/** * Marlin 3D Printer Firmware * Copyright (C) 2017 MarlinFirmware [https://github.com/MarlinFirmware/Marlin] * * Based on Sprinter and grbl. * Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see . * */ /** * The class Servo uses the PWM class to implement its functions * * All PWMs use the same repetition rate - 20mS because that's the normal servo rate */ /** * This is a hybrid system. * * The PWM1 module is used to directly control the Servo 0, 1 & 3 pins. This keeps * the pulse width jitter to under a microsecond. * * For all other pins the PWM1 module is used to generate interrupts. The ISR * routine does the actual setting/clearing of pins. The upside is that any pin can * have a PWM channel assigned to it. The downside is that there is more pulse width * jitter. The jitter depends on what else is happening in the system and what ISRs * prempt the PWM ISR. Writing to the SD card can add 20 microseconds to the pulse * width. */ /** * The data structures are setup to minimize the computation done by the ISR which * minimizes ISR execution time. Execution times are 2.2 - 3.7 microseconds. * * Two tables are used. active_table is used by the ISR. Changes to the table are * are done by copying the active_table into the work_table, updating the work_table * and then swapping the two tables. Swapping is done by manipulating pointers. * * Immediately after the swap the ISR uses the work_table until the start of the * next 20mS cycle. During this transition the "work_table" is actually the table * that was being used before the swap. The "active_table" contains the data that * will start being used at the start of the next 20mS period. This keeps the pins * well behaved during the transition. * * The ISR's priority is set to the maximum otherwise other ISRs can cause considerable * jitter in the PWM high time. * * See the end of this file for details on the hardware/firmware interaction */ #ifdef TARGET_LPC1768 #include #define NUM_PWMS 6 typedef struct { // holds all data needed to control/init one of the PWM channels uint8_t sequence; // 0: available slot, 1 - 6: PWM channel assigned to that slot uint8_t logical_pin; uint16_t PWM_mask; // MASK TO CHECK/WRITE THE IR REGISTER volatile uint32_t* set_register; volatile uint32_t* clr_register; uint32_t write_mask; // USED BY SET/CLEAR COMMANDS uint32_t microseconds; // value written to MR register uint32_t min; // lower value limit checked by WRITE routine before writing to the MR register uint32_t max; // upper value limit checked by WRITE routine before writing to the MR register bool PWM_flag; // 0 - USED BY sERVO, 1 - USED BY ANALOGWRITE uint8_t servo_index; // 0 - MAX_SERVO -1 : servo index, 0xFF : PWM channel bool active_flag; // THIS TABLE ENTRY IS ACTIVELY TOGGLING A PIN uint8_t assigned_MR; // Which MR (1-6) is used by this logical channel uint32_t PCR_bit; // PCR register bit to enable PWM1 control of this pin uint32_t PINSEL3_bits; // PINSEL3 register bits to set pin mode to PWM1 control } PWM_map; #define MICRO_MAX 0xffffffff #define PWM_MAP_INIT_ROW {0, 0xff, 0, 0, 0, 0, MICRO_MAX, 0, 0, 0, 0, 0, 0, 0, 0} #define PWM_MAP_INIT {PWM_MAP_INIT_ROW,\ PWM_MAP_INIT_ROW,\ PWM_MAP_INIT_ROW,\ PWM_MAP_INIT_ROW,\ PWM_MAP_INIT_ROW,\ PWM_MAP_INIT_ROW,\ }; PWM_map PWM1_map_A[NUM_PWMS] = PWM_MAP_INIT; PWM_map PWM1_map_B[NUM_PWMS] = PWM_MAP_INIT; PWM_map *active_table = PWM1_map_A; PWM_map *work_table = PWM1_map_B; PWM_map *ISR_table; #define IR_BIT(p) (p >= 0 && p <= 3 ? p : p + 4 ) #define COPY_ACTIVE_TABLE