block or when previous_nominal_speed is used as a flag for homing and offset cycles. if (moves_queued && !UNEAR_ZERO(previous_nominal_speed)) { // Compute cosine of angle between previous and current path. (prev_unit_vec is negative) // NOTE: Max junction velocity is computed without sin() or acos() by trig half angle identity. float junction_cos_theta = LOGICAL_AXIS_GANG( + (-prev_unit_vec.e * unit_vec.e), + (-prev_unit_vec.x * unit_vec.x), + (-prev_unit_vec.y * unit_vec.y), + (-prev_unit_vec.z * unit_vec.z), + (-prev_unit_vec.i * unit_vec.i), + (-prev_unit_vec.j * unit_vec.j), + (-prev_unit_vec.k * unit_vec.k), + (-prev_unit_vec.u * unit_vec.u), + (-prev_unit_vec.v * unit_vec.v), + (-prev_unit_vec.w * unit_vec.w) ); // NOTE: Computed without any expensive trig, sin() or acos(), by trig half angle identity of cos(theta). if (junction_cos_theta > 0.999999f) { // For a 0 degree acute junction, just set minimum junction speed. vmax_junction_sqr = sq(float(MINIMUM_PLANNER_SPEED)); } else { // Convert delta vector to unit vector xyze_float_t junction_unit_vec = unit_vec - prev_unit_vec; normalize_junction_vector(junction_unit_vec); const float junction_acceleration = limit_value_by_axis_maximum(block->acceleration, junction_unit_vec); if (TERN0(HINTS_CURVE_RADIUS, hints.curve_radius)) { TERN_(HINTS_CURVE_RADIUS, vmax_junction_sqr = junction_acceleration * hints.curve_radius); } else { NOLESS(junction_cos_theta, -0.999999f); // Check for numerical round-off to avoid divide by zero. const float sin_theta_d2 = SQRT(0.5f * (1.0f - junction_cos_theta)); // Trig half angle identity. Always positive. vmax_junction_sqr = junction_acceleration * junction_deviation_mm * sin_theta_d2 / (1.0f - sin_theta_d2); #if ENABLED(JD_HANDLE_SMALL_SEGMENTS) // For small moves with >135° junction (octagon) find speed for approximate arc if (block->millimeters < 1 && junction_cos_theta < -0.7071067812f) { #if ENABLED(JD_USE_MATH_ACOS) #error "TODO: Inline maths with the MCU / FPU." #elif ENABLED(JD_USE_LOOKUP_TABLE) // Fast acos approximation (max. error +-0.01 rads) // Based on LUT table and linear interpolation /** * // Generate the JD Lookup Table * constexpr float c = 1.00751495f; // Correction factor to center error around 0 * for (int i = 0; i < jd_lut_count - 1; ++i) { * const float x0 = (sq(i) - 1) / sq(i), * y0 = acos(x0) * (i == 0 ? 1 : c), * x1 = i < jd_lut_count - 1 ? 0.5 * x0 + 0.5 : 0.999999f, * y1 = acos(x1) * (i < jd_lut_count - 1 ? c : 1); * jd_lut_k[i] = (y0 - y1) / (x0 - x1); * jd_lut_b[i] = (y1 * x0 - y0 * x1) / (x0 - x1); * } * * // Compute correction factor (Set c to 1.0f first!) * float min = INFINITY, max = -min; * for (float t = 0; t <= 1; t += 0.0003f) { * const float e = acos(t) / approx(t); * if (isfinite(e)) { * if (e < min) min = e; * if (e > max) max = e; * } * } * fprintf(stderr, "%.9gf, ", (min + max) / 2); */ static constexpr int16_t jd_lut_count = 16; static constexpr uint16_t jd_lut_tll = _BV(jd_lut_count - 1); static constexpr int16_t jd_lut_tll0 = __builtin_clz(jd_lut_tll) + 1; // i.e., 16 - jd_lut_count + 1 static constexpr float jd_lut_k[jd_lut_count] PROGMEM = { -1.03145837f, -1.30760646f, -1.75205851f, -2.41705704f, -3.37769222f, -4.74888992f, -6.69649887f, -9.45661736f, -13.3640480f, -18.8928222f, -26.7136841f, -37.7754593f, -53.4201813f, -75.5458374f, -106.836761f, -218.532821f }; static constexpr float jd_lut_b[jd_lut_count] PROGMEM = { 1.57079637f, 1.70887053f, 2.04220939f, 2.62408352f, 3.52467871f, 4.85302639f, 6.77020454f, 9.50875854f, 13.4009285f, 18.9188995f, 26.7321243f, 37.7885055f, 53.4293975f, 75.5523529f, 106.841369f, 218.534011f }; const float neg = junction_cos_theta < 0 ? -1 : 1, t = neg * junction_cos_theta; const int16_t idx = (t < 0.00000003f) ? 