My Marlin configs for Fabrikator Mini and CTC i3 Pro B
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

motion.cpp 62KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859
  1. /**
  2. * Marlin 3D Printer Firmware
  3. * Copyright (c) 2020 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
  4. *
  5. * Based on Sprinter and grbl.
  6. * Copyright (c) 2011 Camiel Gubbels / Erik van der Zalm
  7. *
  8. * This program is free software: you can redistribute it and/or modify
  9. * it under the terms of the GNU General Public License as published by
  10. * the Free Software Foundation, either version 3 of the License, or
  11. * (at your option) any later version.
  12. *
  13. * This program is distributed in the hope that it will be useful,
  14. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  16. * GNU General Public License for more details.
  17. *
  18. * You should have received a copy of the GNU General Public License
  19. * along with this program. If not, see <https://www.gnu.org/licenses/>.
  20. *
  21. */
  22. /**
  23. * motion.cpp
  24. */
  25. #include "motion.h"
  26. #include "endstops.h"
  27. #include "stepper.h"
  28. #include "planner.h"
  29. #include "temperature.h"
  30. #include "../gcode/gcode.h"
  31. #include "../inc/MarlinConfig.h"
  32. #if IS_SCARA
  33. #include "../libs/buzzer.h"
  34. #include "../lcd/ultralcd.h"
  35. #endif
  36. #if HAS_BED_PROBE
  37. #include "probe.h"
  38. #endif
  39. #if HAS_LEVELING
  40. #include "../feature/bedlevel/bedlevel.h"
  41. #endif
  42. #if ENABLED(BLTOUCH)
  43. #include "../feature/bltouch.h"
  44. #endif
  45. #if HAS_DISPLAY
  46. #include "../lcd/ultralcd.h"
  47. #endif
  48. #if HAS_FILAMENT_SENSOR
  49. #include "../feature/runout.h"
  50. #endif
  51. #if ENABLED(SENSORLESS_HOMING)
  52. #include "../feature/tmc_util.h"
  53. #endif
  54. #if ENABLED(FWRETRACT)
  55. #include "../feature/fwretract.h"
  56. #endif
  57. #if ENABLED(BABYSTEP_DISPLAY_TOTAL)
  58. #include "../feature/babystep.h"
  59. #endif
  60. #define DEBUG_OUT ENABLED(DEBUG_LEVELING_FEATURE)
  61. #include "../core/debug_out.h"
  62. /**
  63. * axis_homed
  64. * Flags that each linear axis was homed.
  65. * XYZ on cartesian, ABC on delta, ABZ on SCARA.
  66. *
  67. * axis_known_position
  68. * Flags that the position is known in each linear axis. Set when homed.
  69. * Cleared whenever a stepper powers off, potentially losing its position.
  70. */
  71. uint8_t axis_homed, axis_known_position; // = 0
  72. // Relative Mode. Enable with G91, disable with G90.
  73. bool relative_mode; // = false;
  74. /**
  75. * Cartesian Current Position
  76. * Used to track the native machine position as moves are queued.
  77. * Used by 'line_to_current_position' to do a move after changing it.
  78. * Used by 'sync_plan_position' to update 'planner.position'.
  79. */
  80. xyze_pos_t current_position = { X_HOME_POS, Y_HOME_POS, Z_HOME_POS };
  81. /**
  82. * Cartesian Destination
  83. * The destination for a move, filled in by G-code movement commands,
  84. * and expected by functions like 'prepare_line_to_destination'.
  85. * G-codes can set destination using 'get_destination_from_command'
  86. */
  87. xyze_pos_t destination; // {0}
  88. // G60/G61 Position Save and Return
  89. #if SAVED_POSITIONS
  90. uint8_t saved_slots[(SAVED_POSITIONS + 7) >> 3];
  91. xyz_pos_t stored_position[SAVED_POSITIONS];
  92. #endif
  93. // The active extruder (tool). Set with T<extruder> command.
  94. #if HAS_MULTI_EXTRUDER
  95. uint8_t active_extruder = 0; // = 0
  96. #endif
  97. #if ENABLED(LCD_SHOW_E_TOTAL)
  98. float e_move_accumulator; // = 0
  99. #endif
  100. // Extruder offsets
  101. #if HAS_HOTEND_OFFSET
  102. xyz_pos_t hotend_offset[HOTENDS]; // Initialized by settings.load()
  103. void reset_hotend_offsets() {
  104. constexpr float tmp[XYZ][HOTENDS] = { HOTEND_OFFSET_X, HOTEND_OFFSET_Y, HOTEND_OFFSET_Z };
  105. static_assert(
  106. !tmp[X_AXIS][0] && !tmp[Y_AXIS][0] && !tmp[Z_AXIS][0],
  107. "Offsets for the first hotend must be 0.0."
  108. );
  109. // Transpose from [XYZ][HOTENDS] to [HOTENDS][XYZ]
  110. HOTEND_LOOP() LOOP_XYZ(a) hotend_offset[e][a] = tmp[a][e];
  111. #if ENABLED(DUAL_X_CARRIAGE)
  112. hotend_offset[1].x = _MAX(X2_HOME_POS, X2_MAX_POS);
  113. #endif
  114. }
  115. #endif
  116. // The feedrate for the current move, often used as the default if
  117. // no other feedrate is specified. Overridden for special moves.
  118. // Set by the last G0 through G5 command's "F" parameter.
  119. // Functions that override this for custom moves *must always* restore it!
  120. feedRate_t feedrate_mm_s = MMM_TO_MMS(1500);
  121. int16_t feedrate_percentage = 100;
  122. // Homing feedrate is const progmem - compare to constexpr in the header
  123. const feedRate_t homing_feedrate_mm_s[XYZ] PROGMEM = {
  124. #if ENABLED(DELTA)
  125. MMM_TO_MMS(HOMING_FEEDRATE_Z), MMM_TO_MMS(HOMING_FEEDRATE_Z),
  126. #else
  127. MMM_TO_MMS(HOMING_FEEDRATE_XY), MMM_TO_MMS(HOMING_FEEDRATE_XY),
  128. #endif
  129. MMM_TO_MMS(HOMING_FEEDRATE_Z)
  130. };
  131. // Cartesian conversion result goes here:
  132. xyz_pos_t cartes;
  133. #if IS_KINEMATIC
  134. abc_pos_t delta;
  135. #if HAS_SCARA_OFFSET
  136. abc_pos_t scara_home_offset;
  137. #endif
  138. #if HAS_SOFTWARE_ENDSTOPS
  139. float delta_max_radius, delta_max_radius_2;
  140. #elif IS_SCARA
  141. constexpr float delta_max_radius = SCARA_PRINTABLE_RADIUS,
  142. delta_max_radius_2 = sq(SCARA_PRINTABLE_RADIUS);
  143. #else // DELTA
  144. constexpr float delta_max_radius = DELTA_PRINTABLE_RADIUS,
  145. delta_max_radius_2 = sq(DELTA_PRINTABLE_RADIUS);
  146. #endif
  147. #endif
  148. /**
  149. * The workspace can be offset by some commands, or
  150. * these offsets may be omitted to save on computation.
  151. */
  152. #if HAS_POSITION_SHIFT
  153. // The distance that XYZ has been offset by G92. Reset by G28.
  154. xyz_pos_t position_shift{0};
  155. #endif
  156. #if HAS_HOME_OFFSET
  157. // This offset is added to the configured home position.
  158. // Set by M206, M428, or menu item. Saved to EEPROM.
  159. xyz_pos_t home_offset{0};
  160. #endif
  161. #if HAS_HOME_OFFSET && HAS_POSITION_SHIFT
  162. // The above two are combined to save on computes
  163. xyz_pos_t workspace_offset{0};
  164. #endif
  165. #if HAS_ABL_NOT_UBL
  166. float xy_probe_feedrate_mm_s = MMM_TO_MMS(XY_PROBE_SPEED);
  167. #endif
  168. /**
  169. * Output the current position to serial
  170. */
  171. inline void report_more_positions() {
  172. stepper.report_positions();
  173. TERN_(IS_SCARA, scara_report_positions());
  174. }
  175. // Report the logical position for a given machine position
  176. inline void report_logical_position(const xyze_pos_t &rpos) {
  177. const xyze_pos_t lpos = rpos.asLogical();
  178. SERIAL_ECHOPAIR_P(X_LBL, lpos.x, SP_Y_LBL, lpos.y, SP_Z_LBL, lpos.z, SP_E_LBL, lpos.e);
  179. }
  180. // Report the real current position according to the steppers.
  181. // Forward kinematics and un-leveling are applied.
