/** * Marlin 3D Printer Firmware * Copyright (c) 2020 MarlinFirmware [https://github.com/MarlinFirmware/Marlin] * * Based on Sprinter and grbl. * Copyright (c) 2011 Camiel Gubbels / Erik van der Zalm * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see . * */ #pragma once /** * motion.h * * High-level motion commands to feed the planner * Some of these methods may migrate to the planner class. */ #include "../inc/MarlinConfig.h" #if IS_SCARA #include "scara.h" #endif // Axis homed and known-position states extern uint8_t axis_homed, axis_known_position; constexpr uint8_t xyz_bits = _BV(X_AXIS) | _BV(Y_AXIS) | _BV(Z_AXIS); FORCE_INLINE bool no_axes_homed() { return !axis_homed; } FORCE_INLINE bool all_axes_homed() { return (axis_homed & xyz_bits) == xyz_bits; } FORCE_INLINE bool all_axes_known() { return (axis_known_position & xyz_bits) == xyz_bits; } FORCE_INLINE void set_all_homed() { axis_homed = axis_known_position = xyz_bits; } FORCE_INLINE void set_all_unhomed() { axis_homed = axis_known_position = 0; } FORCE_INLINE bool homing_needed() { return !TERN(HOME_AFTER_DEACTIVATE, all_axes_known, all_axes_homed)(); } // Error margin to work around float imprecision constexpr float fslop = 0.0001; extern bool relative_mode; extern xyze_pos_t current_position, // High-level current tool position destination; // Destination for a move // G60/G61 Position Save and Return #if SAVED_POSITIONS extern uint8_t saved_slots[(SAVED_POSITIONS + 7) >> 3]; extern xyz_pos_t stored_position[SAVED_POSITIONS]; #endif // Scratch space for a cartesian result extern xyz_pos_t cartes; // Until kinematics.cpp is created, declare this here #if IS_KINEMATIC extern abc_pos_t delta; #endif #if HAS_ABL_NOT_UBL extern float xy_probe_feedrate_mm_s; #define XY_PROBE_FEEDRATE_MM_S xy_probe_feedrate_mm_s #elif defined(XY_PROBE_SPEED) #define XY_PROBE_FEEDRATE_MM_S MMM_TO_MMS(XY_PROBE_SPEED) #else #define XY_PROBE_FEEDRATE_MM_S PLANNER_XY_FEEDRATE() #endif #if ENABLED(Z_SAFE_HOMING) constexpr xy_float_t safe_homing_xy = { Z_SAFE_HOMING_X_POINT, Z_SAFE_HOMING_Y_POINT }; #endif /** * Feed rates are often configured with mm/m * but the planner and stepper like mm/s units. */ extern const feedRate_t homing_feedrate_mm_s[XYZ]; FORCE_INLINE feedRate_t homing_feedrate(const AxisEnum a) { return pgm_read_float(&homing_feedrate_mm_s[a]); } feedRate_t get_homing_bump_feedrate(const AxisEnum axis); extern feedRate_t feedrate_mm_s; /** * Feedrate scaling */ extern int16_t feedrate_percentage; // The active extruder (tool). Set with T command. #if HAS_MULTI_EXTRUDER extern uint8_t active_extruder; #else constexpr uint8_t active_extruder = 0; #endif #if ENABLED(LCD_SHOW_E_TOTAL) extern float e_move_accumulator; #endif #ifdef __IMXRT1062__ #define DEFS_PROGMEM #else #define DEFS_PROGMEM PROGMEM #endif inline float pgm_read_any(const float *p) { return TERN(__IMXRT1062__, *p, pgm_read_float(p)); } inline int8_t pgm_read_any(const int8_t *p) { return TERN(__IMXRT1062__, *p, pgm_read_byte(p)); } #define XYZ_DEFS(T, NAME, OPT) \ inline T NAME(const AxisEnum axis) { \ static const XYZval NAME##_P DEFS_PROGMEM = { X_##OPT, Y_##OPT, Z_##OPT }; \ return pgm_read_any(&NAME##_P[axis]); \ } XYZ_DEFS(float, base_min_pos, MIN_POS); XYZ_DEFS(float, base_max_pos, MAX_POS); XYZ_DEFS(float, base_home_pos, HOME_POS); XYZ_DEFS(float, max_length, MAX_LENGTH); XYZ_DEFS(int8_t, home_dir, HOME_DIR); inline