0 : __builtin_clz(uint16_t((1.0f - t) * jd_lut_tll)) - jd_lut_tll0; float junction_theta = t * pgm_read_float(&jd_lut_k[idx]) + pgm_read_float(&jd_lut_b[idx]); if (neg > 0) junction_theta = RADIANS(180) - junction_theta; // acos(-t) #else // Fast acos(-t) approximation (max. error +-0.033rad = 1.89°) // Based on MinMax polynomial published by W. Randolph Franklin, see // https://wrf.ecse.rpi.edu/Research/Short_Notes/arcsin/onlyelem.html // acos( t) = pi / 2 - asin(x) // acos(-t) = pi - acos(t) ... pi / 2 + asin(x) const float neg = junction_cos_theta < 0 ? -1 : 1, t = neg * junction_cos_theta, asinx = 0.032843707f + t * (-1.451838349f + t * ( 29.66153956f + t * (-131.1123477f + t * ( 262.8130562f + t * (-242.7199627f + t * ( 84.31466202f ) ))))), junction_theta = RADIANS(90) + neg * asinx; // acos(-t) // NOTE: junction_theta bottoms out at 0.033 which avoids divide by 0. #endif const float limit_sqr = (block->millimeters * junction_acceleration) / junction_theta; NOMORE(vmax_junction_sqr, limit_sqr); } #endif // JD_HANDLE_SMALL_SEGMENTS } } // Get the lowest speed vmax_junction_sqr = _MIN(vmax_junction_sqr, sq(block->nominal_speed), sq(previous_nominal_speed)); } else // Init entry speed to zero. Assume it starts from rest. Planner will correct this later. vmax_junction_sqr = 0; prev_unit_vec = unit_vec; #endif #if HAS_CLASSIC_JERK /** * Adapted from Průša MKS firmware * https://github.com/prusa3d/Prusa-Firmware */ // Exit speed limited by a jerk to full halt of a previous last segment static float previous_safe_speed; // Start with a safe speed (from which the machine may halt to stop immediately). float safe_speed = block->nominal_speed; #ifndef TRAVEL_EXTRA_XYJERK #define TRAVEL_EXTRA_XYJERK 0 #endif const float extra_xyjerk = TERN0(HAS_EXTRUDERS, de <= 0) ? TRAVEL_EXTRA_XYJERK : 0; uint8_t limited = 0; TERN(HAS_LINEAR_E_JERK, LOOP_NUM_AXES, LOOP_LOGICAL_AXES)(i) { const float jerk = ABS(current_speed[i]), // cs : Starting from zero, change in speed for this axis maxj = (max_jerk[i] + (i == X_AXIS || i == Y_AXIS ? extra_xyjerk : 0.0f)); // mj : The max jerk setting for this axis if (jerk > maxj) { // cs > mj : New current speed too fast? if (limited) { // limited already? const float mjerk = block->nominal_speed * maxj; // ns*mj if (jerk * safe_speed > mjerk) safe_speed = mjerk / jerk; // ns*mj/cs } else { safe_speed *= maxj / jerk; // Initial limit: ns*mj/cs ++limited; // Initially limited } } } float vmax_junction; if (moves_queued && !UNEAR_ZERO(previous_nominal_speed)) { // Estimate a maximum velocity allowed at a joint of two successive segments. // If this maximum velocity allowed is lower than the minimum of the entry / exit safe velocities, // then the machine is not coasting anymore and the safe entry / exit velocities shall be used. // Factor to multiply the previous / current nominal velocities to get componentwise limited velocities. float v_factor = 1; limited = 0; // The junction velocity will be shared between successive segments. Limit the junction velocity to their minimum. // Pick the