/** * Marlin 3D Printer Firmware * Copyright (C) 2016 MarlinFirmware [https://github.com/MarlinFirmware/Marlin] * * Based on Sprinter and grbl. * Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see . * */ /** * MarlinSerial.cpp - Hardware serial library for Wiring * Copyright (c) 2006 Nicholas Zambetti. All right reserved. * * Modified 23 November 2006 by David A. Mellis * Modified 28 September 2010 by Mark Sproul * Modified 14 February 2016 by Andreas Hardtung (added tx buffer) * Modified 01 October 2017 by Eduardo José Tagle (added XON/XOFF) */ #ifdef __AVR__ // Disable HardwareSerial.cpp to support chips without a UART (Attiny, etc.) #include "../../inc/MarlinConfig.h" #if !defined(USBCON) && (defined(UBRRH) || defined(UBRR0H) || defined(UBRR1H) || defined(UBRR2H) || defined(UBRR3H)) #include "MarlinSerial.h" #include "../../Marlin.h" struct ring_buffer_r { unsigned char buffer[RX_BUFFER_SIZE]; volatile ring_buffer_pos_t head, tail; }; #if TX_BUFFER_SIZE > 0 struct ring_buffer_t { unsigned char buffer[TX_BUFFER_SIZE]; volatile uint8_t head, tail; }; #endif #if UART_PRESENT(SERIAL_PORT) ring_buffer_r rx_buffer = { { 0 }, 0, 0 }; #if TX_BUFFER_SIZE > 0 ring_buffer_t tx_buffer = { { 0 }, 0, 0 }; #endif static bool _written; #endif #if ENABLED(SERIAL_XON_XOFF) constexpr uint8_t XON_XOFF_CHAR_SENT = 0x80, // XON / XOFF Character was sent XON_XOFF_CHAR_MASK = 0x1F; // XON / XOFF character to send // XON / XOFF character definitions constexpr uint8_t XON_CHAR = 17, XOFF_CHAR = 19; uint8_t xon_xoff_state = XON_XOFF_CHAR_SENT | XON_CHAR; #endif #if ENABLED(SERIAL_STATS_DROPPED_RX) uint8_t rx_dropped_bytes = 0; #endif #if ENABLED(SERIAL_STATS_RX_BUFFER_OVERRUNS) uint8_t rx_buffer_overruns = 0; #endif #if ENABLED(SERIAL_STATS_RX_FRAMING_ERRORS) uint8_t rx_framing_errors = 0; #endif #if ENABLED(SERIAL_STATS_MAX_RX_QUEUED) ring_buffer_pos_t rx_max_enqueued = 0; #endif // A SW memory barrier, to ensure GCC does not overoptimize loops #define sw_barrier() asm volatile("": : :"memory"); #if ENABLED(EMERGENCY_PARSER) #include "../../feature/emergency_parser.h" #endif // (called with RX interrupts disabled) FORCE_INLINE void store_rxd_char() { #if ENABLED(EMERGENCY_PARSER) static EmergencyParser::State emergency_state; // = EP_RESET #endif // Get the tail - Nothing can alter its value while we are at this ISR const ring_buffer_pos_t t = rx_buffer.tail; // Get the head pointer ring_buffer_pos_t h = rx_buffer.head; // Get the next element ring_buffer_pos_t i = (ring_buffer_pos_t)(h + 1) & (ring_buffer_pos_t)(RX_BUFFER_SIZE - 1); // This must read the M_UCSRxA register before reading the received byte to detect error causes #if ENABLED(SERIAL_STATS_DROPPED_RX) if (TEST(M_UCSRxA, M_DORx) && !++rx_dropped_bytes) --rx_dropped_bytes; #endif #if ENABLED(SERIAL_STATS_RX_BUFFER_OVERRUNS) if (TEST(M_UCSRxA, M_DORx) && !++rx_buffer_overruns) --rx_buffer_overruns; #endif #if ENABLED(SERIAL_STATS_RX_FRAMING_ERRORS) if (TEST(M_UCSRxA, M_FEx) && !++rx_framing_errors) --rx_framing_errors; #endif // Read the character from the USART uint8_t c = M_UDRx; #if ENABLED(EMERGENCY_PARSER) emergency_parser.update(emergency_state, c); #endif // If the character is to be stored at the index just before the tail // (such that the head would advance to the current tail), the RX FIFO is // full, so don't write the character or advance the head. if (i != t) { rx_buffer.buffer[h] = c; h = i; } #if ENABLED(SERIAL_STATS_DROPPED_RX) else if (!++rx_dropped_bytes) --rx_dropped_bytes; #endif #if ENABLED(SERIAL_STATS_MAX_RX_QUEUED) // Calculate count of bytes stored into the RX buffer const ring_buffer_pos_t rx_count = (ring_buffer_pos_t)(h - t) & (ring_buffer_pos_t)(RX_BUFFER_SIZE - 1); // Keep track of the maximum count of enqueued bytes NOLESS(rx_max_enqueued, rx_count); #endif #if ENABLED(SERIAL_XON_XOFF) // If the last char that was sent was an XON if ((xon_xoff_state & XON_XOFF_CHAR_MASK) == XON_CHAR) { // Bytes stored into the RX buffer const ring_buffer_pos_t rx_count = (ring_buffer_pos_t)(h - t) & (ring_buffer_pos_t)(RX_BUFFER_SIZE - 1); // If over 12.5% of RX buffer capacity, send XOFF before running out of // RX buffer space .. 