My Marlin configs for Fabrikator Mini and CTC i3 Pro B
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

G34_M422.cpp 19KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514
  1. /**
  2. * Marlin 3D Printer Firmware
  3. * Copyright (c) 2020 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
  4. *
  5. * Based on Sprinter and grbl.
  6. * Copyright (c) 2011 Camiel Gubbels / Erik van der Zalm
  7. *
  8. * This program is free software: you can redistribute it and/or modify
  9. * it under the terms of the GNU General Public License as published by
  10. * the Free Software Foundation, either version 3 of the License, or
  11. * (at your option) any later version.
  12. *
  13. * This program is distributed in the hope that it will be useful,
  14. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  16. * GNU General Public License for more details.
  17. *
  18. * You should have received a copy of the GNU General Public License
  19. * along with this program. If not, see <https://www.gnu.org/licenses/>.
  20. *
  21. */
  22. #include "../../inc/MarlinConfigPre.h"
  23. #if ENABLED(Z_STEPPER_AUTO_ALIGN)
  24. #include "../../feature/z_stepper_align.h"
  25. #include "../gcode.h"
  26. #include "../../module/motion.h"
  27. #include "../../module/stepper.h"
  28. #include "../../module/planner.h"
  29. #include "../../module/probe.h"
  30. #include "../../lcd/ultralcd.h" // for LCD_MESSAGEPGM
  31. #if HAS_LEVELING
  32. #include "../../feature/bedlevel/bedlevel.h"
  33. #endif
  34. #if HAS_MULTI_HOTEND
  35. #include "../../module/tool_change.h"
  36. #endif
  37. #if ENABLED(Z_STEPPER_ALIGN_KNOWN_STEPPER_POSITIONS)
  38. #include "../../libs/least_squares_fit.h"
  39. #endif
  40. #define DEBUG_OUT ENABLED(DEBUG_LEVELING_FEATURE)
  41. #include "../../core/debug_out.h"
  42. /**
  43. * G34: Z-Stepper automatic alignment
  44. *
  45. * I<iterations>
  46. * T<accuracy>
  47. * A<amplification>
  48. * R<recalculate> points based on current probe offsets
  49. */
  50. void GcodeSuite::G34() {
  51. DEBUG_SECTION(log_G34, "G34", DEBUGGING(LEVELING));
  52. if (DEBUGGING(LEVELING)) log_machine_info();
  53. do { // break out on error
  54. #if NUM_Z_STEPPER_DRIVERS == 4
  55. SERIAL_ECHOLNPGM("Alignment for 4 steppers is Experimental!");
  56. #elif NUM_Z_STEPPER_DRIVERS > 4
  57. SERIAL_ECHOLNPGM("Alignment not supported for over 4 steppers");
  58. break;
  59. #endif
  60. const int8_t z_auto_align_iterations = parser.intval('I', Z_STEPPER_ALIGN_ITERATIONS);
  61. if (!WITHIN(z_auto_align_iterations, 1, 30)) {
  62. SERIAL_ECHOLNPGM("?(I)teration out of bounds (1-30).");
  63. break;
  64. }
  65. const float z_auto_align_accuracy = parser.floatval('T', Z_STEPPER_ALIGN_ACC);
  66. if (!WITHIN(z_auto_align_accuracy, 0.01f, 1.0f)) {
  67. SERIAL_ECHOLNPGM("?(T)arget accuracy out of bounds (0.01-1.0).");
  68. break;
  69. }
  70. const float z_auto_align_amplification =
  71. #if ENABLED(Z_STEPPER_ALIGN_KNOWN_STEPPER_POSITIONS)
  72. Z_STEPPER_ALIGN_AMP;
  73. #else
  74. parser.floatval('A', Z_STEPPER_ALIGN_AMP);
  75. if (!WITHIN(ABS(z_auto_align_amplification), 0.5f, 2.0f)) {
  76. SERIAL_ECHOLNPGM("?(A)mplification out of bounds (0.5-2.0).");
  77. break;
  78. }
  79. #endif
  80. if (parser.seen('R')) z_stepper_align.reset_to_default();
  81. const ProbePtRaise raise_after = parser.boolval('E') ? PROBE_PT_STOW : PROBE_PT_RAISE;
  82. // Wait for planner moves to finish!
