My Marlin configs for Fabrikator Mini and CTC i3 Pro B
Ви не можете вибрати більше 25 тем Теми мають розпочинатися з літери або цифри, можуть містити дефіси (-) і не повинні перевищувати 35 символів.

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340
  1. /**
  2. * Marlin 3D Printer Firmware
  3. * Copyright (c) 2020 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
  4. *
  5. * Based on Sprinter and grbl.
  6. * Copyright (c) 2011 Camiel Gubbels / Erik van der Zalm
  7. *
  8. * This program is free software: you can redistribute it and/or modify
  9. * it under the terms of the GNU General Public License as published by
  10. * the Free Software Foundation, either version 3 of the License, or
  11. * (at your option) any later version.
  12. *
  13. * This program is distributed in the hope that it will be useful,
  14. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  16. * GNU General Public License for more details.
  17. *
  18. * You should have received a copy of the GNU General Public License
  19. * along with this program. If not, see <https://www.gnu.org/licenses/>.
  20. *
  21. */
  22. #include "../../inc/MarlinConfig.h"
  23. #if ENABLED(ARC_SUPPORT)
  24. #include "../gcode.h"
  25. #include "../../module/motion.h"
  26. #include "../../module/planner.h"
  27. #include "../../module/temperature.h"
  28. #if ENABLED(DELTA)
  29. #include "../../module/delta.h"
  30. #elif ENABLED(SCARA)
  31. #include "../../module/scara.h"
  32. #endif
  33. #if N_ARC_CORRECTION < 1
  34. #undef N_ARC_CORRECTION
  35. #define N_ARC_CORRECTION 1
  36. #endif
  37. /**
  38. * Plan an arc in 2 dimensions
  39. *
  40. * The arc is approximated by generating many small linear segments.
  41. * The length of each segment is configured in MM_PER_ARC_SEGMENT (Default 1mm)
  42. * Arcs should only be made relatively large (over 5mm), as larger arcs with
  43. * larger segments will tend to be more efficient. Your slicer should have
  44. * options for G2/G3 arc generation. In future these options may be GCode tunable.
  45. */
  46. void plan_arc(
  47. const xyze_pos_t &cart, // Destination position
  48. const ab_float_t &offset, // Center of rotation relative to current_position
  49. const uint8_t clockwise // Clockwise?
  50. ) {
  51. #if ENABLED(CNC_WORKSPACE_PLANES)
  52. AxisEnum p_axis, q_axis, l_axis;
  53. switch (gcode.workspace_plane) {
  54. default:
  55. case GcodeSuite::PLANE_XY: p_axis = X_AXIS; q_axis = Y_AXIS; l_axis = Z_AXIS; break;
  56. case GcodeSuite::PLANE_YZ: p_axis = Y_AXIS; q_axis = Z_AXIS; l_axis = X_AXIS; break;
  57. case GcodeSuite::PLANE_ZX: p_axis = Z_AXIS; q_axis = X_AXIS; l_axis = Y_AXIS; break;
  58. }
  59. #else
  60. constexpr AxisEnum p_axis = X_AXIS, q_axis = Y_AXIS, l_axis = Z_AXIS;
  61. #endif
  62. // Radius vector from center to current location
  63. ab_float_t rvec = -offset;
  64. const float radius = HYPOT(rvec.a, rvec.b),
  65. center_P = current_position[p_axis] - rvec.a,
  66. center_Q = current_position[q_axis] - rvec.b,
  67. rt_X = cart[p_axis] - center_P,
  68. rt_Y = cart[q_axis] - center_Q,
  69. start_L = current_position[l_axis],
  70. linear_travel = cart[l_axis] - start_L,
  71. extruder_travel = cart.e - current_position.e;
  72. // CCW angle of rotation between position and target from the circle center. Only one atan2() trig computation required.