325 bytes @ 250kbits/s needed to let the host react // and stop sending bytes. This translates to 13mS propagation time. if (rx_count >= (RX_BUFFER_SIZE) / 8) { // At this point, definitely no TX interrupt was executing, since the TX isr can't be preempted. // Don't enable the TX interrupt here as a means to trigger the XOFF char, because if it happens // to be in the middle of trying to disable the RX interrupt in the main program, eventually the // enabling of the TX interrupt could be undone. The ONLY reliable thing this can do to ensure // the sending of the XOFF char is to send it HERE AND NOW. // About to send the XOFF char xon_xoff_state = XOFF_CHAR | XON_XOFF_CHAR_SENT; // Wait until the TX register becomes empty and send it - Here there could be a problem // - While waiting for the TX register to empty, the RX register could receive a new // character. This must also handle that situation! while (!TEST(M_UCSRxA, M_UDREx)) { if (TEST(M_UCSRxA,M_RXCx)) { // A char arrived while waiting for the TX buffer to be empty - Receive and process it! i = (ring_buffer_pos_t)(h + 1) & (ring_buffer_pos_t)(RX_BUFFER_SIZE - 1); // Read the character from the USART c = M_UDRx; #if ENABLED(EMERGENCY_PARSER) emergency_parser.update(emergency_state, c); #endif // If the character is to be stored at the index just before the tail // (such that the head would advance to the current tail), the FIFO is // full, so don't write the character or advance the head. if (i != t) { rx_buffer.buffer[h] = c; h = i; } #if ENABLED(SERIAL_STATS_DROPPED_RX) else if (!++rx_dropped_bytes) --rx_dropped_bytes; #endif } sw_barrier(); } M_UDRx = XOFF_CHAR; // Clear the TXC bit -- "can be cleared by writing a one to its bit // location". This makes sure flush() won't return until the bytes // actually got written SBI(M_UCSRxA, M_TXCx); // At this point there could be a race condition between the write() function // and this sending of the XOFF char. This interrupt could happen between the // wait to be empty TX buffer loop and the actual write of the character. Since // the TX buffer is full because it's sending the XOFF char, the only way to be // sure the write() function will succeed is to wait for the XOFF char to be // completely sent. Since an extra character could be received during the wait // it must also be handled! while (!TEST(M_UCSRxA, M_UDREx)) { if (TEST(M_UCSRxA,M_RXCx)) { // A char arrived while waiting for the TX buffer to be empty - Receive and process it! i = (ring_buffer_pos_t)(h + 1) & (ring_buffer_pos_t)(RX_BUFFER_SIZE - 1); // Read the character from the USART c = M_UDRx; #if ENABLED(EMERGENCY_PARSER) emergency_parser.update(emergency_state, c); #endif // If the character is to be stored at the index just before the tail // (such that the head would advance to the current tail), the FIFO is // full, so don't write the character or advance the head. if (i != t) { rx_buffer.buffer[h] = c; h = i; } #if ENABLED(SERIAL_STATS_DROPPED_RX) else if (!