  83. planner.synchronize();
  84. // Disable the leveling matrix before auto-aligning
  85. #if HAS_LEVELING
  86. TERN_(RESTORE_LEVELING_AFTER_G34, const bool leveling_was_active = planner.leveling_active);
  87. set_bed_leveling_enabled(false);
  88. #endif
  89. TERN_(CNC_WORKSPACE_PLANES, workspace_plane = PLANE_XY);
  90. // Always home with tool 0 active
  91. #if HAS_MULTI_HOTEND
  92. const uint8_t old_tool_index = active_extruder;
  93. tool_change(0, true);
  94. #endif
  95. TERN_(HAS_DUPLICATION_MODE, extruder_duplication_enabled = false);
  96. // In BLTOUCH HS mode, the probe travels in a deployed state.
  97. // Users of G34 might have a badly misaligned bed, so raise Z by the
  98. // length of the deployed pin (BLTOUCH stroke < 7mm)
  99. #define Z_BASIC_CLEARANCE (Z_CLEARANCE_BETWEEN_PROBES + 7.0f * BOTH(BLTOUCH, BLTOUCH_HS_MODE))
  100. // Compute a worst-case clearance height to probe from. After the first
  101. // iteration this will be re-calculated based on the actual bed position
  102. auto magnitude2 = [&](const uint8_t i, const uint8_t j) {
  103. const xy_pos_t diff = z_stepper_align.xy[i] - z_stepper_align.xy[j];
  104. return HYPOT2(diff.x, diff.y);
  105. };
  106. float z_probe = Z_BASIC_CLEARANCE + (G34_MAX_GRADE) * 0.01f * SQRT(
  107. #if NUM_Z_STEPPER_DRIVERS == 3
  108. _MAX(magnitude2(0, 1), magnitude2(1, 2), magnitude2(2, 0))
  109. #elif NUM_Z_STEPPER_DRIVERS == 4
  110. _MAX(magnitude2(0, 1), magnitude2(1, 2), magnitude2(2, 3),
  111. magnitude2(3, 0), magnitude2(0, 2), magnitude2(1, 3))
  112. #else
  113. magnitude2(0, 1)
  114. #endif
  115. );
  116. // Home before the alignment procedure
  117. if (!all_axes_known()) home_all_axes();
  118. // Move the Z coordinate realm towards the positive - dirty trick
  119. current_position.z += z_probe * 0.5f;
  120. sync_plan_position();
  121. // Now, the Z origin lies below the build plate. That allows to probe deeper, before run_z_probe throws an error.
  122. // This hack is un-done at the end of G34 - either by re-homing, or by using the probed heights of the last iteration.
  123. #if DISABLED(Z_STEPPER_ALIGN_KNOWN_STEPPER_POSITIONS)
  124. float last_z_align_move[NUM_Z_STEPPER_DRIVERS] = ARRAY_N(NUM_Z_STEPPER_DRIVERS, 10000.0f, 10000.0f, 10000.0f, 10000.0f);
  125. #else
  126. float last_z_align_level_indicator = 10000.0f;
  127. #endif
  128. float z_measured[NUM_Z_STEPPER_DRIVERS] = { 0 },
  129. z_maxdiff = 0.0f,
  130. amplification = z_auto_align_amplification;
  131. #if DISABLED(Z_STEPPER_ALIGN_KNOWN_STEPPER_POSITIONS)
  132. bool adjustment_reverse = false;
  133. #endif
  134. #if HAS_DISPLAY
  135. PGM_P const msg_iteration = GET_TEXT(MSG_ITERATION);
  136. const uint8_t iter_str_len = strlen_P(msg_iteration);
  137. #endif
  138. // Final z and iteration values will be used after breaking the loop
  139. float z_measured_min;
  140. uint8_t iteration = 0;
  141. bool err_break = false; // To break out of nested loops
  142. while (iteration < z_auto_align_iterations) {
  143. if (DEBUGGING(LEVELING)) DEBUG_ECHOLNPGM("> probing all positions.");
  144. const int iter = iteration + 1;
  145. SERIAL_ECHOLNPAIR("\nG34 Iteration: ", iter);
  146. #if HAS_DISPLAY
  147. char str[iter_str_len + 2 + 1];
  148. sprintf_P(str, msg_iteration, iter);
  149. ui.set_status(str);
  150. #endif
  151. // Initialize minimum value
  152. z_measured_min = 100000.0f;
  153. float z_measured_max = -100000.0f;
  154. // Probe all positions (one per Z-Stepper)
  155. LOOP_L_N(i, NUM_Z_STEPPER_DRIVERS) {
  156. // iteration odd/even --> downward / upward stepper sequence
  157. const uint8_t iprobe = (iteration & 1) ? NUM_Z_STEPPER_DRIVERS - 1 - i : i;
  158. // Safe clearance even on an incline
  159. if ((iteration == 0 || i > 0) && z_probe > current_position.z) do_blocking_move_to_z(z_probe);
  160. if (DEBUGGING(LEVELING))
  161. DEBUG_ECHOLNPAIR_P(PSTR("Probing X"), z_stepper_align.xy[iprobe].x, SP_Y_STR, z_stepper_align.xy[iprobe].y);
  162. // Probe a Z height for each stepper.