  73. float angular_travel = ATAN2(rvec.a * rt_Y - rvec.b * rt_X, rvec.a * rt_X + rvec.b * rt_Y);
  74. if (angular_travel < 0) angular_travel += RADIANS(360);
  75. #ifdef MIN_ARC_SEGMENTS
  76. uint16_t min_segments = CEIL((MIN_ARC_SEGMENTS) * (angular_travel / RADIANS(360)));
  77. NOLESS(min_segments, 1U);
  78. #else
  79. constexpr uint16_t min_segments = 1;
  80. #endif
  81. if (clockwise) angular_travel -= RADIANS(360);
  82. // Make a circle if the angular rotation is 0 and the target is current position
  83. if (angular_travel == 0 && current_position[p_axis] == cart[p_axis] && current_position[q_axis] == cart[q_axis]) {
  84. angular_travel = RADIANS(360);
  85. #ifdef MIN_ARC_SEGMENTS
  86. min_segments = MIN_ARC_SEGMENTS;
  87. #endif
  88. }
  89. const float flat_mm = radius * angular_travel,
  90. mm_of_travel = linear_travel ? HYPOT(flat_mm, linear_travel) : ABS(flat_mm);
  91. if (mm_of_travel < 0.001f) return;
  92. const feedRate_t scaled_fr_mm_s = MMS_SCALED(feedrate_mm_s);
  93. // Start with a nominal segment length
  94. float seg_length = (
  95. #ifdef ARC_SEGMENTS_PER_R
  96. constrain(MM_PER_ARC_SEGMENT * radius, MM_PER_ARC_SEGMENT, ARC_SEGMENTS_PER_R)
  97. #elif ARC_SEGMENTS_PER_SEC
  98. _MAX(scaled_fr_mm_s * RECIPROCAL(ARC_SEGMENTS_PER_SEC), MM_PER_ARC_SEGMENT)
  99. #else
  100. MM_PER_ARC_SEGMENT
  101. #endif
  102. );
  103. // Divide total travel by nominal segment length
  104. uint16_t segments = FLOOR(mm_of_travel / seg_length);
  105. NOLESS(segments, min_segments); // At least some segments
  106. seg_length = mm_of_travel / segments;
  107. /**
  108. * Vector rotation by transformation matrix: r is the original vector, r_T is the rotated vector,
  109. * and phi is the angle of rotation. Based on the solution approach by Jens Geisler.
  110. * r_T = [cos(phi) -sin(phi);
  111. * sin(phi) cos(phi)] * r ;
  112. *
  113. * For arc generation, the center of the circle is the axis of rotation and the radius vector is
  114. * defined from the circle center to the initial position. Each line segment is formed by successive
  115. * vector rotations. This requires only two cos() and sin() computations to form the rotation
  116. * matrix for the duration of the entire arc. Error may accumulate from numerical round-off, since
  117. * all double numbers are single precision on the Arduino. (True double precision will not have
  118. * round off issues for CNC applications.) Single precision error can accumulate to be greater than
  119. * tool precision in some cases. Therefore, arc path correction is implemented.
  120. *
  121. * Small angle approximation may be used to reduce computation overhead further. This approximation
  122. * holds for everything, but very small circles and large MM_PER_ARC_SEGMENT values. In other words,
  123. * theta_per_segment would need to be greater than 0.1 rad and N_ARC_CORRECTION would need to be large
  124. * to cause an appreciable drift error. N_ARC_CORRECTION~=25 is more than small enough to correct for
  125. * numerical drift error. N_ARC_CORRECTION may be on the order a hundred(s) before error becomes an
  126. * issue for CNC machines with the single precision Arduino calculations.
  127. *
  128. * This approximation also allows plan_arc to immediately insert a line segment into the planner
  129. * without the initial overhead of computing cos() or sin(). By the time the arc needs to be applied
  130. * a correction, the planner should have caught up to the lag caused by the initial plan_arc overhead.
  131. * This is important when there are successive arc motions.