  182. void report_real_position() {
  183. get_cartesian_from_steppers();
  184. xyze_pos_t npos = cartes;
  185. npos.e = planner.get_axis_position_mm(E_AXIS);
  186. #if HAS_POSITION_MODIFIERS
  187. planner.unapply_modifiers(npos, true);
  188. #endif
  189. report_logical_position(npos);
  190. report_more_positions();
  191. }
  192. // Report the logical current position according to the most recent G-code command
  193. void report_current_position() {
  194. report_logical_position(current_position);
  195. report_more_positions();
  196. }
  197. /**
  198. * Report the logical current position according to the most recent G-code command.
  199. * The planner.position always corresponds to the last G-code too. This makes M114
  200. * suitable for debugging kinematics and leveling while avoiding planner sync that
  201. * definitively interrupts the printing flow.
  202. */
  203. void report_current_position_projected() {
  204. report_logical_position(current_position);
  205. stepper.report_a_position(planner.position);
  206. }
  207. /**
  208. * sync_plan_position
  209. *
  210. * Set the planner/stepper positions directly from current_position with
  211. * no kinematic translation. Used for homing axes and cartesian/core syncing.
  212. */
  213. void sync_plan_position() {
  214. if (DEBUGGING(LEVELING)) DEBUG_POS("sync_plan_position", current_position);
  215. planner.set_position_mm(current_position);
  216. }
  217. void sync_plan_position_e() { planner.set_e_position_mm(current_position.e); }
  218. /**
  219. * Get the stepper positions in the cartes[] array.
  220. * Forward kinematics are applied for DELTA and SCARA.
  221. *
  222. * The result is in the current coordinate space with
  223. * leveling applied. The coordinates need to be run through
  224. * unapply_leveling to obtain the "ideal" coordinates
  225. * suitable for current_position, etc.
  226. */
  227. void get_cartesian_from_steppers() {
  228. #if ENABLED(DELTA)
  229. forward_kinematics_DELTA(planner.get_axis_positions_mm());
  230. #else
  231. #if IS_SCARA
  232. forward_kinematics_SCARA(
  233. planner.get_axis_position_degrees(A_AXIS),
  234. planner.get_axis_position_degrees(B_AXIS)
  235. );
  236. #else
  237. cartes.set(planner.get_axis_position_mm(X_AXIS), planner.get_axis_position_mm(Y_AXIS));
  238. #endif
  239. cartes.z = planner.get_axis_position_mm(Z_AXIS);
  240. #endif
  241. }
  242. /**
  243. * Set the current_position for an axis based on
  244. * the stepper positions, removing any leveling that
  245. * may have been applied.
  246. *
  247. * To prevent small shifts in axis position always call
  248. * sync_plan_position after updating axes with this.
  249. *
  250. * To keep hosts in sync, always call report_current_position
  251. * after updating the current_position.
  252. */
  253. void set_current_from_steppers_for_axis(const AxisEnum axis) {
  254. get_cartesian_from_steppers();
  255. xyze_pos_t pos = cartes;
  256. pos.e = planner.get_axis_position_mm(E_AXIS);
  257. #if HAS_POSITION_MODIFIERS
  258. planner.unapply_modifiers(pos, true);
  259. #endif
  260. if (axis == ALL_AXES)
  261. current_position = pos;
  262. else
  263. current_position[axis] = pos[axis];
  264. }
  265. /**
  266. * Move the planner to the current position from wherever it last moved
  267. * (or from wherever it has been told it is located).
  268. */
  269. void line_to_current_position(const feedRate_t &fr_mm_s/*=feedrate_mm_s*/) {
  270. planner.buffer_line(current_position, fr_mm_s, active_extruder);
  271. }
  272. #if EXTRUDERS
  273. void unscaled_e_move(const float &length, const feedRate_t &fr_mm_s) {
  274. TERN_(HAS_FILAMENT_SENSOR, runout.reset());
  275. current_position.e += length / planner.e_factor[active_extruder];
  276. line_to_current_position(fr_mm_s);
  277. planner.synchronize();
  278. }
  279. #endif
  280. #if IS_KINEMATIC
  281. /**
  282. * Buffer a fast move without interpolation. Set current_position to destination
  283. */
  284. void prepare_fast_move_to_destination(const feedRate_t &scaled_fr_mm_s/*=MMS_SCALED(feedrate_mm_s)*/) {
  285. if (DEBUGGING(LEVELING)) DEBUG_POS("prepare_fast_move_to_destination", destination);
  286. #if UBL_SEGMENTED
  287. // UBL segmented line will do Z-only moves in single segment
  288. ubl.line_to_destination_segmented(scaled_fr_mm_s);
  289. #else
  290. if (current_position == destination) return;
  291. planner.buffer_line(destination, scaled_fr_mm_s, active_extruder);
  292. #endif
  293. current_position = destination;
  294. }
  295. #endif // IS_KINEMATIC
  296. /**
  297. * Do a fast or normal move to 'destination' with an optional FR.
  298. * - Move at normal speed regardless of feedrate percentage.
  299. * - Extrude the specified length regardless of flow percentage.
  300. */
  301. void _internal_move_to_destination(const feedRate_t &fr_mm_s/*=0.0f*/
  302. #if IS_KINEMATIC
  303. , const bool is_fast/*=false*/
  304. #endif
  305. ) {
  306. const feedRate_t old_feedrate = feedrate_mm_s;
  307. if (fr_mm_s) feedrate_mm_s = fr_mm_s;
  308. const uint16_t old_pct = feedrate_percentage;
  309. feedrate_percentage = 100;
  310. #if EXTRUDERS
  311. const float old_fac = planner.e_factor[active_extruder];
  312. planner.e_factor[active_extruder] = 1.0f;
  313. #endif
  314. #if IS_KINEMATIC
  315. if (is_fast)
  316. prepare_fast_move_to_destination();
  317. else
  318. #endif
  319. prepare_line_to_destination();
  320. feedrate_mm_s = old_feedrate;
  321. feedrate_percentage = old_pct;
  322. #if EXTRUDERS
  323. planner.e_factor[active_extruder] = old_fac;
  324. #endif
  325. }
  326. /**
  327. * Plan a move to (X, Y, Z) and set the current_position
  328. */
  329. void do_blocking_move_to(const float rx, const float ry, const float rz, const feedRate_t &fr_mm_s/*=0.0*/) {
  330. DEBUG_SECTION(log_move, "do_blocking_move_to", DEBUGGING(LEVELING));
  331. if (DEBUGGING(LEVELING)) DEBUG_XYZ("> ", rx, ry, rz);
  332. const feedRate_t z_feedrate = fr_mm_s ?: homing_feedrate(Z_AXIS),
  333. xy_feedrate = fr_mm_s ?: feedRate_t(XY_PROBE_FEEDRATE_MM_S);
  334. #if ENABLED(DELTA)
  335. if (!position_is_reachable(rx, ry)) return;
  336. REMEMBER(fr, feedrate_mm_s, xy_feedrate);
  337. destination = current_position; // sync destination at the start
  338. if (DEBUGGING(LEVELING)) DEBUG_POS("destination = current_position", destination);
  339. // when in the danger zone
  340. if (current_position.z > delta_clip_start_height) {
  341. if (rz > delta_clip_start_height) { // staying in the danger zone
  342. destination.set(rx, ry, rz); // move directly (uninterpolated)
  343. prepare_internal_fast_move_to_destination(); // set current_position from destination
  344. if (DEBUGGING(LEVELING)) DEBUG_POS("danger zone move", current_position);
  345. return;
  346. }
  347. destination.z = delta_clip_start_height;
  348. prepare_internal_fast_move_to_destination(); // set current_position from destination
  349. if (DEBUGGING(LEVELING)) DEBUG_POS("zone border move", current_position);
  350. }
  351. if (rz > current_position.z) { // raising?
  352. destination.z = rz;
  353. prepare_internal_fast_move_to_destination(z_feedrate); // set current_position from destination
  354. if (DEBUGGING(LEVELING)) DEBUG_POS("z raise move", current_position);
  355. }
  356. destination.set(rx, ry);
  357. prepare_internal_move_to_destination(); // set current_position from destination
  358. if (DEBUGGING(LEVELING)) DEBUG_POS("xy move", current_position);
  359. if (rz < current_position.z) { // lowering?