smaller of the nominal speeds. Higher speed shall not be achieved at the junction during coasting. float smaller_speed_factor = 1.0f; if (block->nominal_speed < previous_nominal_speed) { vmax_junction = block->nominal_speed; smaller_speed_factor = vmax_junction / previous_nominal_speed; } else vmax_junction = previous_nominal_speed; // Now limit the jerk in all axes. TERN(HAS_LINEAR_E_JERK, LOOP_NUM_AXES, LOOP_LOGICAL_AXES)(axis) { // Limit an axis. We have to differentiate: coasting, reversal of an axis, full stop. float v_exit = previous_speed[axis] * smaller_speed_factor, v_entry = current_speed[axis]; if (limited) { v_exit *= v_factor; v_entry *= v_factor; } // Calculate jerk depending on whether the axis is coasting in the same direction or reversing. const float jerk = (v_exit > v_entry) ? // coasting axis reversal ( (v_entry > 0 || v_exit < 0) ? (v_exit - v_entry) : _MAX(v_exit, -v_entry) ) : // v_exit <= v_entry coasting axis reversal ( (v_entry < 0 || v_exit > 0) ? (v_entry - v_exit) : _MAX(-v_exit, v_entry) ); const float maxj = (max_jerk[axis] + (axis == X_AXIS || axis == Y_AXIS ? extra_xyjerk : 0.0f)); if (jerk > maxj) { v_factor *= maxj / jerk; ++limited; } } if (limited) vmax_junction *= v_factor; // Now the transition velocity is known, which maximizes the shared exit / entry velocity while // respecting the jerk factors, it may be possible, that applying separate safe exit / entry velocities will achieve faster prints. const float vmax_junction_threshold = vmax_junction * 0.99f; if (previous_safe_speed > vmax_junction_threshold && safe_speed > vmax_junction_threshold) vmax_junction = safe_speed; } else vmax_junction = safe_speed; previous_safe_speed = safe_speed; #if HAS_JUNCTION_DEVIATION NOMORE(vmax_junction_sqr, sq(vmax_junction)); // Throttle down to max speed #else vmax_junction_sqr = sq(vmax_junction); // Go up or down to the new speed #endif #endif // Classic Jerk Limiting // Max entry speed of this block equals the max exit speed of the previous block. block->max_entry_speed_sqr = vmax_junction_sqr; // Initialize block entry speed. Compute based on deceleration to user-defined MINIMUM_PLANNER_SPEED. const float v_allowable_sqr = max_allowable_speed_sqr(-block->acceleration, sq(float(MINIMUM_PLANNER_SPEED)), block->millimeters); // Start with the minimum allowed speed block->entry_speed_sqr = sq(float(MINIMUM_PLANNER_SPEED)); // Initialize planner efficiency flags // Set flag if block will always reach maximum junction speed regardless of entry/exit speeds. // If a block can de/ac-celerate from nominal speed to zero within the length of the block, then // the current block and next block junction speeds are guaranteed to always be at their maximum // junction speeds in deceleration and acceleration, respectively. This is due to how the current // block nominal speed limits both the current and next maximum junction speeds. Hence, in both // the reverse and forward planners, the corresponding block junction speed will always be at the // the maximum junction speed and may always be ignored for any speed reduction checks. block->flag.set_nominal(sq(block->nominal_speed) <= v_allowable_sqr); // Update previous path unit_vector and nominal speed previous_speed = current_speed; previous_nominal_speed = block->nominal_speed; position = target; // Update the position #if ENABLED(POWER_LOSS_RECOVERY) block->sdpos = recovery.command_sdpos(); block->start_position = position_float.asLogical(); #endif TERN_(HAS_POSITION_FLOAT, position_float = target_float); TERN_(GRADIENT_MIX, mixer.gradient_control(target_float.z)); return true; // Movement was accepted } // _populate_block() /** * @brief Add a block to the buffer that just updates the position * Supports LASER_SYNCHRONOUS_M106_M107 and LASER_POWER_SYNC power sync block buffer queueing. * * @param sync_flag The sync flag to set, determining the type of sync the block will do */ void Planner::buffer_sync_block(const BlockFlagBit sync_flag/*=BLOCK_BIT_SYNC_POSITION*/) { // Wait for the next available block uint8_t next_buffer_head; block_t * const block = get_next_free_block(next_buffer_head); // Clear block block->reset(); block->flag.apply(sync_flag); block->position = position; #if ENABLED(BACKLASH_COMPENSATION) LOOP_NUM_AXES(axis) block->position[axis] += backlash.get_applied_steps((AxisEnum)axis); #endif #if BOTH(HAS_FAN, LASER_SYNCHRONOUS_M106_M107) FANS_LOOP(i) block->fan_speed[i] = thermalManager.fan_speed[i]; #endif /** * M3-based power setting can be processed inline with a laser power sync block. * During active moves cutter.power is processed immediately, otherwise on the next move. */ TERN_(LASER_POWER_SYNC, block->laser.power = cutter.power); // If this is the first added movement, reload the delay, otherwise, cancel it. if (block_buffer_head == block_buffer_tail) { // If it was the first queued block, restart the 1st block delivery delay, to // give the planner an opportunity to queue more movements and plan them // As there are no queued movements, the Stepper ISR will not touch this // variable, so there is no risk setting this here (but it MUST be done // before the following line!!) delay_before_delivering = BLOCK_DELAY_FOR_1ST_MOVE; } block_buffer_head = next_buffer_head; stepper.wake_up(); } // buffer_sync_block() /** * @brief Add a single linear movement * * @description Add a new linear movement to the buffer in axis units. * Leveling and kinematics should be applied before calling this. * * @param abce Target position in mm and/or degrees * @param cart_dist_mm The pre-calculated move lengths for all axes, in mm * @param fr_mm_s (target) speed of the move * @param extruder optional target extruder (otherwise active_extruder) * @param hints optional parameters to aid planner calculations * * @return false if no segment was queued due to cleaning, cold extrusion, full queue, etc. */ bool Planner::buffer_segment(const abce_pos_t &abce OPTARG(HAS_DIST_MM_ARG, const xyze_float_t &cart_dist_mm) , const_feedRate_t fr_mm_s , const uint8_t extruder/*=active_extruder*/ , const PlannerHints &hints/*=PlannerHints()*/ ) { // If we are cleaning, do not accept queuing of movements if (cleaning_buffer_counter) return false; // When changing extruders recalculate steps corresponding to the E position #if ENABLED(DISTINCT_E_FACTORS) if (last_extruder != extruder && settings.axis_steps_per_mm[E_AXIS_N(extruder)] != settings.axis_steps_per_mm[E_AXIS_N(last_extruder)]) { position.e = LROUND(position.e * settings.axis_steps_per_mm[E_AXIS_N(extruder)] * mm_per_step[E_AXIS_N(last_extruder)]); last_extruder = extruder; } #endif // The target position of the tool in absolute steps // Calculate target position in absolute steps const abce_long_t target = { LOGICAL_AXIS_LIST( int32_t(LROUND(abce.e * settings.axis_steps_per_mm[E_AXIS_N(extruder)])), int32_t(LROUND(abce.a * settings.axis_steps_per_mm[A_AXIS])), int32_t(LROUND(abce.b * settings.axis_steps_per_mm[B_AXIS])), int32_t(LROUND(abce.c * settings.axis_steps_per_mm[C_AXIS])), int32_t(LROUND(abce.i * settings.axis_steps_per_mm[I_AXIS])), int32_t(LROUND(abce.j * settings.axis_steps_per_mm[J_AXIS])), int32_t(LROUND(abce.k * settings.axis_steps_per_mm[K_AXIS])), int32_t(LROUND(abce.u * settings.axis_steps_per_mm[U_AXIS])), int32_t(LROUND(abce.v * settings.axis_steps_per_mm[V_AXIS])), int32_t(LROUND(abce.w * settings.axis_steps_per_mm[W_AXIS])) ) }; #if HAS_POSITION_FLOAT const xyze_pos_t target_float = abce; #endif #if HAS_EXTRUDERS // DRYRUN prevents E moves from taking place if (DEBUGGING(DRYRUN) || TERN0(CANCEL_OBJECTS, cancelable.skipping)) { position.e = target.e; TERN_(HAS_POSITION_FLOAT, position_float.e = abce.e); } #endif /* <-- add a slash to enable SERIAL_ECHOPGM(" buffer_segment FR:", fr_mm_s); #if IS_KINEMATIC SERIAL_ECHOPGM(" A:", abce.a, " (", position.a, "->", target.a, ") B:", abce.b); #else SERIAL_ECHOPGM_P(SP_X_LBL, abce.a); SERIAL_ECHOPGM(" (", position.x, "->", target.x); SERIAL_CHAR(')'); SERIAL_ECHOPGM_P(SP_Y_LBL, abce.b); #endif SERIAL_ECHOPGM(" (", position.y, "->", target.y); #if HAS_Z_AXIS #if ENABLED(DELTA) SERIAL_ECHOPGM(") C:", abce.c); #else SERIAL_CHAR(')'); SERIAL_ECHOPGM_P(SP_Z_LBL, abce.c); #endif SERIAL_ECHOPGM(" (", position.z, "->", target.z); SERIAL_CHAR(')'); #endif #if HAS_I_AXIS SERIAL_ECHOPGM_P(SP_I_LBL, abce.i); SERIAL_ECHOPGM(" (", position.i, "->", target.i); SERIAL_CHAR(')'); #endif #if HAS_J_AXIS SERIAL_ECHOPGM_P(SP_J_LBL, abce.j); SERIAL_ECHOPGM(" (", position.j, "->", target.j); SERIAL_CHAR(')'); #endif #if HAS_K_AXIS SERIAL_ECHOPGM_P(SP_K_LBL, abce.k); SERIAL_ECHOPGM(" (", position.k, "->", target.k); SERIAL_CHAR(')'); #endif #if HAS_U_AXIS SERIAL_ECHOPGM_P(SP_U_LBL, abce.u); SERIAL_ECHOPGM(" (", position.u, "->", target.u); SERIAL_CHAR(')'); #endif #if HAS_V_AXIS SERIAL_ECHOPGM_P(SP_V_LBL, abce.v); SERIAL_ECHOPGM(" (", position.v, "->", target.v); SERIAL_CHAR(')'); #endif #if HAS_W_AXIS SERIAL_ECHOPGM_P(SP_W_LBL, abce.w); SERIAL_ECHOPGM(" (", position.w, "->", target.w); SERIAL_CHAR(')'); #endif #if HAS_EXTRUDERS SERIAL_ECHOPGM_P(SP_E_LBL, abce.e); SERIAL_ECHOLNPGM(" (", position.e, "->", target.e, ")"); #else SERIAL_EOL(); #endif //*/ // Queue the movement. Return 'false' if the move was not queued. if (!_buffer_steps(target OPTARG(HAS_POSITION_FLOAT, target_float) OPTARG(HAS_DIST_MM_ARG, cart_dist_mm) , fr_mm_s, extruder, hints )) return false; stepper.wake_up(); return true; } // buffer_segment() /** * Add a new linear movement to the buffer. * The target is cartesian. It's translated to * delta/scara if needed. * * cart - target position in mm or degrees * fr_mm_s - (target) speed of the move (mm/s) * extruder - optional target extruder (otherwise active_extruder) * hints - optional parameters to aid planner calculations */ bool Planner::buffer_line(const xyze_pos_t &cart, const_feedRate_t fr_mm_s , const uint8_t extruder/*=active_extruder*/ , const PlannerHints &hints/*=PlannerHints()*/ ) { xyze_pos_t machine = cart; TERN_(HAS_POSITION_MODIFIERS, apply_modifiers(machine)); #if IS_KINEMATIC #if HAS_JUNCTION_DEVIATION const xyze_pos_t cart_dist_mm = LOGICAL_AXIS_ARRAY( cart.e - position_cart.e, cart.x - position_cart.x, cart.y - position_cart.y, cart.z - position_cart.z, cart.i - position_cart.i, cart.j - position_cart.j, cart.k - position_cart.k, cart.u - position_cart.u, cart.v - position_cart.v, cart.w - position_cart.w ); #else const xyz_pos_t cart_dist_mm = NUM_AXIS_ARRAY( cart.x - position_cart.x, cart.y - position_cart.y, cart.z - position_cart.z, cart.i - position_cart.i, cart.j - position_cart.j, cart.k - position_cart.k, cart.u - position_cart.u, cart.v - position_cart.v, cart.w - position_cart.w ); #endif // Cartesian XYZ to kinematic ABC, stored in global 'delta' inverse_kinematics(machine); PlannerHints ph = hints; if (!hints.millimeters) ph.millimeters = (cart_dist_mm.x || cart_dist_mm.y) ? xyz_pos_t(cart_dist_mm).magnitude() : TERN0(HAS_Z_AXIS, ABS(cart_dist_mm.z)); #if ENABLED(SCARA_FEEDRATE_SCALING) // For SCARA scale the feedrate from mm/s to degrees/s // i.e., Complete the angular vector in the given time. const float duration_recip = hints.inv_duration ?: fr_mm_s / ph.millimeters; const xyz_pos_t diff = delta - position_float; const feedRate_t feedrate = diff.magnitude() * duration_recip; #else const feedRate_t feedrate = fr_mm_s; #endif TERN_(HAS_EXTRUDERS, delta.e = machine.e); if (buffer_segment(delta OPTARG(HAS_DIST_MM_ARG, cart_dist_mm), feedrate, extruder, ph)) { position_cart = cart; return true; } return false; #else return buffer_segment(machine, fr_mm_s, extruder, hints); #endif } // buffer_line() #if ENABLED(DIRECT_STEPPING) void Planner::buffer_page(const page_idx_t page_idx, const uint8_t extruder, const uint16_t num_steps) { if (!last_page_step_rate) { kill(GET_TEXT_F(MSG_BAD_PAGE_SPEED)); return; } uint8_t next_buffer_head; block_t * const block = get_next_free_block(next_buffer_head); block->flag.reset(BLOCK_BIT_PAGE); #if HAS_FAN FANS_LOOP(i) block->fan_speed[i] = thermalManager.fan_speed[i]; #endif E_TERN_(block->extruder = extruder); block->page_idx = page_idx; block->step_event_count = num_steps; block->initial_rate = block->final_rate = block->nominal_rate = last_page_step_rate; // steps/s block->accelerate_until = 0; block->decelerate_after = block->step_event_count; // Will be set to last direction later if directional format. block->direction_bits = 0; #define PAGE_UPDATE_DIR(AXIS) \ if (!last_page_dir[_AXIS(AXIS)]) SBI(block->direction_bits, _AXIS(AXIS)); if (!DirectStepping::Config::DIRECTIONAL) { PAGE_UPDATE_DIR(X); PAGE_UPDATE_DIR(Y); PAGE_UPDATE_DIR(Z); PAGE_UPDATE_DIR(E); } // If this is the first added movement, reload the delay, otherwise, cancel it. if (block_buffer_head == block_buffer_tail) { // If it was the first queued block, restart the 1st block delivery delay, to // give the planner an opportunity to queue more movements and plan them // As there are no queued movements, the Stepper ISR will not touch this // variable, so there is no risk setting this here (but it MUST be done // before the following line!!) delay_before_delivering = BLOCK_DELAY_FOR_1ST_MOVE; } // Move buffer head block_buffer_head = next_buffer_head; stepper.enable_all_steppers(); stepper.wake_up(); } #endif // DIRECT_STEPPING /** * Directly set the planner ABCE position (and stepper positions) * converting mm (or angles for SCARA) into steps. * * The provided ABCE position is in machine units. */ void Planner::set_machine_position_mm(const abce_pos_t &abce) { TERN_(DISTINCT_E_FACTORS, last_extruder = active_extruder); TERN_(HAS_POSITION_FLOAT, position_float = abce); position.set( LOGICAL_AXIS_LIST( LROUND(abce.e * settings.axis_steps_per_mm[E_AXIS_N(active_extruder)]), LROUND(abce.a * settings.axis_steps_per_mm[A_AXIS]), LROUND(abce.b * settings.axis_steps_per_mm[B_AXIS]), LROUND(abce.c * settings.axis_steps_per_mm[C_AXIS]), LROUND(abce.i * settings.axis_steps_per_mm[I_AXIS]), LROUND(abce.j * settings.axis_steps_per_mm[J_AXIS]), LROUND(abce.k * settings.axis_steps_per_mm[K_AXIS]), LROUND(abce.u * settings.axis_steps_per_mm[U_AXIS]), LROUND(abce.v * settings.axis_steps_per_mm[V_AXIS]), LROUND(abce.w * settings.axis_steps_per_mm[W_AXIS]) ) ); if (has_blocks_queued()) { //previous_nominal_speed = 0.0f; // Reset planner junction speeds. Assume start from rest. //previous_speed.reset(); buffer_sync_block(BLOCK_BIT_SYNC_POSITION); } else { #if ENABLED(BACKLASH_COMPENSATION) abce_long_t stepper_pos = position; LOOP_NUM_AXES(axis) stepper_pos[axis] += backlash.get_applied_steps((AxisEnum)axis); stepper.set_position(stepper_pos); #else stepper.set_position(position); #endif } } void Planner::set_position_mm(const xyze_pos_t &xyze) { xyze_pos_t machine = xyze; TERN_(HAS_POSITION_MODIFIERS, apply_modifiers(machine, true)); #if IS_KINEMATIC position_cart = xyze; inverse_kinematics(machine); TERN_(HAS_EXTRUDERS, delta.e = machine.e); set_machine_position_mm(delta); #else set_machine_position_mm(machine); #endif } #if HAS_EXTRUDERS /** * Setters for planner position (also setting stepper position). */ void Planner::set_e_position_mm(const_float_t e) { const uint8_t axis_index = E_AXIS_N(active_extruder); TERN_(DISTINCT_E_FACTORS, last_extruder = active_extruder); const float e_new = DIFF_TERN(FWRETRACT, e, fwretract.current_retract[active_extruder]); position.e = LROUND(settings.axis_steps_per_mm[axis_index] * e_new); TERN_(HAS_POSITION_FLOAT, position_float.e = e_new); TERN_(IS_KINEMATIC, TERN_(HAS_EXTRUDERS, position_cart.e = e)); if (has_blocks_queued()) buffer_sync_block(BLOCK_BIT_SYNC_POSITION); else stepper.set_axis_position(E_AXIS, position.e); } #endif // Recalculate the steps/s^2 acceleration rates, based on the mm/s^2 void Planner::refresh_acceleration_rates() { uint32_t highest_rate = 1; LOOP_DISTINCT_AXES(i) { max_acceleration_steps_per_s2[i] = settings.max_acceleration_mm_per_s2[i] * settings.axis_steps_per_mm[i]; if (TERN1(DISTINCT_E_FACTORS, i < E_AXIS || i == E_AXIS_N(active_extruder))) NOLESS(highest_rate, max_acceleration_steps_per_s2[i]); } acceleration_long_cutoff = 4294967295UL / highest_rate; // 0xFFFFFFFFUL TERN_(HAS_LINEAR_E_JERK, recalculate_max_e_jerk()); } /** * Recalculate 'position' and 'mm_per_step'. * Must be called whenever settings.axis_steps_per_mm changes! */ void Planner::refresh_positioning() { LOOP_DISTINCT_AXES(i) mm_per_step[i] = 1.0f / settings.axis_steps_per_mm[i]; set_position_mm(current_position); refresh_acceleration_rates(); } // Apply limits to a variable and give a warning if the value was out of range inline void limit_and_warn(float &val, const AxisEnum axis, PGM_P const setting_name, const xyze_float_t &max_limit) { const uint8_t lim_axis = TERN_(HAS_EXTRUDERS, axis > E_AXIS ? E_AXIS :) axis; const float before = val; LIMIT(val, 0.1f, max_limit[lim_axis]); if (before != val) { SERIAL_CHAR(AXIS_CHAR(lim_axis)); SERIAL_ECHOPGM(" Max "); SERIAL_ECHOPGM_P(setting_name); SERIAL_ECHOLNPGM(" limited to ", val); } } /** * For the specified 'axis' set the Maximum Acceleration