  132. */
  133. // Vector rotation matrix values
  134. xyze_pos_t raw;
  135. const float theta_per_segment = angular_travel / segments,
  136. linear_per_segment = linear_travel / segments,
  137. extruder_per_segment = extruder_travel / segments,
  138. sq_theta_per_segment = sq(theta_per_segment),
  139. sin_T = theta_per_segment - sq_theta_per_segment*theta_per_segment/6,
  140. cos_T = 1 - 0.5f * sq_theta_per_segment; // Small angle approximation
  141. // Initialize the linear axis
  142. raw[l_axis] = current_position[l_axis];
  143. // Initialize the extruder axis
  144. raw.e = current_position.e;
  145. #if ENABLED(SCARA_FEEDRATE_SCALING)
  146. const float inv_duration = scaled_fr_mm_s / seg_length;
  147. #endif
  148. millis_t next_idle_ms = millis() + 200UL;
  149. #if N_ARC_CORRECTION > 1
  150. int8_t arc_recalc_count = N_ARC_CORRECTION;
  151. #endif
  152. for (uint16_t i = 1; i < segments; i++) { // Iterate (segments-1) times
  153. thermalManager.manage_heater();
  154. if (ELAPSED(millis(), next_idle_ms)) {
  155. next_idle_ms = millis() + 200UL;
  156. idle();
  157. }
  158. #if N_ARC_CORRECTION > 1
  159. if (--arc_recalc_count) {
  160. // Apply vector rotation matrix to previous rvec.a / 1
  161. const float r_new_Y = rvec.a * sin_T + rvec.b * cos_T;
  162. rvec.a = rvec.a * cos_T - rvec.b * sin_T;
  163. rvec.b = r_new_Y;
  164. }
  165. else
  166. #endif
  167. {
  168. #if N_ARC_CORRECTION > 1
  169. arc_recalc_count = N_ARC_CORRECTION;
  170. #endif
  171. // Arc correction to radius vector. Computed only every N_ARC_CORRECTION increments.
  172. // Compute exact location by applying transformation matrix from initial radius vector(=-offset).
  173. // To reduce stuttering, the sin and cos could be computed at different times.
  174. // For now, compute both at the same time.
  175. const float cos_Ti = cos(i * theta_per_segment), sin_Ti = sin(i * theta_per_segment);
  176. rvec.a = -offset[0] * cos_Ti + offset[1] * sin_Ti;
  177. rvec.b = -offset[0] * sin_Ti - offset[1] * cos_Ti;
  178. }
  179. // Update raw location
  180. raw[p_axis] = center_P + rvec.a;
  181. raw[q_axis] = center_Q + rvec.b;
  182. #if ENABLED(AUTO_BED_LEVELING_UBL)
  183. raw[l_axis] = start_L;
  184. UNUSED(linear_per_segment);
  185. #else
  186. raw[l_axis] += linear_per_segment;
  187. #endif
  188. raw.e += extruder_per_segment;
  189. apply_motion_limits(raw);
  190. #if HAS_LEVELING && !PLANNER_LEVELING
  191. planner.apply_leveling(raw);
  192. #endif
  193. if (!planner.buffer_line(raw, scaled_fr_mm_s, active_extruder, 0
  194. #if ENABLED(SCARA_FEEDRATE_SCALING)
  195. , inv_duration
  196. #endif
  197. )) break;
  198. }
  199. // Ensure last segment arrives at target location.
  200. raw = cart;
  201. TERN_(AUTO_BED_LEVELING_UBL, raw[l_axis] = start_L);
  202. apply_motion_limits(raw);
  203. #if HAS_LEVELING && !PLANNER_LEVELING
  204. planner.apply_leveling(raw);
  205. #endif
  206. planner.buffer_line(raw, scaled_fr_mm_s, active_extruder, 0
  207. #if ENABLED(SCARA_FEEDRATE_SCALING)
  208. , inv_duration
  209. #endif
  210. );
  211. TERN_(AUTO_BED_LEVELING_UBL, raw[l_axis] = start_L);
  212. current_position = raw;
  213. } // plan_arc
  214. /**
  215. * G2: Clockwise Arc
  216. * G3: Counterclockwise Arc
  217. *
  218. * This command has two forms: IJ-form (JK, KI) and R-form.
  219. *
  220. * - Depending on the current Workspace Plane orientation,
  221. * use parameters IJ/JK/KI to specify the XY/YZ/ZX offsets.