++rx_dropped_bytes) --rx_dropped_bytes; #endif } sw_barrier(); } // At this point everything is ready. The write() function won't // have any issues writing to the UART TX register if it needs to! } } #endif // SERIAL_XON_XOFF // Store the new head value rx_buffer.head = h; } #if TX_BUFFER_SIZE > 0 // (called with TX irqs disabled) FORCE_INLINE void _tx_udr_empty_irq(void) { // Read positions uint8_t t = tx_buffer.tail; const uint8_t h = tx_buffer.head; #if ENABLED(SERIAL_XON_XOFF) // If an XON char is pending to be sent, do it now if (xon_xoff_state == XON_CHAR) { // Send the character M_UDRx = XON_CHAR; // clear the TXC bit -- "can be cleared by writing a one to its bit // location". This makes sure flush() won't return until the bytes // actually got written SBI(M_UCSRxA, M_TXCx); // Remember we sent it. xon_xoff_state = XON_CHAR | XON_XOFF_CHAR_SENT; // If nothing else to transmit, just disable TX interrupts. if (h == t) CBI(M_UCSRxB, M_UDRIEx); // (Non-atomic, could be reenabled by the main program, but eventually this will succeed) return; } #endif // If nothing to transmit, just disable TX interrupts. This could // happen as the result of the non atomicity of the disabling of RX // interrupts that could end reenabling TX interrupts as a side effect. if (h == t) { CBI(M_UCSRxB, M_UDRIEx); // (Non-atomic, could be reenabled by the main program, but eventually this will succeed) return; } // There is something to TX, Send the next byte const uint8_t c = tx_buffer.buffer[t]; t = (t + 1) & (TX_BUFFER_SIZE - 1); M_UDRx = c; tx_buffer.tail = t; // Clear the TXC bit (by writing a one to its bit location). // Ensures flush() won't return until the bytes are actually written/ SBI(M_UCSRxA, M_TXCx); // Disable interrupts if there is nothing to transmit following this byte if (h == t) CBI(M_UCSRxB, M_UDRIEx); // (Non-atomic, could be reenabled by the main program, but eventually this will succeed) } #ifdef M_USARTx_UDRE_vect ISR(M_USARTx_UDRE_vect) { _tx_udr_empty_irq(); } #endif #endif // TX_BUFFER_SIZE #ifdef M_USARTx_RX_vect ISR(M_USARTx_RX_vect) { store_rxd_char(); } #endif // Public Methods void MarlinSerial::begin(const long baud) { uint16_t baud_setting; bool useU2X = true; #if F_CPU == 16000000UL && SERIAL_PORT == 0 // Hard-coded exception for compatibility with the bootloader shipped // with the Duemilanove and previous boards, and the firmware on the // 8U2 on the Uno and Mega 2560. if (baud == 57600) useU2X = false; #endif if (useU2X) { M_UCSRxA = _BV(M_U2Xx); baud_setting = (F_CPU / 4 / baud - 1) / 2; } else { M_UCSRxA = 0; baud_setting = (F_CPU / 8 / baud - 1) / 2; } // assign the baud_setting, a.k.a. ubbr (USART Baud Rate Register) M_UBRRxH = baud_setting >> 8; M_UBRRxL = baud_setting; SBI(M_UCSRxB, M_RXENx); SBI(M_UCSRxB, M_TXENx); SBI(M_UCSRxB, M_RXCIEx); #if TX_BUFFER_SIZE > 0 CBI(M_UCSRxB, M_UDRIEx); #endif _written = false; } void MarlinSerial::end() { CBI(M_UCSRxB, M_RXENx); CBI(M_UCSRxB, M_TXENx); CBI(M_UCSRxB, M_RXCIEx); CBI(M_UCSRxB, M_UDRIEx); } int MarlinSerial::peek(void) { #if RX_BUFFER_SIZE > 256 // Disable RX interrupts, but only if non atomic reads const bool isr_enabled = TEST(M_UCSRxB, M_RXCIEx); CBI(M_UCSRxB, M_RXCIEx); #endif const int v = rx_buffer.head == rx_buffer.tail ? -1 : rx_buffer.buffer[rx_buffer.tail]; #if RX_BUFFER_SIZE > 256 // Reenable RX interrupts if they were enabled if (isr_enabled) SBI(M_UCSRxB, M_RXCIEx); #endif return v; } int MarlinSerial::read(void) { #if RX_BUFFER_SIZE > 256 // Disable RX interrupts to ensure atomic reads - This could reenable TX interrupts, // but this situation is explicitly handled at the TX isr, so no problems there bool isr_enabled = TEST(M_UCSRxB, M_RXCIEx); CBI(M_UCSRxB, M_RXCIEx); #endif const ring_buffer_pos_t h = rx_buffer.head; #if RX_BUFFER_SIZE > 256 // End critical section if (isr_enabled) SBI(M_UCSRxB, M_RXCIEx); #endif ring_buffer_pos_t t = rx_buffer.tail; // If nothing to read, return now if (h == t) return -1; // Get the next char const int v = rx_buffer.buffer[t]; t = (ring_buffer_pos_t)(t + 1) & (RX_BUFFER_SIZE - 1); #if RX_BUFFER_SIZE > 256 // Disable RX interrupts to ensure atomic write to tail, so // the RX isr can't read partially updated values - This could // reenable TX interrupts, but this situation is explicitly // handled at the TX isr, so no problems there isr_enabled = TEST(M_UCSRxB, M_RXCIEx); CBI(M_UCSRxB, M_RXCIEx); #endif // Advance tail rx_buffer.tail = t; #if RX_BUFFER_SIZE > 256 // End critical section if (isr_enabled) SBI(M_UCSRxB, M_RXCIEx); #endif #if ENABLED(SERIAL_XON_XOFF) // If the XOFF char was sent, or about to be sent... if ((xon_xoff_state & XON_XOFF_CHAR_MASK) == XOFF_CHAR) { // Get count of bytes in the RX buffer const ring_buffer_pos_t rx_count = (ring_buffer_pos_t)(h - t) & (ring_buffer_pos_t)(RX_BUFFER_SIZE - 1); if (rx_count < (RX_BUFFER_SIZE) / 10) { #if TX_BUFFER_SIZE > 0 // Signal we want an XON character to be sent. xon_xoff_state = XON_CHAR; // Enable TX isr. Non atomic, but it will eventually enable them SBI(M_UCSRxB, M_UDRIEx); #else // If not using TX interrupts, we must send the XON char now xon_xoff_state = XON_CHAR | XON_XOFF_CHAR_SENT; while (!TEST(M_UCSRxA, M_UDREx)) sw_barrier(); M_UDRx = XON_CHAR; #endif } } #endif return v; } ring_buffer_pos_t MarlinSerial::available(void) { #if RX_BUFFER_SIZE > 256 const bool isr_enabled = TEST(M_UCSRxB, M_RXCIEx); CBI(M_UCSRxB, M_RXCIEx); #endif const ring_buffer_pos_t h = rx_buffer.head, t = rx_buffer.tail; #if RX_BUFFER_SIZE > 256 if (isr_enabled) SBI(M_UCSRxB, M_RXCIEx); #endif return (ring_buffer_pos_t)(RX_BUFFER_SIZE + h - t) & (RX_BUFFER_SIZE - 1); } void MarlinSerial::flush(void) { #if RX_BUFFER_SIZE > 256 const bool isr_enabled = TEST(M_UCSRxB, M_RXCIEx); CBI(M_UCSRxB, M_RXCIEx); #endif rx_buffer.tail = rx_buffer.head; #if RX_BUFFER_SIZE > 256 if (isr_enabled) SBI(M_UCSRxB, M_RXCIEx); #endif #if ENABLED(SERIAL_XON_XOFF) // If the XOFF char was sent, or about to be sent... if ((xon_xoff_state & XON_XOFF_CHAR_MASK) == XOFF_CHAR) { #if TX_BUFFER_SIZE > 0 // Signal we want an XON character to be sent. xon_xoff_state = XON_CHAR; // Enable TX isr. Non atomic, but it will eventually enable it. SBI(M_UCSRxB, M_UDRIEx); #else // If not using TX interrupts, we must send the XON char now xon_xoff_state = XON_CHAR | XON_XOFF_CHAR_SENT; while (!TEST(M_UCSRxA, M_UDREx)) sw_barrier(); M_UDRx = XON_CHAR; #endif } #endif } #if TX_BUFFER_SIZE > 0 void MarlinSerial::write(const uint8_t c) { _written = true; // If the TX interrupts are disabled and the data register // is empty, just write the byte to the data register and // be done. This shortcut helps significantly improve the // effective datarate at high (>500kbit/s) bitrates, where // interrupt overhead becomes a slowdown. // Yes, there is a race condition between the sending of the // XOFF char at the RX isr, but it is properly handled there if (!TEST(M_UCSRxB, M_UDRIEx) && TEST(M_UCSRxA, M_UDREx)) { M_UDRx = c; // clear the TXC bit -- "can be cleared by writing a one to its bit // location". This makes sure flush() won't return until the bytes // actually got written SBI(M_UCSRxA, M_TXCx); return; } const uint8_t i = (tx_buffer.head + 1) & (TX_BUFFER_SIZE - 1); // If global interrupts are disabled (as the result of being called from an ISR)... if (!ISRS_ENABLED()) { // Make room by polling if it is possible to transmit, and do so! while (i == tx_buffer.tail) { // If we can transmit another byte, do it. if (TEST(M_UCSRxA, M_UDREx)) _tx_udr_empty_irq(); // Make sure compiler rereads tx_buffer.tail sw_barrier(); } } else { // Interrupts are enabled, just wait until there is space while (i == tx_buffer.tail) { sw_barrier(); } } // Store new char. head is always safe to move tx_buffer.buffer[tx_buffer.head] = c; tx_buffer.head = i; // Enable TX isr - Non atomic, but it will eventually enable TX isr SBI(M_UCSRxB, M_UDRIEx); } void MarlinSerial::flushTX(void) { // No bytes written, no need to flush. This special case is needed since there's // no way to force the TXC (transmit complete) bit to 1 during initialization. if (!