  360. destination.z = rz;
  361. prepare_internal_fast_move_to_destination(z_feedrate); // set current_position from destination
  362. if (DEBUGGING(LEVELING)) DEBUG_POS("z lower move", current_position);
  363. }
  364. #elif IS_SCARA
  365. if (!position_is_reachable(rx, ry)) return;
  366. destination = current_position;
  367. // If Z needs to raise, do it before moving XY
  368. if (destination.z < rz) {
  369. destination.z = rz;
  370. prepare_internal_fast_move_to_destination(z_feedrate);
  371. }
  372. destination.set(rx, ry);
  373. prepare_internal_fast_move_to_destination(xy_feedrate);
  374. // If Z needs to lower, do it after moving XY
  375. if (destination.z > rz) {
  376. destination.z = rz;
  377. prepare_internal_fast_move_to_destination(z_feedrate);
  378. }
  379. #else
  380. // If Z needs to raise, do it before moving XY
  381. if (current_position.z < rz) {
  382. current_position.z = rz;
  383. line_to_current_position(z_feedrate);
  384. }
  385. current_position.set(rx, ry);
  386. line_to_current_position(xy_feedrate);
  387. // If Z needs to lower, do it after moving XY
  388. if (current_position.z > rz) {
  389. current_position.z = rz;
  390. line_to_current_position(z_feedrate);
  391. }
  392. #endif
  393. planner.synchronize();
  394. }
  395. void do_blocking_move_to(const xy_pos_t &raw, const feedRate_t &fr_mm_s/*=0.0f*/) {
  396. do_blocking_move_to(raw.x, raw.y, current_position.z, fr_mm_s);
  397. }
  398. void do_blocking_move_to(const xyz_pos_t &raw, const feedRate_t &fr_mm_s/*=0.0f*/) {
  399. do_blocking_move_to(raw.x, raw.y, raw.z, fr_mm_s);
  400. }
  401. void do_blocking_move_to(const xyze_pos_t &raw, const feedRate_t &fr_mm_s/*=0.0f*/) {
  402. do_blocking_move_to(raw.x, raw.y, raw.z, fr_mm_s);
  403. }
  404. void do_blocking_move_to_x(const float &rx, const feedRate_t &fr_mm_s/*=0.0*/) {
  405. do_blocking_move_to(rx, current_position.y, current_position.z, fr_mm_s);
  406. }
  407. void do_blocking_move_to_y(const float &ry, const feedRate_t &fr_mm_s/*=0.0*/) {
  408. do_blocking_move_to(current_position.x, ry, current_position.z, fr_mm_s);
  409. }
  410. void do_blocking_move_to_z(const float &rz, const feedRate_t &fr_mm_s/*=0.0*/) {
  411. do_blocking_move_to_xy_z(current_position, rz, fr_mm_s);
  412. }
  413. void do_blocking_move_to_xy(const float &rx, const float &ry, const feedRate_t &fr_mm_s/*=0.0*/) {
  414. do_blocking_move_to(rx, ry, current_position.z, fr_mm_s);
  415. }
  416. void do_blocking_move_to_xy(const xy_pos_t &raw, const feedRate_t &fr_mm_s/*=0.0f*/) {
  417. do_blocking_move_to_xy(raw.x, raw.y, fr_mm_s);
  418. }
  419. void do_blocking_move_to_xy_z(const xy_pos_t &raw, const float &z, const feedRate_t &fr_mm_s/*=0.0f*/) {
  420. do_blocking_move_to(raw.x, raw.y, z, fr_mm_s);
  421. }
  422. void do_z_clearance(const float &zclear, const bool z_known/*=true*/, const bool raise_on_unknown/*=true*/, const bool lower_allowed/*=false*/) {
  423. const bool rel = raise_on_unknown && !z_known;
  424. float zdest = zclear + (rel ? current_position.z : 0.0f);
  425. if (!lower_allowed) NOLESS(zdest, current_position.z);
  426. do_blocking_move_to_z(_MIN(zdest, Z_MAX_POS), MMM_TO_MMS(TERN(HAS_BED_PROBE, Z_PROBE_SPEED_FAST, HOMING_FEEDRATE_Z)));
  427. }
  428. //
  429. // Prepare to do endstop or probe moves with custom feedrates.
  430. // - Save / restore current feedrate and multiplier
  431. //
  432. static float saved_feedrate_mm_s;
  433. static int16_t saved_feedrate_percentage;
  434. void remember_feedrate_and_scaling() {
  435. saved_feedrate_mm_s = feedrate_mm_s;
  436. saved_feedrate_percentage = feedrate_percentage;
  437. }
  438. void remember_feedrate_scaling_off() {
  439. remember_feedrate_and_scaling();
  440. feedrate_percentage = 100;
  441. }
  442. void restore_feedrate_and_scaling() {
  443. feedrate_mm_s = saved_feedrate_mm_s;
  444. feedrate_percentage = saved_feedrate_percentage;
  445. }
  446. #if HAS_SOFTWARE_ENDSTOPS
  447. // Software Endstops are based on the configured limits.
  448. soft_endstops_t soft_endstop = {
  449. true, false,
  450. { X_MIN_POS, Y_MIN_POS, Z_MIN_POS },
  451. { X_MAX_POS, Y_MAX_POS, Z_MAX_POS }
  452. };
  453. /**
  454. * Software endstops can be used to monitor the open end of
  455. * an axis that has a hardware endstop on the other end. Or
  456. * they can prevent axes from moving past endstops and grinding.
  457. *
  458. * To keep doing their job as the coordinate system changes,
  459. * the software endstop positions must be refreshed to remain
  460. * at the same positions relative to the machine.
  461. */
  462. void update_software_endstops(const AxisEnum axis
  463. #if HAS_HOTEND_OFFSET
  464. , const uint8_t old_tool_index/*=0*/
  465. , const uint8_t new_tool_index/*=0*/
  466. #endif
  467. ) {
  468. #if ENABLED(DUAL_X_CARRIAGE)
  469. if (axis == X_AXIS) {
  470. // In Dual X mode hotend_offset[X] is T1's home position
  471. const float dual_max_x = _MAX(hotend_offset[1].x, X2_MAX_POS);
  472. if (new_tool_index != 0) {
  473. // T1 can move from X2_MIN_POS to X2_MAX_POS or X2 home position (whichever is larger)
  474. soft_endstop.min.x = X2_MIN_POS;
  475. soft_endstop.max.x = dual_max_x;
  476. }
  477. else if (dxc_is_duplicating()) {
  478. // In Duplication Mode, T0 can move as far left as X1_MIN_POS
  479. // but not so far to the right that T1 would move past the end
  480. soft_endstop.min.x = X1_MIN_POS;
  481. soft_endstop.max.x = _MIN(X1_MAX_POS, dual_max_x - duplicate_extruder_x_offset);
  482. }
  483. else {
  484. // In other modes, T0 can move from X1_MIN_POS to X1_MAX_POS
  485. soft_endstop.min.x = X1_MIN_POS;
  486. soft_endstop.max.x = X1_MAX_POS;
  487. }
  488. }
  489. #elif ENABLED(DELTA)
  490. soft_endstop.min[axis] = base_min_pos(axis);
  491. soft_endstop.max[axis] = (axis == Z_AXIS) ? delta_height - TERN0(HAS_BED_PROBE, probe.offset.z) : base_max_pos(axis);
  492. switch (axis) {
  493. case X_AXIS:
  494. case Y_AXIS:
  495. // Get a minimum radius for clamping
  496. delta_max_radius = _MIN(ABS(_MAX(soft_endstop.min.x, soft_endstop.min.y)), soft_endstop.max.x, soft_endstop.max.y);
  497. delta_max_radius_2 = sq(delta_max_radius);
  498. break;
  499. case Z_AXIS:
  500. delta_clip_start_height = soft_endstop.max[axis] - delta_safe_distance_from_top();
  501. default: break;
  502. }
  503. #elif HAS_HOTEND_OFFSET
  504. // Software endstops are relative to the tool 0 workspace, so
  505. // the movement limits must be shifted by the tool offset to
  506. // retain the same physical limit when other tools are selected.
  507. if (old_tool_index != new_tool_index) {
  508. const float offs = hotend_offset[new_tool_index][axis] - hotend_offset[old_tool_index][axis];
  509. soft_endstop.min[axis] += offs;
  510. soft_endstop.max[axis] += offs;
  511. }
  512. else {
  513. const float offs = hotend_offset[active_extruder][axis];
  514. soft_endstop.min[axis] = base_min_pos(axis) + offs;
  515. soft_endstop.max[axis] = base_max_pos(axis) + offs;
  516. }
  517. #else
  518. soft_endstop.min[axis] = base_min_pos(axis);
  519. soft_endstop.max[axis] = base_max_pos(axis);
  520. #endif
  521. if (DEBUGGING(LEVELING))
  522. SERIAL_ECHOLNPAIR("Axis ", XYZ_CHAR(axis), " min:", soft_endstop.min[axis], " max:", soft_endstop.max[axis]);
  523. }
  524. /**
  525. * Constrain the given coordinates to the software endstops.