  163. // Probing sanity check is disabled, as it would trigger even in normal cases because
  164. // current_position.z has been manually altered in the "dirty trick" above.
  165. const float z_probed_height = probe.probe_at_point(z_stepper_align.xy[iprobe], raise_after, 0, true, false);
  166. if (isnan(z_probed_height)) {
  167. SERIAL_ECHOLNPGM("Probing failed");
  168. LCD_MESSAGEPGM(MSG_LCD_PROBING_FAILED);
  169. err_break = true;
  170. break;
  171. }
  172. // Add height to each value, to provide a more useful target height for
  173. // the next iteration of probing. This allows adjustments to be made away from the bed.
  174. z_measured[iprobe] = z_probed_height + Z_CLEARANCE_BETWEEN_PROBES;
  175. if (DEBUGGING(LEVELING)) DEBUG_ECHOLNPAIR("> Z", int(iprobe + 1), " measured position is ", z_measured[iprobe]);
  176. // Remember the minimum measurement to calculate the correction later on
  177. z_measured_min = _MIN(z_measured_min, z_measured[iprobe]);
  178. z_measured_max = _MAX(z_measured_max, z_measured[iprobe]);
  179. } // for (i)
  180. if (err_break) break;
  181. // Adapt the next probe clearance height based on the new measurements.
  182. // Safe_height = lowest distance to bed (= highest measurement) plus highest measured misalignment.
  183. z_maxdiff = z_measured_max - z_measured_min;
  184. z_probe = Z_BASIC_CLEARANCE + z_measured_max + z_maxdiff;
  185. #if ENABLED(Z_STEPPER_ALIGN_KNOWN_STEPPER_POSITIONS)
  186. // Replace the initial values in z_measured with calculated heights at
  187. // each stepper position. This allows the adjustment algorithm to be
  188. // shared between both possible probing mechanisms.
  189. // This must be done after the next z_probe height is calculated, so that
  190. // the height is calculated from actual print area positions, and not
  191. // extrapolated motor movements.
  192. // Compute the least-squares fit for all probed points.
  193. // Calculate the Z position of each stepper and store it in z_measured.
  194. // This allows the actual adjustment logic to be shared by both algorithms.