_written) return; // If global interrupts are disabled (as the result of being called from an ISR)... if (!ISRS_ENABLED()) { // Wait until everything was transmitted - We must do polling, as interrupts are disabled while (tx_buffer.head != tx_buffer.tail || !TEST(M_UCSRxA, M_TXCx)) { // If there is more space, send an extra character if (TEST(M_UCSRxA, M_UDREx)) _tx_udr_empty_irq(); sw_barrier(); } } else { // Wait until everything was transmitted while (tx_buffer.head != tx_buffer.tail || !TEST(M_UCSRxA, M_TXCx)) sw_barrier(); } // At this point nothing is queued anymore (DRIE is disabled) and // the hardware finished transmission (TXC is set). } #else // TX_BUFFER_SIZE == 0 void MarlinSerial::write(const uint8_t c) { _written = true; while (!TEST(M_UCSRxA, M_UDREx)) sw_barrier(); M_UDRx = c; } void MarlinSerial::flushTX(void) { // No bytes written, no need to flush. This special case is needed since there's // no way to force the TXC (transmit complete) bit to 1 during initialization. if (!_written) return; // Wait until everything was transmitted while (!TEST(M_UCSRxA, M_TXCx)) sw_barrier(); // At this point nothing is queued anymore (DRIE is disabled) and // the hardware finished transmission (TXC is set). } #endif // TX_BUFFER_SIZE == 0 /** * Imports from print.h */ void MarlinSerial::print(char c, int base) { print((long)c, base); } void MarlinSerial::print(unsigned char b, int base) { print((unsigned long)b, base); } void MarlinSerial::print(int n, int base) { print((long)n, base); } void MarlinSerial::print(unsigned int n, int base) { print((unsigned long)n, base); } void MarlinSerial::print(long n, int base) { if (base == 0) write(n); else if (base == 10) { if (n < 0) { print('-'); n = -n; } printNumber(n, 10); } else printNumber(n, base); } void MarlinSerial::print(unsigned long n, int base) { if (base == 0) write(n); else printNumber(n, base); } void MarlinSerial::print(double n, int digits) { printFloat(n, digits); } void MarlinSerial::println(void) { print('\r'); print('\n'); } void MarlinSerial::println(const String& s) { print(s); println(); } void MarlinSerial::println(const char c[]) { print(c); println(); } void MarlinSerial::println(char c, int base) { print(c, base); println(); } void MarlinSerial::println(unsigned char b, int base) { print(b, base); println(); } void MarlinSerial::println(int n, int base) { print(n, base); println(); } void MarlinSerial::println(unsigned int n, int base) { print(n, base); println(); } void MarlinSerial::println(long n, int base) { print(n, base); println(); } void MarlinSerial::println(unsigned long n, int base) { print(n, base); println(); } void MarlinSerial::println(double n, int digits) { print(n, digits); println(); } // Private Methods void MarlinSerial::printNumber(unsigned long n, uint8_t base) { if (n) { unsigned char buf[8 * sizeof(long)]; // Enough space for base 2 int8_t i = 0; while (n) { buf[i++] = n % base; n /= base; } while (i--) print((char)(buf[i] + (buf[i] < 10 ? '0' : 'A' - 10))); } else print('0'); } void MarlinSerial::printFloat(double number, uint8_t digits) { // Handle negative numbers if (number < 0.0) { print('-'); number = -number; } // Round correctly so that print(1.999, 2) prints as "2.00" double rounding = 0.5; for (uint8_t i = 0; i < digits; ++i) rounding *= 0.1; number += rounding; // Extract the integer part of the number and print it unsigned long int_part = (unsigned long)number; double remainder = number - (double)int_part; print(int_part); // Print the decimal point, but only if there are digits beyond if (digits) { print('.'); // Extract digits from the remainder one at a time while (digits--) { remainder *= 10.0; int toPrint = int(remainder); print(toPrint); remainder -= toPrint; } } } // Preinstantiate MarlinSerial customizedSerial; #endif // !USBCON && (UBRRH || UBRR0H || UBRR1H || UBRR2H || UBRR3H) // For AT90USB targets use the UART for BT interfacing #if defined(USBCON) && ENABLED(BLUETOOTH) HardwareSerial bluetoothSerial; #endif #endif // __AVR__