for (uint8_t i = 0; i < 6 ; i++) work_table[i] = active_table[i] #define PIN_IS_INVERTED(p) 0 // place holder in case inverting PWM output is offered /** * Prescale register and MR0 register values * * 100MHz PCLK 50MHz PCLK 25MHz PCLK 12.5MHz PCLK * ----------------- ----------------- ----------------- ----------------- * desired prescale MR0 prescale MR0 prescale MR0 prescale MR0 resolution * prescale register register register register register register register register in degrees * freq value value value value value value value value * * 8 11.5 159,999 5.25 159,999 2.13 159,999 0.5625 159,999 0.023 * 4 24 79,999 11.5 79,999 5.25 79,999 2.125 79,999 0.045 * 2 49 39,999 24 39,999 11.5 39,999 5.25 39,999 0.090 * 1 99 19,999 49 19,999 24 19,999 11.5 19,999 0.180 * 0.5 199 9,999 99 9,999 49 9,999 24 9,999 0.360 * 0.25 399 4,999 199 4,999 99 4,999 49 4,999 0.720 * 0.125 799 2,499 399 2,499 199 2,499 99 2,499 1.440 * * The desired prescale frequency comes from an input in the range of 544 - 2400 microseconds and the * desire to just shift the input left or right as needed. * * A resolution of 0.2 degrees seems reasonable so a prescale frequency output of 1MHz is being used. * It also means we don't need to scale the input. * * The PCLK is set to 25MHz because that's the slowest one that gives whole numbers for prescale and * MR0 registers. * * Final settings: * PCLKSEL0: 0x0 * PWM1PR: 0x018 (24) * PWM1MR0: 0x04E1F (19,999) * */ #define LPC_PWM1_MR0 19999 // base repetition rate minus one count - 20mS #define LPC_PWM1_PR 24 // prescaler value - prescaler divide by 24 + 1 - 1 MHz output #define LPC_PWM1_PCLKSEL0 0x00 // select clock source for prescaler - defaults to 25MHz on power up // 0: 25MHz, 1: 100MHz, 2: 50MHz, 3: 12.5MHZ to PWM1 prescaler #define MR0_MARGIN 200 // if channel value too close to MR0 the system locks up void LPC1768_PWM_init(void) { #define SBIT_CNTEN 0 // PWM1 counter & pre-scaler enable/disable #define SBIT_CNTRST 1 // reset counters to known state #define SBIT_PWMEN 3 // 1 - PWM, 0 - timer #define SBIT_PWMMR0R 1 #define PCPWM1 6 #define PCLK_PWM1 12 LPC_SC->PCONP |= (1 << PCPWM1); // enable PWM1 controller (enabled on power up) LPC_SC->PCLKSEL0 &= ~(0x3 << PCLK_PWM1); LPC_SC->PCLKSEL0 |= (LPC_PWM1_PCLKSEL0 << PCLK_PWM1); LPC_PWM1->MR0 = LPC_PWM1_MR0; // TC resets every 19,999 + 1 cycles - sets PWM cycle(Ton+Toff) to 20 mS // MR0 must be set before TCR enables the PWM LPC_PWM1->TCR = _BV(SBIT_CNTEN) | _BV(SBIT_CNTRST)| _BV(SBIT_PWMEN);; // enable counters, reset counters, set mode to PWM LPC_PWM1->TCR &= ~(_BV(SBIT_CNTRST)); // take counters out of reset LPC_PWM1->PR = LPC_PWM1_PR; LPC_PWM1->MCR = (_BV(SBIT_PWMMR0R) | _BV(0)); // Reset TC if it matches MR0, disable all interrupts except for MR0 LPC_PWM1->CTCR = 0; // disable counter mode (enable PWM mode) LPC_PWM1->LER = 0x07F; // Set the latch Enable Bits to load the new Match Values for MR0 - MR6 // Set all PWMs to single edge LPC_PWM1->PCR = 0; // single edge mode for all channels, PWM1 control of outputs off NVIC_EnableIRQ(PWM1_IRQn); // Enable interrupt handler // NVIC_SetPriority(PWM1_IRQn, NVIC_EncodePriority(0, 10, 0)); // normal priority for PWM module NVIC_SetPriority(PWM1_IRQn, NVIC_EncodePriority(0, 0, 0)); // minimizes jitter due to higher priority ISRs } bool PWM_table_swap = false; // flag to tell the ISR that the tables have been swapped bool PWM_MR0_wait = false; // flag to ensure don't delay MR0 interrupt bool LPC1768_PWM_attach_pin(uint8_t pin, uint32_t min = 1, uint32_t max = (LPC_PWM1_MR0 - MR0_MARGIN), uint8_t servo_index = 0xff) { while (PWM_table_swap) delay(5); // don't do anything until the previous change has been implemented by the ISR COPY_ACTIVE_TABLE; // copy active table into work table uint8_t slot = 0; for (uint8_t i = 0; i < NUM_PWMS ; i++) // see if already in table if (work_table[i].logical_pin == pin) return 1; for (uint8_t i = 1; (i < NUM_PWMS + 1) && !slot; i++) // find empty slot if ( !