  195. linear_fit_data lfd;
  196. incremental_LSF_reset(&lfd);
  197. LOOP_L_N(i, NUM_Z_STEPPER_DRIVERS) {
  198. SERIAL_ECHOLNPAIR("PROBEPT_", int(i), ": ", z_measured[i]);
  199. incremental_LSF(&lfd, z_stepper_align.xy[i], z_measured[i]);
  200. }
  201. finish_incremental_LSF(&lfd);
  202. z_measured_min = 100000.0f;
  203. LOOP_L_N(i, NUM_Z_STEPPER_DRIVERS) {
  204. z_measured[i] = -(lfd.A * z_stepper_align.stepper_xy[i].x + lfd.B * z_stepper_align.stepper_xy[i].y + lfd.D);
  205. z_measured_min = _MIN(z_measured_min, z_measured[i]);
  206. }
  207. SERIAL_ECHOLNPAIR("CALCULATED STEPPER POSITIONS: Z1=", z_measured[0], " Z2=", z_measured[1], " Z3=", z_measured[2]);
  208. #endif
  209. SERIAL_ECHOLNPAIR("\n"
  210. "DIFFERENCE Z1-Z2=", ABS(z_measured[0] - z_measured[1])
  211. #if NUM_Z_STEPPER_DRIVERS == 3
  212. , " Z2-Z3=", ABS(z_measured[1] - z_measured[2])
  213. , " Z3-Z1=", ABS(z_measured[2] - z_measured[0])
  214. #endif
  215. );
  216. #if HAS_DISPLAY
  217. char fstr1[10];
  218. #if NUM_Z_STEPPER_DRIVERS == 2
  219. char msg[6 + (6 + 5) * 1 + 1];
  220. #else
  221. char msg[6 + (6 + 5) * 3 + 1], fstr2[10], fstr3[10];
  222. #endif
  223. sprintf_P(msg,
  224. PSTR("Diffs Z1-Z2=%s"
  225. #if NUM_Z_STEPPER_DRIVERS == 3
  226. " Z2-Z3=%s"
  227. " Z3-Z1=%s"
  228. #endif
  229. ), dtostrf(ABS(z_measured[0] - z_measured[1]), 1, 3, fstr1)
  230. #if NUM_Z_STEPPER_DRIVERS == 3
  231. , dtostrf(ABS(z_measured[1] - z_measured[2]), 1, 3, fstr2)
  232. , dtostrf(ABS(z_measured[2] - z_measured[0]), 1, 3, fstr3)
  233. #endif
  234. );
  235. ui.set_status(msg);
  236. #endif
  237. auto decreasing_accuracy = [](const float &v1, const float &v2){
  238. if (v1 < v2 * 0.7f) {
  239. SERIAL_ECHOLNPGM("Decreasing Accuracy Detected.");
  240. LCD_MESSAGEPGM(MSG_DECREASING_ACCURACY);
  241. return true;
  242. }
  243. return false;
  244. };
  245. #if ENABLED(Z_STEPPER_ALIGN_KNOWN_STEPPER_POSITIONS)
  246. // Check if the applied corrections go in the correct direction.
  247. // Calculate the sum of the absolute deviations from the mean of the probe measurements.
  248. // Compare to the last iteration to ensure it's getting better.
  249. // Calculate mean value as a reference
  250. float z_measured_mean = 0.0f;
  251. LOOP_L_N(zstepper, NUM_Z_STEPPER_DRIVERS) z_measured_mean += z_measured[zstepper];
  252. z_measured_mean /= NUM_Z_STEPPER_DRIVERS;
  253. // Calculate the sum of the absolute deviations from the mean value
  254. float z_align_level_indicator = 0.0f;
  255. LOOP_L_N(zstepper, NUM_Z_STEPPER_DRIVERS)
  256. z_align_level_indicator += ABS(z_measured[zstepper] - z_measured_mean);
  257. // If it's getting worse, stop and throw an error
  258. err_break = decreasing_accuracy(last_z_align_level_indicator, z_align_level_indicator);
  259. if (err_break) break;
  260. last_z_align_level_indicator = z_align_level_indicator;
  261. #endif
  262. // The following correction actions are to be enabled for select Z-steppers only
  263. stepper.set_separate_multi_axis(true);
  264. bool success_break = true;
  265. // Correct the individual stepper offsets
  266. LOOP_L_N(zstepper, NUM_Z_STEPPER_DRIVERS) {
  267. // Calculate current stepper move
  268. float z_align_move = z_measured[zstepper] - z_measured_min;
  269. const float z_align_abs = ABS(z_align_move);
  270. #if DISABLED(Z_STEPPER_ALIGN_KNOWN_STEPPER_POSITIONS)
  271. // Optimize one iteration's correction based on the first measurements
  272. if (z_align_abs) amplification = (iteration == 1) ? _MIN(last_z_align_move[zstepper] / z_align_abs, 2.0f) : z_auto_align_amplification;