  222. * At least one of the IJ/JK/KI parameters is required.
  223. * XY/YZ/ZX can be omitted to do a complete circle.
  224. * The given XY/YZ/ZX is not error-checked. The arc ends
  225. * based on the angle of the destination.
  226. * Mixing IJ/JK/KI with R will throw an error.
  227. *
  228. * - R specifies the radius. X or Y (Y or Z / Z or X) is required.
  229. * Omitting both XY/YZ/ZX will throw an error.
  230. * XY/YZ/ZX must differ from the current XY/YZ/ZX.
  231. * Mixing R with IJ/JK/KI will throw an error.
  232. *
  233. * - P specifies the number of full circles to do
  234. * before the specified arc move.
  235. *
  236. * Examples:
  237. *
  238. * G2 I10 ; CW circle centered at X+10
  239. * G3 X20 Y12 R14 ; CCW circle with r=14 ending at X20 Y12
  240. */
  241. void GcodeSuite::G2_G3(const bool clockwise) {
  242. if (MOTION_CONDITIONS) {
  243. #if ENABLED(SF_ARC_FIX)
  244. const bool relative_mode_backup = relative_mode;
  245. relative_mode = true;
  246. #endif
  247. get_destination_from_command(); // Get X Y Z E F (and set cutter power)
  248. TERN_(SF_ARC_FIX, relative_mode = relative_mode_backup);
  249. ab_float_t arc_offset = { 0, 0 };
  250. if (parser.seenval('R')) {
  251. const float r = parser.value_linear_units();
  252. if (r) {
  253. const xy_pos_t p1 = current_position, p2 = destination;
  254. if (p1 != p2) {
  255. const xy_pos_t d2 = (p2 - p1) * 0.5f; // XY vector to midpoint of move from current
  256. const float e = clockwise ^ (r < 0) ? -1 : 1, // clockwise -1/1, counterclockwise 1/-1
  257. len = d2.magnitude(), // Distance to mid-point of move from current
  258. h2 = (r - len) * (r + len), // factored to reduce rounding error
  259. h = (h2 >= 0) ? SQRT(h2) : 0.0f; // Distance to the arc pivot-point from midpoint
  260. const xy_pos_t s = { -d2.y, d2.x }; // Perpendicular bisector. (Divide by len for unit vector.)
  261. arc_offset = d2 + s / len * e * h; // The calculated offset (mid-point if |r| <= len)
  262. }
  263. }
  264. }
  265. else {
  266. #if ENABLED(CNC_WORKSPACE_PLANES)
  267. char achar, bchar;
  268. switch (gcode.workspace_plane) {
  269. default:
  270. case GcodeSuite::PLANE_XY: achar = 'I'; bchar = 'J'; break;
  271. case GcodeSuite::PLANE_YZ: achar = 'J'; bchar = 'K'; break;
  272. case GcodeSuite::PLANE_ZX: achar = 'K'; bchar = 'I'; break;
  273. }
  274. #else
  275. constexpr char achar = 'I', bchar = 'J';
  276. #endif
  277. if (parser.seenval(achar)) arc_offset.a = parser.value_linear_units();
  278. if (parser.seenval(bchar)) arc_offset.b = parser.value_linear_units();
  279. }
  280. if (arc_offset) {
  281. #if ENABLED(ARC_P_CIRCLES)
  282. // P indicates number of circles to do
  283. int8_t circles_to_do = parser.byteval('P');
  284. if (!WITHIN(circles_to_do, 0, 100))
  285. SERIAL_ERROR_MSG(STR_ERR_ARC_ARGS);
  286. while (circles_to_do--)
  287. plan_arc(current_position, arc_offset, clockwise);
  288. #endif
  289. // Send the arc to the planner
  290. plan_arc(destination, arc_offset, clockwise);
  291. reset_stepper_timeout();
  292. }
  293. else
  294. SERIAL_ERROR_MSG(STR_ERR_ARC_ARGS);
  295. }
  296. }
  297. #endif // ARC_SUPPORT