(work_table[i - 1].set_register)) slot = i; // any item that can't be zero when active or just attached is OK if (!slot) return 0; slot--; // turn it into array index work_table[slot].logical_pin = pin; // init slot work_table[slot].PWM_mask = 0; // real value set by PWM_write work_table[slot].set_register = PIN_IS_INVERTED(pin) ? &LPC_GPIO(pin_map[pin].port)->FIOCLR : &LPC_GPIO(pin_map[pin].port)->FIOSET; work_table[slot].clr_register = PIN_IS_INVERTED(pin) ? &LPC_GPIO(pin_map[pin].port)->FIOSET : &LPC_GPIO(pin_map[pin].port)->FIOCLR; work_table[slot].write_mask = LPC_PIN(pin_map[pin].pin); work_table[slot].microseconds = MICRO_MAX; work_table[slot].min = min; work_table[slot].max = MIN(max, LPC_PWM1_MR0 - MR0_MARGIN); work_table[slot].servo_index = servo_index; work_table[slot].active_flag = false; //swap tables PWM_MR0_wait = true; while (PWM_MR0_wait) delay(5); //wait until MR0 interrupt has happend so don't delay it. NVIC_DisableIRQ(PWM1_IRQn); PWM_map *pointer_swap = active_table; active_table = work_table; work_table = pointer_swap; PWM_table_swap = true; // tell the ISR that the tables have been swapped NVIC_EnableIRQ(PWM1_IRQn); // re-enable PWM interrupts return 1; } #define pin_11_PWM_channel 2 #define pin_6_PWM_channel 3 #define pin_4_PWM_channel 1 // used to keep track of which Match Registers have been used and if they will be used by the // PWM1 module to directly control the pin or will be used to generate an interrupt typedef struct { // status of PWM1 channel uint8_t map_used; // 0 - this MR register not used/assigned uint8_t map_PWM_INT; // 0 - available for interrupts, 1 - in use by PWM uint8_t map_PWM_PIN; // logical pin number for this PwM1 controlled pin / port volatile uint32_t* MR_register; // address of the MR register for this PWM1 channel uint32_t PCR_bit; // PCR register bit to enable PWM1 control of this pin uint32_t PINSEL3_bits; // PINSEL3 register bits to set pin mode to PWM1 control } MR_map; MR_map map_MR[NUM_PWMS]; void LPC1768_PWM_update_map_MR(void) { map_MR[0] = {0, (uint8_t) (LPC_PWM1->PCR & _BV(8 + pin_4_PWM_channel) ? 1 : 0), 4, &LPC_PWM1->MR1, 0, 0}; map_MR[1] = {0, (uint8_t) (LPC_PWM1->PCR & _BV(8 + pin_11_PWM_channel) ? 1 : 0), 11, &LPC_PWM1->MR2, 0, 0}; map_MR[2] = {0, (uint8_t) (LPC_PWM1->PCR & _BV(8 + pin_6_PWM_channel) ? 1 : 0), 6, &LPC_PWM1->MR3, 0, 0}; map_MR[3] = {0, 0, 0, &LPC_PWM1->MR4, 0, 0}; map_MR[4] = {0, 0, 0, &LPC_PWM1->MR5, 0, 0}; map_MR[5] = {0, 0, 0, &LPC_PWM1->MR6, 0, 0}; } uint32_t LPC1768_PWM_interrupt_mask = 1; void LPC1768_PWM_update(void) { for (uint8_t i = NUM_PWMS; --i;) { // (bubble) sort table by microseconds bool didSwap = false; PWM_map temp; for (uint16_t j = 0; j < i; ++j) { if (work_table[j].microseconds > work_table[j + 1].microseconds) { temp = work_table[j + 1]; work_table[j + 1] = work_table[j]; work_table[j] = temp; didSwap = true; } } if (!didSwap) break; } LPC1768_PWM_interrupt_mask = 0; // set match registers to new values, build IRQ mask for (uint8_t i = 0; i < NUM_PWMS; i++) { if (work_table[i].active_flag == true) { work_table[i].sequence = i + 1; // first see if there is a PWM1 controlled pin for this entry bool found = false; for (uint8_t j = 0; (j < NUM_PWMS) && !found; j++) { if ( (map_MR[j].map_PWM_PIN == work_table[i].logical_pin) && map_MR[j].map_PWM_INT ) { *map_MR[j].MR_register = work_table[i].microseconds; // found one of the PWM pins work_table[i].PWM_mask = 0; work_table[i].PCR_bit = map_MR[j].PCR_bit; // PCR register bit to enable PWM1 control of this pin work_table[i].PINSEL3_bits = map_MR[j].PINSEL3_bits; // PINSEL3 register bits to set pin mode to PWM1 control} MR_map; map_MR[j].map_used = 2; work_table[i].assigned_MR = j +1; // only used to help in debugging found = true; } } // didn't find a PWM1 pin so get an interrupt for (uint8_t k = 0; (k < NUM_PWMS) && !found; k++) { if ( !(map_MR[k].map_PWM_INT || map_MR[k].map_used)) { *map_MR[k].MR_register = work_table[i].microseconds; // found one for an interrupt pin map_MR[k].map_used = 1; LPC1768_PWM_interrupt_mask |= _BV(3 * (k + 1)); // set bit in the MCR to enable this MR to generate an interrupt work_table[i].PWM_mask = _BV(IR_BIT(k + 1)); // bit in the IR that will go active when this MR generates an interrupt work_table[i].assigned_MR = k +1; // only used to help in debugging found = true; } } } else work_table[i].sequence = 0; } LPC1768_PWM_interrupt_mask |= (uint32_t) _BV(0); // add in MR0 interrupt // swap tables PWM_MR0_wait = true; while (PWM_MR0_wait) delay(5); //wait until MR0 interrupt has happend so don't delay it. NVIC_DisableIRQ(PWM1_IRQn); LPC_PWM1->LER = 0x07E; // Set the latch Enable Bits to load the new Match Values for MR1 - MR6 PWM_map *pointer_swap = active_table; active_table = work_table; work_table = pointer_swap; PWM_table_swap = true; // tell the ISR that the tables have been swapped NVIC_EnableIRQ(PWM1_IRQn); // re-enable PWM interrupts } bool LPC1768_PWM_write(uint8_t pin, uint32_t value) { while (PWM_table_swap) delay(5); // don't do anything until the previous change has been implemented by the ISR COPY_ACTIVE_TABLE; // copy active table into work table uint8_t slot = 0xFF; for (uint8_t i = 0; i < NUM_PWMS; i++) // find slot if (work_table[i].logical_pin == pin) slot = i; if (slot == 0xFF) return false; // return error if pin not found LPC1768_PWM_update_map_MR(); switch(pin) { case 11: // Servo 0, PWM1 channel 2 (Pin 11 P1.20 PWM1.2) map_MR[pin_11_PWM_channel - 1].PCR_bit = _BV(8 + pin_11_PWM_channel); // enable PWM1 module control of this pin map_MR[pin_11_PWM_channel - 1].map_PWM_INT = 1; // 0 - available for interrupts, 1 - in use by PWM map_MR[pin_11_PWM_channel - 1].PINSEL3_bits = 0x2 << 8; // ISR must do this AFTER setting PCR break; case 6: // Servo 1, PWM1 channel 3 (Pin 6 P1.21 PWM1.3) map_MR[pin_6_PWM_channel - 1].PCR_bit = _BV(8 + pin_6_PWM_channel); // enable PWM1 module control of this pin map_MR[pin_6_PWM_channel - 1].map_PWM_INT = 1; // 0 - available for interrupts, 1 - in use by PWM map_MR[pin_6_PWM_channel - 1].PINSEL3_bits = 0x2 << 10; // ISR must do this AFTER setting PCR break; case 4: // Servo 3, PWM1 channel 1 (Pin 4 P1.18 PWM1.1) map_MR[pin_4_PWM_channel - 1].PCR_bit = _BV(8 + pin_4_PWM_channel); // enable PWM1 module control of this pin map_MR[pin_4_PWM_channel - 1].map_PWM_INT = 1; // 0 - available for interrupts, 1 - in use by PWM map_MR[pin_4_PWM_channel - 1].PINSEL3_bits = 0x2 << 4; // ISR must do this AFTER setting PCR break; default: // ISR pins pinMode(pin, OUTPUT); // set pin to output but don't write anything in case it's already in use