  526. *
  527. * For DELTA/SCARA the XY constraint is based on the smallest
  528. * radius within the set software endstops.
  529. */
  530. void apply_motion_limits(xyz_pos_t &target) {
  531. if (!soft_endstop._enabled) return;
  532. #if IS_KINEMATIC
  533. if (TERN0(DELTA, !all_axes_homed())) return;
  534. #if BOTH(HAS_HOTEND_OFFSET, DELTA)
  535. // The effector center position will be the target minus the hotend offset.
  536. const xy_pos_t offs = hotend_offset[active_extruder];
  537. #else
  538. // SCARA needs to consider the angle of the arm through the entire move, so for now use no tool offset.
  539. constexpr xy_pos_t offs{0};
  540. #endif
  541. if (TERN1(IS_SCARA, TEST(axis_homed, X_AXIS) && TEST(axis_homed, Y_AXIS))) {
  542. const float dist_2 = HYPOT2(target.x - offs.x, target.y - offs.y);
  543. if (dist_2 > delta_max_radius_2)
  544. target *= float(delta_max_radius / SQRT(dist_2)); // 200 / 300 = 0.66
  545. }
  546. #else
  547. if (TEST(axis_homed, X_AXIS)) {
  548. #if !HAS_SOFTWARE_ENDSTOPS || ENABLED(MIN_SOFTWARE_ENDSTOP_X)
  549. NOLESS(target.x, soft_endstop.min.x);
  550. #endif
  551. #if !HAS_SOFTWARE_ENDSTOPS || ENABLED(MAX_SOFTWARE_ENDSTOP_X)
  552. NOMORE(target.x, soft_endstop.max.x);
  553. #endif
  554. }
  555. if (TEST(axis_homed, Y_AXIS)) {
  556. #if !HAS_SOFTWARE_ENDSTOPS || ENABLED(MIN_SOFTWARE_ENDSTOP_Y)
  557. NOLESS(target.y, soft_endstop.min.y);
  558. #endif
  559. #if !HAS_SOFTWARE_ENDSTOPS || ENABLED(MAX_SOFTWARE_ENDSTOP_Y)
  560. NOMORE(target.y, soft_endstop.max.y);
  561. #endif
  562. }
  563. #endif
  564. if (TEST(axis_homed, Z_AXIS)) {
  565. #if !HAS_SOFTWARE_ENDSTOPS || ENABLED(MIN_SOFTWARE_ENDSTOP_Z)
  566. NOLESS(target.z, soft_endstop.min.z);
  567. #endif
  568. #if !HAS_SOFTWARE_ENDSTOPS || ENABLED(MAX_SOFTWARE_ENDSTOP_Z)
  569. NOMORE(target.z, soft_endstop.max.z);
  570. #endif
  571. }
  572. }
  573. #else // !HAS_SOFTWARE_ENDSTOPS
  574. soft_endstops_t soft_endstop;
  575. #endif // !HAS_SOFTWARE_ENDSTOPS
  576. #if !UBL_SEGMENTED
  577. FORCE_INLINE void segment_idle(millis_t &next_idle_ms) {
  578. const millis_t ms = millis();
  579. if (ELAPSED(ms, next_idle_ms)) {
  580. next_idle_ms = ms + 200UL;
  581. return idle();
  582. }
  583. thermalManager.manage_heater(); // Returns immediately on most calls
  584. }
  585. #if IS_KINEMATIC
  586. #if IS_SCARA
  587. /**
  588. * Before raising this value, use M665 S[seg_per_sec] to decrease
  589. * the number of segments-per-second. Default is 200. Some deltas
  590. * do better with 160 or lower. It would be good to know how many
  591. * segments-per-second are actually possible for SCARA on AVR.
  592. *
  593. * Longer segments result in less kinematic overhead
  594. * but may produce jagged lines. Try 0.5mm, 1.0mm, and 2.0mm
  595. * and compare the difference.
  596. */
  597. #define SCARA_MIN_SEGMENT_LENGTH 0.5f
  598. #endif
  599. /**
  600. * Prepare a linear move in a DELTA or SCARA setup.
  601. *
  602. * Called from prepare_line_to_destination as the
  603. * default Delta/SCARA segmenter.
  604. *
  605. * This calls planner.buffer_line several times, adding
  606. * small incremental moves for DELTA or SCARA.
  607. *
  608. * For Unified Bed Leveling (Delta or Segmented Cartesian)
  609. * the ubl.line_to_destination_segmented method replaces this.
  610. *
  611. * For Auto Bed Leveling (Bilinear) with SEGMENT_LEVELED_MOVES
  612. * this is replaced by segmented_line_to_destination below.
  613. */
  614. inline bool line_to_destination_kinematic() {
  615. // Get the top feedrate of the move in the XY plane
  616. const float scaled_fr_mm_s = MMS_SCALED(feedrate_mm_s);
  617. const xyze_float_t diff = destination - current_position;
  618. // If the move is only in Z/E don't split up the move
  619. if (!diff.x && !diff.y) {
  620. planner.buffer_line(destination, scaled_fr_mm_s, active_extruder);
  621. return false; // caller will update current_position
  622. }
  623. // Fail if attempting move outside printable radius
  624. if (!position_is_reachable(destination)) return true;
  625. // Get the linear distance in XYZ
  626. float cartesian_mm = diff.magnitude();
  627. // If the move is very short, check the E move distance
  628. if (UNEAR_ZERO(cartesian_mm)) cartesian_mm = ABS(diff.e);
  629. // No E move either? Game over.
  630. if (UNEAR_ZERO(cartesian_mm)) return true;
  631. // Minimum number of seconds to move the given distance
  632. const float seconds = cartesian_mm / scaled_fr_mm_s;
  633. // The number of segments-per-second times the duration
  634. // gives the number of segments
  635. uint16_t segments = delta_segments_per_second * seconds;
  636. // For SCARA enforce a minimum segment size
  637. #if IS_SCARA
  638. NOMORE(segments, cartesian_mm * RECIPROCAL(SCARA_MIN_SEGMENT_LENGTH));
  639. #endif
  640. // At least one segment is required
  641. NOLESS(segments, 1U);
  642. // The approximate length of each segment
  643. const float inv_segments = 1.0f / float(segments),
  644. cartesian_segment_mm = cartesian_mm * inv_segments;
  645. const xyze_float_t segment_distance = diff * inv_segments;
  646. #if ENABLED(SCARA_FEEDRATE_SCALING)
  647. const float inv_duration = scaled_fr_mm_s / cartesian_segment_mm;
  648. #endif
  649. /*
  650. SERIAL_ECHOPAIR("mm=", cartesian_mm);
  651. SERIAL_ECHOPAIR(" seconds=", seconds);
  652. SERIAL_ECHOPAIR(" segments=", segments);
  653. SERIAL_ECHOPAIR(" segment_mm=", cartesian_segment_mm);
  654. SERIAL_EOL();
  655. //*/
  656. // Get the current position as starting point
  657. xyze_pos_t raw = current_position;
  658. // Calculate and execute the segments
  659. millis_t next_idle_ms = millis() + 200UL;
  660. while (--segments) {
  661. segment_idle(next_idle_ms);
  662. raw += segment_distance;
  663. if (!planner.buffer_line(raw, scaled_fr_mm_s, active_extruder, cartesian_segment_mm
  664. #if ENABLED(SCARA_FEEDRATE_SCALING)
  665. , inv_duration
  666. #endif
  667. )) break;
  668. }
  669. // Ensure last segment arrives at target location.
  670. planner.buffer_line(destination, scaled_fr_mm_s, active_extruder, cartesian_segment_mm
  671. #if ENABLED(SCARA_FEEDRATE_SCALING)
  672. , inv_duration
  673. #endif
  674. );
  675. return false; // caller will update current_position
  676. }
  677. #else // !IS_KINEMATIC
  678. #if ENABLED(SEGMENT_LEVELED_MOVES)
  679. /**
  680. * Prepare a segmented move on a CARTESIAN setup.
  681. *
  682. * This calls planner.buffer_line several times, adding
  683. * small incremental moves. This allows the planner to
  684. * apply more detailed bed leveling to the full move.
  685. */
  686. inline void segmented_line_to_destination(const feedRate_t &fr_mm_s, const float segment_size=LEVELED_SEGMENT_LENGTH) {
  687. const xyze_float_t diff = destination - current_position;
  688. // If the move is only in Z/E don't split up the move
  689. if (!diff.x && !diff.y) {
  690. planner.buffer_line(destination, fr_mm_s, active_extruder);
  691. return;
  692. }
  693. // Get the linear distance in XYZ
  694. // If the move is very short, check the E move distance
  695. // No E move either? Game over.