to the given value (mm/s^2) * The value may be limited with warning feedback, if configured. * Calls refresh_acceleration_rates to precalculate planner terms in steps. * * This hard limit is applied as a block is being added to the planner queue. */ void Planner::set_max_acceleration(const AxisEnum axis, float inMaxAccelMMS2) { #if ENABLED(LIMITED_MAX_ACCEL_EDITING) #ifdef MAX_ACCEL_EDIT_VALUES constexpr xyze_float_t max_accel_edit = MAX_ACCEL_EDIT_VALUES; const xyze_float_t &max_acc_edit_scaled = max_accel_edit; #else constexpr xyze_float_t max_accel_edit = DEFAULT_MAX_ACCELERATION; const xyze_float_t max_acc_edit_scaled = max_accel_edit * 2; #endif limit_and_warn(inMaxAccelMMS2, axis, PSTR("Acceleration"), max_acc_edit_scaled); #endif settings.max_acceleration_mm_per_s2[axis] = inMaxAccelMMS2; // Update steps per s2 to agree with the units per s2 (since they are used in the planner) refresh_acceleration_rates(); } /** * For the specified 'axis' set the Maximum Feedrate to the given value (mm/s) * The value may be limited with warning feedback, if configured. * * This hard limit is applied as a block is being added to the planner queue. */ void Planner::set_max_feedrate(const AxisEnum axis, float inMaxFeedrateMMS) { #if ENABLED(LIMITED_MAX_FR_EDITING) #ifdef MAX_FEEDRATE_EDIT_VALUES constexpr xyze_float_t max_fr_edit = MAX_FEEDRATE_EDIT_VALUES; const xyze_float_t &max_fr_edit_scaled = max_fr_edit; #else constexpr xyze_float_t max_fr_edit = DEFAULT_MAX_FEEDRATE; const xyze_float_t max_fr_edit_scaled = max_fr_edit * 2; #endif limit_and_warn(inMaxFeedrateMMS, axis, PSTR("Feedrate"), max_fr_edit_scaled); #endif settings.max_feedrate_mm_s[axis] = inMaxFeedrateMMS; } #if HAS_CLASSIC_JERK /** * For the specified 'axis' set the Maximum Jerk (instant change) to the given value (mm/s) * The value may be limited with warning feedback, if configured. * * This hard limit is applied (to the block start speed) as the block is being added to the planner queue. */ void Planner::set_max_jerk(const AxisEnum axis, float inMaxJerkMMS) { #if ENABLED(LIMITED_JERK_EDITING) constexpr xyze_float_t max_jerk_edit = #ifdef MAX_JERK_EDIT_VALUES MAX_JERK_EDIT_VALUES #else { (DEFAULT_XJERK) * 2, (DEFAULT_YJERK) * 2, (DEFAULT_ZJERK) * 2, (DEFAULT_EJERK) * 2 } #endif ; limit_and_warn(inMaxJerkMMS, axis, PSTR("Jerk"), max_jerk_edit); #endif max_jerk[axis] = inMaxJerkMMS; } #endif #if HAS_WIRED_LCD uint16_t Planner::block_buffer_runtime() { #ifdef __AVR__ // Protect the access to the variable. Only required for AVR, as // any 32bit CPU offers atomic access to 32bit variables const bool was_enabled = stepper.suspend(); #endif uint32_t bbru = block_buffer_runtime_us; #ifdef __AVR__ // Reenable Stepper ISR if (was_enabled) stepper.wake_up(); #endif // To translate µs to ms a division by 1000 would be required. // We introduce 2.4% error here by dividing by 1024. // Doesn't matter because block_buffer_runtime_us is already too small an estimation. bbru >>= 10; // limit to about a minute. NOMORE(bbru, 0x0000FFFFUL); return bbru; } void Planner::clear_block_buffer_runtime() { #ifdef __AVR__ // Protect the access to the variable. Only required for AVR, as // any 32bit CPU offers atomic access to 32bit variables const bool was_enabled = stepper.suspend(); #endif block_buffer_runtime_us = 0; #ifdef __AVR__ // Reenable Stepper ISR if (was_enabled) stepper.wake_up(); #endif } #endif