break; } work_table[slot].microseconds = MAX(MIN(value, work_table[slot].max), work_table[slot].min); work_table[slot].active_flag = true; LPC1768_PWM_update(); return 1; } bool LPC1768_PWM_detach_pin(uint8_t pin) { while (PWM_table_swap) delay(5); // don't do anything until the previous change has been implemented by the ISR COPY_ACTIVE_TABLE; // copy active table into work table uint8_t slot = 0xFF; for (uint8_t i = 0; i < NUM_PWMS; i++) // find slot if (work_table[i].logical_pin == pin) slot = i; if (slot == 0xFF) return false; // return error if pin not found LPC1768_PWM_update_map_MR(); // OK to make these changes before the MR0 interrupt switch(pin) { case 11: // Servo 0, PWM1 channel 2 (Pin 11 P1.20 PWM1.2) LPC_PWM1->PCR &= ~(_BV(8 + pin_11_PWM_channel)); // disable PWM1 module control of this pin map_MR[pin_11_PWM_channel - 1].PCR_bit = 0; LPC_PINCON->PINSEL3 &= ~(0x3 << 8); // return pin to general purpose I/O map_MR[pin_11_PWM_channel - 1].PINSEL3_bits = 0; map_MR[pin_11_PWM_channel - 1].map_PWM_INT = 0; // 0 - available for interrupts, 1 - in use by PWM break; case 6: // Servo 1, PWM1 channel 3 (Pin 6 P1.21 PWM1.3) LPC_PWM1->PCR &= ~(_BV(8 + pin_6_PWM_channel)); // disable PWM1 module control of this pin map_MR[pin_6_PWM_channel - 1].PCR_bit = 0; LPC_PINCON->PINSEL3 &= ~(0x3 << 10); // return pin to general purpose I/O map_MR[pin_6_PWM_channel - 1].PINSEL3_bits = 0; map_MR[pin_6_PWM_channel - 1].map_PWM_INT = 0; // 0 - available for interrupts, 1 - in use by PWM break; case 4: // Servo 3, PWM1 channel 1 (Pin 4 P1.18 PWM1.1) LPC_PWM1->PCR &= ~(_BV(8 + pin_4_PWM_channel)); // disable PWM1 module control of this pin map_MR[pin_4_PWM_channel - 1].PCR_bit = 0; LPC_PINCON->PINSEL3 &= ~(0x3 << 4); // return pin to general purpose I/O map_MR[pin_4_PWM_channel - 1].PINSEL3_bits = 0; map_MR[pin_4_PWM_channel - 1].map_PWM_INT = 0; // 0 - available for interrupts, 1 - in use by PWM break; } pinMode(pin, INPUT); work_table[slot] = PWM_MAP_INIT_ROW; LPC1768_PWM_update(); return 1; } bool useable_hardware_PWM(uint8_t pin) { COPY_ACTIVE_TABLE; // copy active table into work table for (uint8_t i = 0; i < NUM_PWMS; i++) // see if it's already setup if (work_table[i].logical_pin == pin && work_table[i].sequence) return true; for (uint8_t i = 0; i < NUM_PWMS; i++) // see if there is an empty slot if (!work_table[i].sequence) return true; return false; // only get here if neither the above are true } //////////////////////////////////////////////////////////////////////////////// #define HAL_PWM_LPC1768_ISR extern "C" void PWM1_IRQHandler(void) // Both loops could be terminated when the last active channel is found but that would // result in variations ISR run time which results in variations in pulse width /** * Changes to PINSEL3, PCR and MCR are only done during the MR0 interrupt otherwise * the wrong pin may be toggled or even have the system hang. */ HAL_PWM_LPC1768_ISR { if (PWM_table_swap) ISR_table = work_table; // use old table if a swap was just done else ISR_table = active_table; if (LPC_PWM1->IR & 0x1) { // MR0 interrupt ISR_table = active_table; // MR0 means new values could have been loaded so set everything if (PWM_table_swap) LPC_PWM1->MCR = LPC1768_PWM_interrupt_mask; // enable new PWM individual channel interrupts for (uint8_t i = 0; (i < NUM_PWMS) ; i++) { if(ISR_table[i].active_flag && !