  273. // Check for less accuracy compared to last move
  274. if (decreasing_accuracy(last_z_align_move[zstepper], z_align_abs)) {
  275. if (DEBUGGING(LEVELING)) DEBUG_ECHOLNPAIR("> Z", int(zstepper + 1), " last_z_align_move = ", last_z_align_move[zstepper]);
  276. if (DEBUGGING(LEVELING)) DEBUG_ECHOLNPAIR("> Z", int(zstepper + 1), " z_align_abs = ", z_align_abs);
  277. adjustment_reverse = !adjustment_reverse;
  278. }
  279. // Remember the alignment for the next iteration, but only if steppers move,
  280. // otherwise it would be just zero (in case this stepper was at z_measured_min already)
  281. if (z_align_abs > 0) last_z_align_move[zstepper] = z_align_abs;
  282. #endif
  283. // Stop early if all measured points achieve accuracy target
  284. if (z_align_abs > z_auto_align_accuracy) success_break = false;
  285. if (DEBUGGING(LEVELING)) DEBUG_ECHOLNPAIR("> Z", int(zstepper + 1), " corrected by ", z_align_move);
  286. // Lock all steppers except one
  287. stepper.set_all_z_lock(true, zstepper);
  288. #if DISABLED(Z_STEPPER_ALIGN_KNOWN_STEPPER_POSITIONS)
  289. // Decreasing accuracy was detected so move was inverted.
  290. // Will match reversed Z steppers on dual steppers. Triple will need more work to map.
  291. if (adjustment_reverse) {
  292. z_align_move = -z_align_move;
  293. if (DEBUGGING(LEVELING)) DEBUG_ECHOLNPAIR("> Z", int(zstepper + 1), " correction reversed to ", z_align_move);
  294. }
  295. #endif
  296. // Do a move to correct part of the misalignment for the current stepper
  297. do_blocking_move_to_z(amplification * z_align_move + current_position.z);
  298. } // for (zstepper)
  299. // Back to normal stepper operations
  300. stepper.set_all_z_lock(false);
  301. stepper.set_separate_multi_axis(false);
  302. if (err_break) break;
  303. if (success_break) {
  304. SERIAL_ECHOLNPGM("Target accuracy achieved.");
  305. LCD_MESSAGEPGM(MSG_ACCURACY_ACHIEVED);
  306. break;
  307. }
  308. iteration++;
  309. } // while (iteration < z_auto_align_iterations)
  310. if (err_break)
  311. SERIAL_ECHOLNPGM("G34 aborted.");
  312. else {
  313. SERIAL_ECHOLNPAIR("Did ", int(iteration + (iteration != z_auto_align_iterations)), " of ", int(z_auto_align_iterations));
  314. SERIAL_ECHOLNPAIR_F("Accuracy: ", z_maxdiff);
  315. }
  316. // Stow the probe, as the last call to probe.probe_at_point(...) left
  317. // the probe deployed if it was successful.
  318. probe.stow();
  319. #if ENABLED(HOME_AFTER_G34)
  320. // After this operation the z position needs correction
  321. set_axis_never_homed(Z_AXIS);
  322. // Home Z after the alignment procedure
  323. process_subcommands_now_P(PSTR("G28Z"));
  324. #else
  325. // Use the probed height from the last iteration to determine the Z height.
  326. // z_measured_min is used, because all steppers are aligned to z_measured_min.
  327. // Ideally, this would be equal to the 'z_probe * 0.5f' which was added earlier.
  328. current_position.z -= z_measured_min - (float)Z_CLEARANCE_BETWEEN_PROBES;
  329. sync_plan_position();
  330. #endif
  331. // Restore the active tool after homing
  332. TERN_(HAS_MULTI_HOTEND, tool_change(old_tool_index, DISABLED(PARKING_EXTRUDER))); // Fetch previous tool for parking extruder
  333. #if BOTH(HAS_LEVELING, RESTORE_LEVELING_AFTER_G34)
  334. set_bed_leveling_enabled(leveling_was_active);
  335. #endif
  336. }while(0);
  337. }
  338. /**
  339. * M422: Set a Z-Stepper automatic alignment XY point.
  340. * Use repeatedly to set multiple points.