  696. float cartesian_mm = diff.magnitude();
  697. if (UNEAR_ZERO(cartesian_mm)) cartesian_mm = ABS(diff.e);
  698. if (UNEAR_ZERO(cartesian_mm)) return;
  699. // The length divided by the segment size
  700. // At least one segment is required
  701. uint16_t segments = cartesian_mm / segment_size;
  702. NOLESS(segments, 1U);
  703. // The approximate length of each segment
  704. const float inv_segments = 1.0f / float(segments),
  705. cartesian_segment_mm = cartesian_mm * inv_segments;
  706. const xyze_float_t segment_distance = diff * inv_segments;
  707. #if ENABLED(SCARA_FEEDRATE_SCALING)
  708. const float inv_duration = scaled_fr_mm_s / cartesian_segment_mm;
  709. #endif
  710. // SERIAL_ECHOPAIR("mm=", cartesian_mm);
  711. // SERIAL_ECHOLNPAIR(" segments=", segments);
  712. // SERIAL_ECHOLNPAIR(" segment_mm=", cartesian_segment_mm);
  713. // Get the raw current position as starting point
  714. xyze_pos_t raw = current_position;
  715. // Calculate and execute the segments
  716. millis_t next_idle_ms = millis() + 200UL;
  717. while (--segments) {
  718. segment_idle(next_idle_ms);
  719. raw += segment_distance;
  720. if (!planner.buffer_line(raw, fr_mm_s, active_extruder, cartesian_segment_mm
  721. #if ENABLED(SCARA_FEEDRATE_SCALING)
  722. , inv_duration
  723. #endif
  724. )) break;
  725. }
  726. // Since segment_distance is only approximate,
  727. // the final move must be to the exact destination.
  728. planner.buffer_line(destination, fr_mm_s, active_extruder, cartesian_segment_mm
  729. #if ENABLED(SCARA_FEEDRATE_SCALING)
  730. , inv_duration
  731. #endif
  732. );
  733. }
  734. #endif // SEGMENT_LEVELED_MOVES
  735. /**
  736. * Prepare a linear move in a Cartesian setup.
  737. *
  738. * When a mesh-based leveling system is active, moves are segmented
  739. * according to the configuration of the leveling system.
  740. *
  741. * Return true if 'current_position' was set to 'destination'
  742. */
  743. inline bool line_to_destination_cartesian() {
  744. const float scaled_fr_mm_s = MMS_SCALED(feedrate_mm_s);
  745. #if HAS_MESH
  746. if (planner.leveling_active && planner.leveling_active_at_z(destination.z)) {
  747. #if ENABLED(AUTO_BED_LEVELING_UBL)
  748. ubl.line_to_destination_cartesian(scaled_fr_mm_s, active_extruder); // UBL's motion routine needs to know about
  749. return true; // all moves, including Z-only moves.
  750. #elif ENABLED(SEGMENT_LEVELED_MOVES)
  751. segmented_line_to_destination(scaled_fr_mm_s);
  752. return false; // caller will update current_position
  753. #else
  754. /**
  755. * For MBL and ABL-BILINEAR only segment moves when X or Y are involved.
  756. * Otherwise fall through to do a direct single move.
  757. */
  758. if (xy_pos_t(current_position) != xy_pos_t(destination)) {
  759. #if ENABLED(MESH_BED_LEVELING)
  760. mbl.line_to_destination(scaled_fr_mm_s);
  761. #elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
  762. bilinear_line_to_destination(scaled_fr_mm_s);
  763. #endif
  764. return true;
  765. }
  766. #endif
  767. }
  768. #endif // HAS_MESH
  769. planner.buffer_line(destination, scaled_fr_mm_s, active_extruder);
  770. return false; // caller will update current_position
  771. }
  772. #endif // !IS_KINEMATIC
  773. #endif // !UBL_SEGMENTED
  774. #if HAS_DUPLICATION_MODE
  775. bool extruder_duplication_enabled,
  776. mirrored_duplication_mode;
  777. #if ENABLED(MULTI_NOZZLE_DUPLICATION)
  778. uint8_t duplication_e_mask; // = 0
  779. #endif
  780. #endif
  781. #if ENABLED(DUAL_X_CARRIAGE)
  782. DualXMode dual_x_carriage_mode = DEFAULT_DUAL_X_CARRIAGE_MODE;
  783. float inactive_extruder_x_pos = X2_MAX_POS, // used in mode 0 & 1
  784. duplicate_extruder_x_offset = DEFAULT_DUPLICATION_X_OFFSET; // used in mode 2
  785. xyz_pos_t raised_parked_position; // used in mode 1
  786. bool active_extruder_parked = false; // used in mode 1 & 2
  787. millis_t delayed_move_time = 0; // used in mode 1
  788. int16_t duplicate_extruder_temp_offset = 0; // used in mode 2
  789. float x_home_pos(const uint8_t extruder) {
  790. if (extruder == 0)
  791. return base_home_pos(X_AXIS);
  792. else
  793. /**
  794. * In dual carriage mode the extruder offset provides an override of the
  795. * second X-carriage position when homed - otherwise X2_HOME_POS is used.
  796. * This allows soft recalibration of the second extruder home position
  797. * without firmware reflash (through the M218 command).
  798. */
  799. return hotend_offset[1].x > 0 ? hotend_offset[1].x : X2_HOME_POS;
  800. }
  801. /**
  802. * Prepare a linear move in a dual X axis setup
  803. *
  804. * Return true if current_position[] was set to destination[]
  805. */
  806. inline bool dual_x_carriage_unpark() {
  807. if (active_extruder_parked) {
  808. switch (dual_x_carriage_mode) {
  809. case DXC_FULL_CONTROL_MODE:
  810. break;
  811. case DXC_AUTO_PARK_MODE:
  812. if (current_position.e == destination.e) {
  813. // This is a travel move (with no extrusion)
  814. // Skip it, but keep track of the current position
  815. // (so it can be used as the start of the next non-travel move)
  816. if (delayed_move_time != 0xFFFFFFFFUL) {
  817. current_position = destination;
  818. NOLESS(raised_parked_position.z, destination.z);
  819. delayed_move_time = millis();
  820. return true;
  821. }
  822. }
  823. // unpark extruder: 1) raise, 2) move into starting XY position, 3) lower
  824. #define CUR_X current_position.x
  825. #define CUR_Y current_position.y
  826. #define CUR_Z current_position.z
  827. #define CUR_E current_position.e
  828. #define RAISED_X raised_parked_position.x
  829. #define RAISED_Y raised_parked_position.y
  830. #define RAISED_Z raised_parked_position.z
  831. if ( planner.buffer_line(RAISED_X, RAISED_Y, RAISED_Z, CUR_E, planner.settings.max_feedrate_mm_s[Z_AXIS], active_extruder))
  832. if (planner.buffer_line( CUR_X, CUR_Y, RAISED_Z, CUR_E, PLANNER_XY_FEEDRATE(), active_extruder))
  833. line_to_current_position(planner.settings.max_feedrate_mm_s[Z_AXIS]);
  834. delayed_move_time = 0;
  835. active_extruder_parked = false;
  836. if (DEBUGGING(LEVELING)) DEBUG_ECHOLNPGM("Clear active_extruder_parked");
  837. break;
  838. case DXC_MIRRORED_MODE:
  839. case DXC_DUPLICATION_MODE:
  840. if (active_extruder == 0) {
  841. xyze_pos_t new_pos = current_position;
  842. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE)
  843. new_pos.x += duplicate_extruder_x_offset;
  844. else
  845. new_pos.x = inactive_extruder_x_pos;
  846. // move duplicate extruder into correct duplication position.
  847. if (DEBUGGING(LEVELING)) DEBUG_ECHOLNPAIR("Set planner X", inactive_extruder_x_pos, " ... Line to X", new_pos.x);
  848. planner.set_position_mm(inactive_extruder_x_pos, current_position.y, current_position.z, current_position.e);
  849. if (!planner.buffer_line(new_pos, planner.settings.max_feedrate_mm_s[X_AXIS], 1)) break;
  850. planner.synchronize();
  851. sync_plan_position();
  852. extruder_duplication_enabled = true;
  853. active_extruder_parked = false;
  854. if (DEBUGGING(LEVELING)) DEBUG_ECHOLNPGM("Set extruder_duplication_enabled\nClear active_extruder_parked");
  855. }
  856. else if (DEBUGGING(LEVELING)) DEBUG_ECHOLNPGM("Active extruder not 0");
  857. break;
  858. }
  859. }
  860. stepper.set_directions();
  861. return false;
  862. }
  863. #endif // DUAL_X_CARRIAGE
  864. /**
  865. * Prepare a single move and get ready for the next one
  866. *
  867. * This may result in several calls to planner.buffer_line to
  868. * do smaller moves for DELTA, SCARA, mesh moves, etc.