((ISR_table[i].logical_pin == 11) || (ISR_table[i].logical_pin == 4) || (ISR_table[i].logical_pin == 6))) *ISR_table[i].set_register = ISR_table[i].write_mask; // set pins for all enabled interrupt channels active if (PWM_table_swap && ISR_table[i].PCR_bit) { LPC_PWM1->PCR |= ISR_table[i].PCR_bit; // enable PWM1 module control of this pin LPC_PINCON->PINSEL3 |= ISR_table[i].PINSEL3_bits; // set pin mode to PWM1 control - must be done after PCR } } PWM_table_swap = false; PWM_MR0_wait = false; LPC_PWM1->IR = 0x01; // clear the MR0 interrupt flag bit } else { for (uint8_t i = 0; i < NUM_PWMS ; i++) if (ISR_table[i].active_flag && (LPC_PWM1->IR & ISR_table[i].PWM_mask) ){ LPC_PWM1->IR = ISR_table[i].PWM_mask; // clear the interrupt flag bits for expected interrupts *ISR_table[i].clr_register = ISR_table[i].write_mask; // set channel to inactive } } LPC_PWM1->IR = 0x70F; // guarantees all interrupt flags are cleared which, if there is an unexpected // PWM interrupt, will keep the ISR from hanging which will crash the controller return; } #endif ///////////////////////////////////////////////////////////////// ///////////////// HARDWARE FIRMWARE INTERACTION //////////////// ///////////////////////////////////////////////////////////////// /** * Almost all changes to the hardware registers must be coordinated with the Match Register 0 (MR0) * interrupt. The only exception is detaching pins. It doesn't matter when they go * tristate. * * The LPC1768_PWM_init routine kicks off the MR0 interrupt. This interrupt is never disabled or * delayed. * * The PWM_table_swap flag is set when the firmware has swapped in an updated table. It is * cleared by the ISR during the MR0 interrupt as it completes the swap and accompanying updates. * It serves two purposes: * 1) Tells the ISR that the tables have been swapped * 2) Keeps the firmware from starting a new update until the previous one has been completed. * * The PWM_MR0_wait flag is set when the firmware is ready to swap in an updated table and cleared by * the ISR during the MR0 interrupt. It is used to avoid delaying the MR0 interrupt when swapping in * an updated table. This avoids glitches in pulse width and/or repetition rate. * * The sequence of events during a write to a PWM channel is: * 1) Waits until PWM_table_swap flag is false before starting * 2) Copies the active table into the work table * 3) Updates the work table * NOTES - MR1-MR6 are updated at this time. The updates aren't put into use until the first * MR0 after the LER register has been written. The LER register is written during the * table swap process. * - The MCR mask is created at this time. It is not used until the ISR writes the MCR * during the MR0 interrupt in the table swap process. * 4) Sets the PWM_MR0_wait flag * 5) ISR clears the PWM_MR0_wait flag during the next MR0 interrupt * 6) Once the PWM_MR0_wait flag is cleared then the firmware: * disables the ISR interrupt * swaps the pointers to the tables * writes to the LER register * sets the PWM_table_swap flag active * re-enables the ISR * 7) On the next interrupt the ISR changes its pointer to the work table which is now the old, * unmodified, active table. * 8) On the next MR0 interrupt the ISR: * switches over to the active table * clears the PWM_table_swap and PWM_MR0_wait flags * updates the MCR register with the possibly new interrupt sources/assignments * writes to the PCR register to enable the direct control of the Servo 0, 1 & 3 pins by the PWM1 module * sets the PINSEL3 register to function/mode 0x2 for the Servo 0, 1 & 3 pins * NOTE - PCR must be set before PINSEL * sets the pins controlled by the ISR to their active states */