float home_bump_mm(const AxisEnum axis) { static const xyz_pos_t home_bump_mm_P DEFS_PROGMEM = HOMING_BUMP_MM; return pgm_read_any(&home_bump_mm_P[axis]); } #if HAS_WORKSPACE_OFFSET void update_workspace_offset(const AxisEnum axis); #else inline void update_workspace_offset(const AxisEnum) {} #endif #if HAS_HOTEND_OFFSET extern xyz_pos_t hotend_offset[HOTENDS]; void reset_hotend_offsets(); #elif HOTENDS constexpr xyz_pos_t hotend_offset[HOTENDS] = { { 0 } }; #else constexpr xyz_pos_t hotend_offset[1] = { { 0 } }; #endif #if HAS_SOFTWARE_ENDSTOPS typedef struct { xyz_pos_t min, max; struct { bool _enabled:1; bool _loose:1; }; bool enabled() { return _enabled && !_loose; } void get_manual_axis_limits(const AxisEnum axis, float &amin, float &amax) { amin = -100000; amax = 100000; // "No limits" #if HAS_SOFTWARE_ENDSTOPS if (enabled()) switch (axis) { case X_AXIS: TERN_(MIN_SOFTWARE_ENDSTOP_X, amin = min.x); TERN_(MAX_SOFTWARE_ENDSTOP_X, amax = max.x); break; case Y_AXIS: TERN_(MIN_SOFTWARE_ENDSTOP_Y, amin = min.y); TERN_(MAX_SOFTWARE_ENDSTOP_Y, amax = max.y); break; case Z_AXIS: TERN_(MIN_SOFTWARE_ENDSTOP_Z, amin = min.z); TERN_(MAX_SOFTWARE_ENDSTOP_Z, amax = max.z); default: break; } #endif } } soft_endstops_t; extern soft_endstops_t soft_endstop; void apply_motion_limits(xyz_pos_t &target); void update_software_endstops(const AxisEnum axis #if HAS_HOTEND_OFFSET , const uint8_t old_tool_index=0, const uint8_t new_tool_index=0 #endif ); #define SET_SOFT_ENDSTOP_LOOSE(loose) (soft_endstop._loose = loose) #else // !HAS_SOFTWARE_ENDSTOPS typedef struct { bool enabled() { return false; } void get_manual_axis_limits(const AxisEnum axis, float &amin, float &amax) { // No limits amin = current_position[axis] - 1000; amax = current_position[axis] + 1000; } } soft_endstops_t; extern soft_endstops_t soft_endstop; #define apply_motion_limits(V) NOOP #define update_software_endstops(...) NOOP #define SET_SOFT_ENDSTOP_LOOSE() NOOP #endif // !HAS_SOFTWARE_ENDSTOPS void report_real_position(); void report_current_position(); void report_current_position_projected(); void get_cartesian_from_steppers(); void set_current_from_steppers_for_axis(const AxisEnum axis); /** * sync_plan_position * * Set the planner/stepper positions directly from current_position with * no kinematic translation. Used for homing axes and cartesian/core syncing. */ void sync_plan_position(); void sync_plan_position_e(); /** * Move the planner to the current position from wherever it last moved * (or from wherever it has been told it is located). */ void line_to_current_position(const feedRate_t &fr_mm_s=feedrate_mm_s); #if EXTRUDERS void unscaled_e_move(const float &length, const feedRate_t &fr_mm_s); #endif void prepare_line_to_destination(); void _internal_move_to_destination(const feedRate_t &fr_mm_s=0.0f #if IS_KINEMATIC , const bool is_fast=false #endif ); inline void prepare_internal_move_to_destination(const feedRate_t &fr_mm_s=0.0f) { _internal_move_to_destination(fr_mm_s); } #if IS_KINEMATIC void prepare_fast_move_to_destination(const feedRate_t &scaled_fr_mm_s=MMS_SCALED(feedrate_mm_s)); inline void prepare_internal_fast_move_to_destination(const feedRate_t &fr_mm_s=0.0f) { _internal_move_to_destination(fr_mm_s, true); } #endif /** * Blocking movement and shorthand functions */ void do_blocking_move_to(const float rx, const float ry, const float rz, const feedRate_t &fr_mm_s=0.0f); void do_blocking_move_to(const xy_pos_t &raw, const feedRate_t &fr_mm_s=0.0f); void do_blocking_move_to(const xyz_pos_t &raw, const feedRate_t &fr_mm_s=0.0f); void do_blocking_move_to(const xyze_pos_t &raw, const feedRate_t &fr_mm_s=0.0f); void do_blocking_move_to_x(const float &rx, const feedRate_t &fr_mm_s=0.0f); void do_blocking_move_to_y(const float &ry, const feedRate_t &fr_mm_s=0.0f); void do_blocking_move_to_z(const float &rz, const feedRate_t &fr_mm_s=0.0f); void do_blocking_move_to_xy(const float &rx, const float &ry, const feedRate_t &fr_mm_s=0.0f); void do_blocking_move_to_xy(const xy_pos_t &raw, const feedRate_t &fr_mm_s=0.0f); FORCE_INLINE void do_blocking_move_to_xy(const xyz_pos_t &raw, const feedRate_t &fr_mm_s=0.0f) { do_blocking_move_to_xy(xy_pos_t(raw), fr_mm_s); } FORCE_INLINE void do_blocking_move_to_xy(const xyze_pos_t &raw, const feedRate_t &fr_mm_s=0.0f) { do_blocking_move_to_xy(xy_pos_t(raw), fr_mm_s); } void do_blocking_move_to_xy_z(const xy_pos_t &raw, const float &z, const feedRate_t &fr_mm_s=0.0f); FORCE_INLINE void do_blocking_move_to_xy_z(const xyz_pos_t &raw, const float &z, const feedRate_t &fr_mm_s=0.0f) { do_blocking_move_to_xy_z(xy_pos_t(raw), z, fr_mm_s); } FORCE_INLINE void do_blocking_move_to_xy_z(const xyze_pos_t &raw, const float &z, const feedRate_t &fr_mm_s=0.0f) { do_blocking_move_to_xy_z(xy_pos_t(raw), z, fr_mm_s); } void remember_feedrate_and_scaling(); void remember_feedrate_scaling_off(); void restore_feedrate_and_scaling(); void do_z_clearance(const float &zclear, const bool z_known=true, const bool raise_on_unknown=true, const bool lower_allowed=false); // // Homing // void homeaxis(const AxisEnum axis); void set_axis_is_at_home(const AxisEnum axis); void set_axis_never_homed(const AxisEnum axis); uint8_t axes_should_home(uint8_t axis_bits=0x07); bool homing_needed_error(uint8_t axis_bits=0x07); #if ENABLED(NO_MOTION_BEFORE_HOMING) #define MOTION_CONDITIONS (IsRunning() && !homing_needed_error()) #else #define MOTION_CONDITIONS IsRunning() #endif /** * Workspace offsets */ #if HAS_HOME_OFFSET || HAS_POSITION_SHIFT #if HAS_HOME_OFFSET extern xyz_pos_t home_offset; #endif #if HAS_POSITION_SHIFT extern xyz_pos_t position_shift; #endif #if HAS_HOME_OFFSET && HAS_POSITION_SHIFT extern xyz_pos_t workspace_offset; #define _WS workspace_offset #elif HAS_HOME_OFFSET #define _WS home_offset #else #define _WS position_shift #endif #define NATIVE_TO_LOGICAL(POS, AXIS) ((POS) + _WS[AXIS]) #define LOGICAL_TO_NATIVE(POS, AXIS) ((POS) - _WS[AXIS]) FORCE_INLINE void toLogical(xy_pos_t &raw) { raw += _WS; } FORCE_INLINE void toLogical(xyz_pos_t &raw) { raw += _WS; } FORCE_INLINE void toLogical(xyze_pos_t &raw) { raw += _WS; } FORCE_INLINE void toNative(xy_pos_t &raw) { raw -= _WS; } FORCE_INLINE void toNative(xyz_pos_t &raw) { raw -= _WS; } FORCE_INLINE void toNative(xyze_pos_t &raw) { raw -= _WS; } #else #define NATIVE_TO_LOGICAL(POS, AXIS) (POS) #define LOGICAL_TO_NATIVE(POS, AXIS) (POS) FORCE_INLINE void toLogical(xy_pos_t&) {} FORCE_INLINE void toLogical(xyz_pos_t&) {} FORCE_INLINE void toLogical(xyze_pos_t&) {} FORCE_INLINE void toNative(xy_pos_t&) {} FORCE_INLINE