  869. *
  870. * Make sure current_position.e and destination.e are good
  871. * before calling or cold/lengthy extrusion may get missed.
  872. *
  873. * Before exit, current_position is set to destination.
  874. */
  875. void prepare_line_to_destination() {
  876. apply_motion_limits(destination);
  877. #if EITHER(PREVENT_COLD_EXTRUSION, PREVENT_LENGTHY_EXTRUDE)
  878. if (!DEBUGGING(DRYRUN) && destination.e != current_position.e) {
  879. bool ignore_e = false;
  880. #if ENABLED(PREVENT_COLD_EXTRUSION)
  881. ignore_e = thermalManager.tooColdToExtrude(active_extruder);
  882. if (ignore_e) SERIAL_ECHO_MSG(STR_ERR_COLD_EXTRUDE_STOP);
  883. #endif
  884. #if ENABLED(PREVENT_LENGTHY_EXTRUDE)
  885. const float e_delta = ABS(destination.e - current_position.e) * planner.e_factor[active_extruder];
  886. if (e_delta > (EXTRUDE_MAXLENGTH)) {
  887. #if ENABLED(MIXING_EXTRUDER)
  888. float collector[MIXING_STEPPERS];
  889. mixer.refresh_collector(1.0, mixer.get_current_vtool(), collector);
  890. MIXER_STEPPER_LOOP(e) {
  891. if (e_delta * collector[e] > (EXTRUDE_MAXLENGTH)) {
  892. ignore_e = true;
  893. SERIAL_ECHO_MSG(STR_ERR_LONG_EXTRUDE_STOP);
  894. break;
  895. }
  896. }
  897. #else
  898. ignore_e = true;
  899. SERIAL_ECHO_MSG(STR_ERR_LONG_EXTRUDE_STOP);
  900. #endif
  901. }
  902. #endif
  903. if (ignore_e) {
  904. current_position.e = destination.e; // Behave as if the E move really took place
  905. planner.set_e_position_mm(destination.e); // Prevent the planner from complaining too
  906. }
  907. }
  908. #endif // PREVENT_COLD_EXTRUSION || PREVENT_LENGTHY_EXTRUDE
  909. if (TERN0(DUAL_X_CARRIAGE, dual_x_carriage_unpark())) return;
  910. if (
  911. #if UBL_SEGMENTED
  912. #if IS_KINEMATIC // UBL using Kinematic / Cartesian cases as a workaround for now.
  913. ubl.line_to_destination_segmented(MMS_SCALED(feedrate_mm_s))
  914. #else
  915. line_to_destination_cartesian()
  916. #endif
  917. #elif IS_KINEMATIC
  918. line_to_destination_kinematic()
  919. #else
  920. line_to_destination_cartesian()
  921. #endif
  922. ) return;
  923. current_position = destination;
  924. }
  925. uint8_t axes_should_home(uint8_t axis_bits/*=0x07*/) {
  926. // Clear test bits that are trusted
  927. if (TEST(axis_bits, X_AXIS) && TEST(axis_homed, X_AXIS)) CBI(axis_bits, X_AXIS);
  928. if (TEST(axis_bits, Y_AXIS) && TEST(axis_homed, Y_AXIS)) CBI(axis_bits, Y_AXIS);
  929. if (TEST(axis_bits, Z_AXIS) && TEST(axis_homed, Z_AXIS)) CBI(axis_bits, Z_AXIS);
  930. return axis_bits;
  931. }
  932. bool homing_needed_error(uint8_t axis_bits/*=0x07*/) {
  933. if ((axis_bits = axes_should_home(axis_bits))) {
  934. PGM_P home_first = GET_TEXT(MSG_HOME_FIRST);
  935. char msg[strlen_P(home_first)+1];
  936. sprintf_P(msg, home_first,
  937. TEST(axis_bits, X_AXIS) ? "X" : "",
  938. TEST(axis_bits, Y_AXIS) ? "Y" : "",
  939. TEST(axis_bits, Z_AXIS) ? "Z" : ""
  940. );
  941. SERIAL_ECHO_START();
  942. SERIAL_ECHOLN(msg);
  943. TERN_(HAS_DISPLAY, ui.set_status(msg));
  944. return true;
  945. }
  946. return false;
  947. }
  948. /**
  949. * Homing bump feedrate (mm/s)
  950. */
  951. feedRate_t get_homing_bump_feedrate(const AxisEnum axis) {
  952. #if HOMING_Z_WITH_PROBE
  953. if (axis == Z_AXIS) return MMM_TO_MMS(Z_PROBE_SPEED_SLOW);
  954. #endif
  955. static const uint8_t homing_bump_divisor[] PROGMEM = HOMING_BUMP_DIVISOR;
  956. uint8_t hbd = pgm_read_byte(&homing_bump_divisor[axis]);
  957. if (hbd < 1) {
  958. hbd = 10;
  959. SERIAL_ECHO_MSG("Warning: Homing Bump Divisor < 1");
  960. }
  961. return homing_feedrate(axis) / float(hbd);
  962. }
  963. #if ENABLED(SENSORLESS_HOMING)
  964. /**
  965. * Set sensorless homing if the axis has it, accounting for Core Kinematics.
  966. */
  967. sensorless_t start_sensorless_homing_per_axis(const AxisEnum axis) {
  968. sensorless_t stealth_states { false };
  969. switch (axis) {
  970. default: break;
  971. #if X_SENSORLESS
  972. case X_AXIS:
  973. stealth_states.x = tmc_enable_stallguard(stepperX);
  974. #if AXIS_HAS_STALLGUARD(X2)
  975. stealth_states.x2 = tmc_enable_stallguard(stepperX2);
  976. #endif
  977. #if EITHER(CORE_IS_XY, MARKFORGED_XY) && Y_SENSORLESS
  978. stealth_states.y = tmc_enable_stallguard(stepperY);
  979. #elif CORE_IS_XZ && Z_SENSORLESS
  980. stealth_states.z = tmc_enable_stallguard(stepperZ);
  981. #endif
  982. break;
  983. #endif
  984. #if Y_SENSORLESS
  985. case Y_AXIS:
  986. stealth_states.y = tmc_enable_stallguard(stepperY);
  987. #if AXIS_HAS_STALLGUARD(Y2)
  988. stealth_states.y2 = tmc_enable_stallguard(stepperY2);
  989. #endif
  990. #if EITHER(CORE_IS_XY, MARKFORGED_XY) && X_SENSORLESS
  991. stealth_states.x = tmc_enable_stallguard(stepperX);
  992. #elif CORE_IS_YZ && Z_SENSORLESS
  993. stealth_states.z = tmc_enable_stallguard(stepperZ);
  994. #endif
  995. break;
  996. #endif
  997. #if Z_SENSORLESS
  998. case Z_AXIS:
  999. stealth_states.z = tmc_enable_stallguard(stepperZ);
  1000. #if AXIS_HAS_STALLGUARD(Z2)
  1001. stealth_states.z2 = tmc_enable_stallguard(stepperZ2);
  1002. #endif
  1003. #if AXIS_HAS_STALLGUARD(Z3)
  1004. stealth_states.z3 = tmc_enable_stallguard(stepperZ3);
  1005. #endif
  1006. #if AXIS_HAS_STALLGUARD(Z4)
  1007. stealth_states.z4 = tmc_enable_stallguard(stepperZ4);
  1008. #endif
  1009. #if CORE_IS_XZ && X_SENSORLESS
  1010. stealth_states.x = tmc_enable_stallguard(stepperX);
  1011. #elif CORE_IS_YZ && Y_SENSORLESS
  1012. stealth_states.y = tmc_enable_stallguard(stepperY);
  1013. #endif
  1014. break;
  1015. #endif
  1016. }
  1017. #if ENABLED(SPI_ENDSTOPS)
  1018. switch (axis) {
  1019. case X_AXIS: if (ENABLED(X_SPI_SENSORLESS)) endstops.tmc_spi_homing.x = true; break;
  1020. case Y_AXIS: if (ENABLED(Y_SPI_SENSORLESS)) endstops.tmc_spi_homing.y = true; break;
  1021. case Z_AXIS: if (ENABLED(Z_SPI_SENSORLESS)) endstops.tmc_spi_homing.z = true; break;
  1022. default: break;
  1023. }
  1024. #endif
  1025. TERN_(IMPROVE_HOMING_RELIABILITY, sg_guard_period = millis() + default_sg_guard_duration);
  1026. return stealth_states;
  1027. }
  1028. void end_sensorless_homing_per_axis(const AxisEnum axis, sensorless_t enable_stealth) {
  1029. switch (axis) {
  1030. default: break;
  1031. #if X_SENSORLESS
  1032. case X_AXIS:
  1033. tmc_disable_stallguard(stepperX, enable_stealth.x);
  1034. #if AXIS_HAS_STALLGUARD(X2)
  1035. tmc_disable_stallguard(stepperX2, enable_stealth.x2);