  341. *
  342. * S<index> : Index of the probe point to set
  343. *
  344. * With Z_STEPPER_ALIGN_KNOWN_STEPPER_POSITIONS:
  345. * W<index> : Index of the Z stepper position to set
  346. * The W and S parameters may not be combined.
  347. *
  348. * S and W require an X and/or Y parameter
  349. * X<pos> : X position to set (Unchanged if omitted)
  350. * Y<pos> : Y position to set (Unchanged if omitted)
  351. *
  352. * R : Recalculate points based on current probe offsets
  353. */
  354. void GcodeSuite::M422() {
  355. if (parser.seen('R')) {
  356. z_stepper_align.reset_to_default();
  357. return;
  358. }
  359. if (!parser.seen_any()) {
  360. LOOP_L_N(i, NUM_Z_STEPPER_DRIVERS)
  361. SERIAL_ECHOLNPAIR_P(PSTR("M422 S"), int(i + 1), SP_X_STR, z_stepper_align.xy[i].x, SP_Y_STR, z_stepper_align.xy[i].y);
  362. #if ENABLED(Z_STEPPER_ALIGN_KNOWN_STEPPER_POSITIONS)
  363. LOOP_L_N(i, NUM_Z_STEPPER_DRIVERS)
  364. SERIAL_ECHOLNPAIR_P(PSTR("M422 W"), int(i + 1), SP_X_STR, z_stepper_align.stepper_xy[i].x, SP_Y_STR, z_stepper_align.stepper_xy[i].y);
  365. #endif
  366. return;
  367. }
  368. const bool is_probe_point = parser.seen('S');
  369. #if ENABLED(Z_STEPPER_ALIGN_KNOWN_STEPPER_POSITIONS)
  370. if (is_probe_point && parser.seen('W')) {
  371. SERIAL_ECHOLNPGM("?(S) and (W) may not be combined.");
  372. return;
  373. }
  374. #endif
  375. xy_pos_t *pos_dest = (
  376. #if ENABLED(Z_STEPPER_ALIGN_KNOWN_STEPPER_POSITIONS)
  377. !is_probe_point ? z_stepper_align.stepper_xy :
  378. #endif
  379. z_stepper_align.xy
  380. );
  381. if (!is_probe_point
  382. #if ENABLED(Z_STEPPER_ALIGN_KNOWN_STEPPER_POSITIONS)
  383. && !parser.seen('W')
  384. #endif
  385. ) {
  386. SERIAL_ECHOLNPGM(
  387. #if ENABLED(Z_STEPPER_ALIGN_KNOWN_STEPPER_POSITIONS)
  388. "?(S) or (W) is required."
  389. #else
  390. "?(S) is required."
  391. #endif
  392. );
  393. return;
  394. }
  395. // Get the Probe Position Index or Z Stepper Index
  396. int8_t position_index;
  397. if (is_probe_point) {
  398. position_index = parser.intval('S') - 1;
  399. if (!WITHIN(position_index, 0, int8_t(NUM_Z_STEPPER_DRIVERS) - 1)) {
  400. SERIAL_ECHOLNPGM("?(S) Z-ProbePosition index invalid.");
  401. return;
  402. }
  403. }
  404. else {
  405. #if ENABLED(Z_STEPPER_ALIGN_KNOWN_STEPPER_POSITIONS)
  406. position_index = parser.intval('W') - 1;
  407. if (!WITHIN(position_index, 0, NUM_Z_STEPPER_DRIVERS - 1)) {
  408. SERIAL_ECHOLNPGM("?(W) Z-Stepper index invalid.");
  409. return;
  410. }
  411. #endif
  412. }
  413. const xy_pos_t pos = {
  414. parser.floatval('X', pos_dest[position_index].x),
  415. parser.floatval('Y', pos_dest[position_index].y)
  416. };
  417. if (is_probe_point) {
  418. if (!probe.can_reach(pos.x, Y_CENTER)) {
  419. SERIAL_ECHOLNPGM("?(X) out of bounds.");
  420. return;
  421. }
  422. if (!probe.can_reach(pos)) {
  423. SERIAL_ECHOLNPGM("?(Y) out of bounds.");
  424. return;
  425. }
  426. }
  427. pos_dest[position_index] = pos;
  428. }
  429. #endif // Z_STEPPER_AUTO_ALIGN