void toNative(xyz_pos_t&) {} FORCE_INLINE void toNative(xyze_pos_t&) {} #endif #define LOGICAL_X_POSITION(POS) NATIVE_TO_LOGICAL(POS, X_AXIS) #define LOGICAL_Y_POSITION(POS) NATIVE_TO_LOGICAL(POS, Y_AXIS) #define LOGICAL_Z_POSITION(POS) NATIVE_TO_LOGICAL(POS, Z_AXIS) #define RAW_X_POSITION(POS) LOGICAL_TO_NATIVE(POS, X_AXIS) #define RAW_Y_POSITION(POS) LOGICAL_TO_NATIVE(POS, Y_AXIS) #define RAW_Z_POSITION(POS) LOGICAL_TO_NATIVE(POS, Z_AXIS) /** * position_is_reachable family of functions */ #if IS_KINEMATIC // (DELTA or SCARA) #if HAS_SCARA_OFFSET extern abc_pos_t scara_home_offset; // A and B angular offsets, Z mm offset #endif // Return true if the given point is within the printable area inline bool position_is_reachable(const float &rx, const float &ry, const float inset=0) { #if ENABLED(DELTA) return HYPOT2(rx, ry) <= sq(DELTA_PRINTABLE_RADIUS - inset + fslop); #elif IS_SCARA const float R2 = HYPOT2(rx - SCARA_OFFSET_X, ry - SCARA_OFFSET_Y); return ( R2 <= sq(L1 + L2) - inset #if MIDDLE_DEAD_ZONE_R > 0 && R2 >= sq(float(MIDDLE_DEAD_ZONE_R)) #endif ); #endif } inline bool position_is_reachable(const xy_pos_t &pos, const float inset=0) { return position_is_reachable(pos.x, pos.y, inset); } #else // CARTESIAN // Return true if the given position is within the machine bounds. inline bool position_is_reachable(const float &rx, const float &ry) { if (!WITHIN(ry, Y_MIN_POS - fslop, Y_MAX_POS + fslop)) return false; #if ENABLED(DUAL_X_CARRIAGE) if (active_extruder) return WITHIN(rx, X2_MIN_POS - fslop, X2_MAX_POS + fslop); else return WITHIN(rx, X1_MIN_POS - fslop, X1_MAX_POS + fslop); #else return WITHIN(rx, X_MIN_POS - fslop, X_MAX_POS + fslop); #endif } inline bool position_is_reachable(const xy_pos_t &pos) { return position_is_reachable(pos.x, pos.y); } #endif // CARTESIAN /** * Duplication mode */ #if HAS_DUPLICATION_MODE extern bool extruder_duplication_enabled, // Used in Dual X mode 2 mirrored_duplication_mode; // Used in Dual X mode 3 #if ENABLED(MULTI_NOZZLE_DUPLICATION) extern uint8_t duplication_e_mask; #endif #endif /** * Dual X Carriage */ #if ENABLED(DUAL_X_CARRIAGE) enum DualXMode : char { DXC_FULL_CONTROL_MODE, DXC_AUTO_PARK_MODE, DXC_DUPLICATION_MODE, DXC_MIRRORED_MODE }; extern DualXMode dual_x_carriage_mode; extern float inactive_extruder_x_pos, // Used in mode 0 & 1 duplicate_extruder_x_offset; // Used in mode 2 & 3 extern xyz_pos_t raised_parked_position; // Used in mode 1 extern bool active_extruder_parked; // Used in mode 1, 2 & 3 extern millis_t delayed_move_time; // Used in mode 1 extern int16_t duplicate_extruder_temp_offset; // Used in mode 2 & 3 FORCE_INLINE bool dxc_is_duplicating() { return dual_x_carriage_mode >= DXC_DUPLICATION_MODE; } float x_home_pos(const uint8_t extruder); FORCE_INLINE int x_home_dir(const uint8_t extruder) { return extruder ? X2_HOME_DIR : X_HOME_DIR; } #else #if ENABLED(MULTI_NOZZLE_DUPLICATION) enum DualXMode : char { DXC_DUPLICATION_MODE = 2 }; #endif FORCE_INLINE int x_home_dir(const uint8_t) { return home_dir(X_AXIS); } #endif #if HAS_M206_COMMAND void set_home_offset(const AxisEnum axis, const float v); #endif #if USE_SENSORLESS struct sensorless_t; sensorless_t start_sensorless_homing_per_axis(const AxisEnum axis); void end_sensorless_homing_per_axis(const AxisEnum axis, sensorless_t enable_stealth); #endif