  1036. #endif
  1037. #if EITHER(CORE_IS_XY, MARKFORGED_XY) && Y_SENSORLESS
  1038. tmc_disable_stallguard(stepperY, enable_stealth.y);
  1039. #elif CORE_IS_XZ && Z_SENSORLESS
  1040. tmc_disable_stallguard(stepperZ, enable_stealth.z);
  1041. #endif
  1042. break;
  1043. #endif
  1044. #if Y_SENSORLESS
  1045. case Y_AXIS:
  1046. tmc_disable_stallguard(stepperY, enable_stealth.y);
  1047. #if AXIS_HAS_STALLGUARD(Y2)
  1048. tmc_disable_stallguard(stepperY2, enable_stealth.y2);
  1049. #endif
  1050. #if EITHER(CORE_IS_XY, MARKFORGED_XY) && X_SENSORLESS
  1051. tmc_disable_stallguard(stepperX, enable_stealth.x);
  1052. #elif CORE_IS_YZ && Z_SENSORLESS
  1053. tmc_disable_stallguard(stepperZ, enable_stealth.z);
  1054. #endif
  1055. break;
  1056. #endif
  1057. #if Z_SENSORLESS
  1058. case Z_AXIS:
  1059. tmc_disable_stallguard(stepperZ, enable_stealth.z);
  1060. #if AXIS_HAS_STALLGUARD(Z2)
  1061. tmc_disable_stallguard(stepperZ2, enable_stealth.z2);
  1062. #endif
  1063. #if AXIS_HAS_STALLGUARD(Z3)
  1064. tmc_disable_stallguard(stepperZ3, enable_stealth.z3);
  1065. #endif
  1066. #if AXIS_HAS_STALLGUARD(Z4)
  1067. tmc_disable_stallguard(stepperZ4, enable_stealth.z4);
  1068. #endif
  1069. #if CORE_IS_XZ && X_SENSORLESS
  1070. tmc_disable_stallguard(stepperX, enable_stealth.x);
  1071. #elif CORE_IS_YZ && Y_SENSORLESS
  1072. tmc_disable_stallguard(stepperY, enable_stealth.y);
  1073. #endif
  1074. break;
  1075. #endif
  1076. }
  1077. #if ENABLED(SPI_ENDSTOPS)
  1078. switch (axis) {
  1079. case X_AXIS: if (ENABLED(X_SPI_SENSORLESS)) endstops.tmc_spi_homing.x = false; break;
  1080. case Y_AXIS: if (ENABLED(Y_SPI_SENSORLESS)) endstops.tmc_spi_homing.y = false; break;
  1081. case Z_AXIS: if (ENABLED(Z_SPI_SENSORLESS)) endstops.tmc_spi_homing.z = false; break;
  1082. default: break;
  1083. }
  1084. #endif
  1085. }
  1086. #endif // SENSORLESS_HOMING
  1087. /**
  1088. * Home an individual linear axis
  1089. */
  1090. void do_homing_move(const AxisEnum axis, const float distance, const feedRate_t fr_mm_s=0.0) {
  1091. DEBUG_SECTION(log_move, "do_homing_move", DEBUGGING(LEVELING));
  1092. const feedRate_t real_fr_mm_s = fr_mm_s ?: homing_feedrate(axis);
  1093. if (DEBUGGING(LEVELING)) {
  1094. DEBUG_ECHOPAIR("...(", axis_codes[axis], ", ", distance, ", ");
  1095. if (fr_mm_s)
  1096. DEBUG_ECHO(fr_mm_s);
  1097. else
  1098. DEBUG_ECHOPAIR("[", real_fr_mm_s, "]");
  1099. DEBUG_ECHOLNPGM(")");
  1100. }
  1101. #if ALL(HOMING_Z_WITH_PROBE, HAS_HEATED_BED, WAIT_FOR_BED_HEATER)
  1102. // Wait for bed to heat back up between probing points
  1103. if (axis == Z_AXIS && distance < 0)
  1104. thermalManager.wait_for_bed_heating();
  1105. #endif
  1106. // Only do some things when moving towards an endstop
  1107. const int8_t axis_home_dir = TERN0(DUAL_X_CARRIAGE, axis == X_AXIS)
  1108. ? x_home_dir(active_extruder) : home_dir(axis);
  1109. const bool is_home_dir = (axis_home_dir > 0) == (distance > 0);
  1110. #if ENABLED(SENSORLESS_HOMING)
  1111. sensorless_t stealth_states;
  1112. #endif
  1113. if (is_home_dir) {
  1114. #if HOMING_Z_WITH_PROBE && QUIET_PROBING
  1115. if (axis == Z_AXIS) probe.set_probing_paused(true);
  1116. #endif
  1117. // Disable stealthChop if used. Enable diag1 pin on driver.
  1118. TERN_(SENSORLESS_HOMING, stealth_states = start_sensorless_homing_per_axis(axis));
  1119. }
  1120. #if IS_SCARA
  1121. // Tell the planner the axis is at 0
  1122. current_position[axis] = 0;
  1123. sync_plan_position();
  1124. current_position[axis] = distance;
  1125. line_to_current_position(real_fr_mm_s);
  1126. #else
  1127. // Get the ABC or XYZ positions in mm
  1128. abce_pos_t target = planner.get_axis_positions_mm();
  1129. target[axis] = 0; // Set the single homing axis to 0
  1130. planner.set_machine_position_mm(target); // Update the machine position
  1131. #if HAS_DIST_MM_ARG
  1132. const xyze_float_t cart_dist_mm{0};
  1133. #endif
  1134. // Set delta/cartesian axes directly
  1135. target[axis] = distance; // The move will be towards the endstop
  1136. planner.buffer_segment(target
  1137. #if HAS_DIST_MM_ARG
  1138. , cart_dist_mm
  1139. #endif
  1140. , real_fr_mm_s, active_extruder
  1141. );
  1142. #endif
  1143. planner.synchronize();
  1144. if (is_home_dir) {
  1145. #if HOMING_Z_WITH_PROBE && QUIET_PROBING
  1146. if (axis == Z_AXIS) probe.set_probing_paused(false);
  1147. #endif
  1148. endstops.validate_homing_move();
  1149. // Re-enable stealthChop if used. Disable diag1 pin on driver.
  1150. TERN_(SENSORLESS_HOMING, end_sensorless_homing_per_axis(axis, stealth_states));
  1151. }
  1152. }
  1153. /**
  1154. * Set an axis' current position to its home position (after homing).
  1155. *
  1156. * For Core and Cartesian robots this applies one-to-one when an
  1157. * individual axis has been homed.
  1158. *
  1159. * DELTA should wait until all homing is done before setting the XYZ
  1160. * current_position to home, because homing is a single operation.
  1161. * In the case where the axis positions are already known and previously
  1162. * homed, DELTA could home to X or Y individually by moving either one
  1163. * to the center. However, homing Z always homes XY and Z.
  1164. *
  1165. * SCARA should wait until all XY homing is done before setting the XY
  1166. * current_position to home, because neither X nor Y is at home until
  1167. * both are at home. Z can however be homed individually.
  1168. *
  1169. * Callers must sync the planner position after calling this!
  1170. */
  1171. void set_axis_is_at_home(const AxisEnum axis) {
  1172. if (DEBUGGING(LEVELING)) DEBUG_ECHOLNPAIR(">>> set_axis_is_at_home(", axis_codes[axis], ")");
  1173. SBI(axis_known_position, axis);
  1174. SBI(axis_homed, axis);
  1175. #if ENABLED(DUAL_X_CARRIAGE)
  1176. if (axis == X_AXIS && (active_extruder == 1 || dual_x_carriage_mode == DXC_DUPLICATION_MODE)) {
  1177. current_position.x = x_home_pos(active_extruder);
  1178. return;
  1179. }
  1180. #endif
  1181. #if ENABLED(MORGAN_SCARA)
  1182. scara_set_axis_is_at_home(axis);
  1183. #elif ENABLED(DELTA)
  1184. current_position[axis] = (axis == Z_AXIS) ? delta_height - TERN0(HAS_BED_PROBE, probe.offset.z) : base_home_pos(axis);
  1185. #else
  1186. current_position[axis] = base_home_pos(axis);
  1187. #endif
  1188. /**
  1189. * Z Probe Z Homing? Account for the probe's Z offset.
  1190. */
  1191. #if HAS_BED_PROBE && Z_HOME_DIR < 0
  1192. if (axis == Z_AXIS) {
  1193. #if HOMING_Z_WITH_PROBE
  1194. current_position.z -= probe.offset.z;
  1195. if (DEBUGGING(LEVELING)) DEBUG_ECHOLNPAIR("*** Z HOMED WITH PROBE (Z_MIN_PROBE_USES_Z_MIN_ENDSTOP_PIN) ***\n> probe.offset.z = ", probe.offset.z);
  1196. #else
  1197. if (DEBUGGING(LEVELING)) DEBUG_ECHOLNPGM("*** Z HOMED TO ENDSTOP ***");
  1198. #endif
  1199. }
  1200. #endif
  1201. TERN_(I2C_POSITION_ENCODERS, I2CPEM.homed(axis));
  1202. TERN_(BABYSTEP_DISPLAY_TOTAL, babystep.reset_total(axis));
  1203. #if HAS_POSITION_SHIFT
  1204. position_shift[axis] = 0;
  1205. update_workspace_offset(axis);
  1206. #endif
  1207. if (DEBUGGING(LEVELING)) {
  1208. #if HAS_HOME_OFFSET
  1209. DEBUG_ECHOLNPAIR("> home_offset[", axis_codes[axis], "] = ", home_offset[axis]);
  1210. #endif
  1211. DEBUG_POS("", current_position);
  1212. DEBUG_ECHOLNPAIR("<<< set_axis_is_at_home(", axis_codes[axis], ")");
  1213. }
  1214. }
  1215. /**
  1216. * Set an axis to be unhomed.
  1217. */
  1218. void set_axis_never_homed(const AxisEnum axis) {
  1219. if (DEBUGGING(LEVELING)) DEBUG_ECHOLNPAIR(">>> set_axis_never_homed(", axis_codes[axis], ")");
  1220. CBI(axis_known_position, axis);
  1221. CBI(axis_homed, axis);
  1222. if (DEBUGGING(LEVELING)) DEBUG_ECHOLNPAIR("<<< set_axis_never_homed(", axis_codes[axis], ")");
  1223. TERN_(I2C_POSITION_ENCODERS, I2CPEM.unhomed(axis));
  1224. }
  1225. #ifdef TMC_HOME_PHASE
  1226. /**
  1227. * Move the axis back to its home_phase if set and driver is capable (TMC)
  1228. *
  1229. * Improves homing repeatability by homing to stepper coil's nearest absolute
  1230. * phase position. Trinamic drivers use a stepper phase table with 1024 values
  1231. * spanning 4 full steps with 256 positions each (ergo, 1024 positions).
  1232. */
  1233. void backout_to_tmc_homing_phase(const AxisEnum axis) {
  1234. const xyz_long_t home_phase = TMC_HOME_PHASE;
  1235. // check if home phase is disabled for this axis.
  1236. if (home_phase[axis] < 0) return;
  1237. int16_t phasePerUStep, // TMC µsteps(phase) per Marlin µsteps
  1238. phaseCurrent, // The TMC µsteps(phase) count of the current position
  1239. effectorBackoutDir, // Direction in which the effector mm coordinates move away from endstop.
  1240. stepperBackoutDir; // Direction in which the TMC µstep count(phase) move away from endstop.
  1241. switch (axis) {
  1242. #ifdef X_MICROSTEPS
  1243. case X_AXIS:
  1244. phasePerUStep = 256 / (X_MICROSTEPS);
  1245. phaseCurrent = stepperX.get_microstep_counter();
  1246. effectorBackoutDir = -X_HOME_DIR;
  1247. stepperBackoutDir = INVERT_X_DIR ? effectorBackoutDir : -effectorBackoutDir;
  1248. break;
  1249. #endif
  1250. #ifdef Y_MICROSTEPS
  1251. case Y_AXIS:
  1252. phasePerUStep = 256 / (Y_MICROSTEPS);
  1253. phaseCurrent = stepperY.get_microstep_counter();
  1254. effectorBackoutDir = -Y_HOME_DIR;
  1255. stepperBackoutDir = INVERT_Y_DIR ? effectorBackoutDir : -effectorBackoutDir;
  1256. break;
  1257. #endif
  1258. #ifdef Z_MICROSTEPS
  1259. case Z_AXIS:
  1260. phasePerUStep = 256 / (Z_MICROSTEPS);
  1261. phaseCurrent = stepperZ.get_microstep_counter();
  1262. effectorBackoutDir = -Z_HOME_DIR;
  1263. stepperBackoutDir = INVERT_Z_DIR ? effectorBackoutDir : -effectorBackoutDir;
  1264. break;
  1265. #endif
  1266. default: return;
  1267. }
  1268. // Phase distance to nearest home phase position when moving in the backout direction from endstop(may be negative).
  1269. int16_t phaseDelta = (home_phase[axis] - phaseCurrent) * stepperBackoutDir;
  1270. // Check if home distance within endstop assumed repeatability noise of .05mm and warn.
  1271. if (ABS(phaseDelta) * planner.steps_to_mm[axis] / phasePerUStep < 0.05f)
  1272. SERIAL_ECHOLNPAIR("Selected home phase ", home_phase[axis],
  1273. " too close to endstop trigger phase ", phaseCurrent,
  1274. ". Pick a different phase for ", axis_codes[axis]);
  1275. // Skip to next if target position is behind current. So it only moves away from endstop.
  1276. if (phaseDelta < 0) phaseDelta += 1024;
  1277. // Convert TMC µsteps(phase) to whole Marlin µsteps to effector backout direction to mm
  1278. const float mmDelta = int16_t(phaseDelta / phasePerUStep) * effectorBackoutDir * planner.steps_to_mm[axis];
  1279. // Optional debug messages
  1280. if (DEBUGGING(LEVELING)) {
  1281. DEBUG_ECHOLNPAIR(
  1282. "Endstop ", axis_codes[axis], " hit at Phase:", phaseCurrent,
  1283. " Delta:", phaseDelta, " Distance:", mmDelta
  1284. );
  1285. }
  1286. if (mmDelta != 0) {
  1287. // Retrace by the amount computed in mmDelta.
  1288. do_homing_move(axis, mmDelta, get_homing_bump_feedrate(axis));
  1289. }
  1290. }
  1291. #endif
  1292. /**
  1293. * Home an individual "raw axis" to its endstop.
  1294. * This applies to XYZ on Cartesian and Core robots, and
  1295. * to the individual ABC steppers on DELTA and SCARA.
  1296. *
  1297. * At the end of the procedure the axis is marked as
  1298. * homed and the current position of that axis is updated.
  1299. * Kinematic robots should wait till all axes are homed
  1300. * before updating the current position.
  1301. */
  1302. void homeaxis(const AxisEnum axis) {
  1303. #if IS_SCARA
  1304. // Only Z homing (with probe) is permitted
  1305. if (axis != Z_AXIS) { BUZZ(100, 880); return; }
  1306. #else
  1307. #define _CAN_HOME(A) (axis == _AXIS(A) && ( \
  1308. ENABLED(A##_SPI_SENSORLESS) \
  1309. || (_AXIS(A) == Z_AXIS && ENABLED(HOMING_Z_WITH_PROBE)) \
  1310. || (A##_MIN_PIN > -1 && A##_HOME_DIR < 0) \
  1311. || (A##_MAX_PIN > -1 && A##_HOME_DIR > 0) \
  1312. ))
  1313. if (!_CAN_HOME(X) && !_CAN_HOME(Y) && !_CAN_HOME(Z)) return;
  1314. #endif
  1315. if (DEBUGGING(LEVELING)) DEBUG_ECHOLNPAIR(">>> homeaxis(", axis_codes[axis], ")");
  1316. const int axis_home_dir = TERN0(DUAL_X_CARRIAGE, axis == X_AXIS)
  1317. ? x_home_dir(active_extruder) : home_dir(axis);
  1318. // Homing Z towards the bed? Deploy the Z probe or endstop.
  1319. if (TERN0(HOMING_Z_WITH_PROBE, axis == Z_AXIS && probe.deploy()))
  1320. return;
  1321. // Set flags for X, Y, Z motor locking
  1322. #if HAS_EXTRA_ENDSTOPS
  1323. switch (axis) {
  1324. TERN_(X_DUAL_ENDSTOPS, case X_AXIS:)
  1325. TERN_(Y_DUAL_ENDSTOPS, case Y_AXIS:)
  1326. TERN_(Z_MULTI_ENDSTOPS, case Z_AXIS:)
  1327. stepper.set_separate_multi_axis(true);
  1328. default: break;
  1329. }
  1330. #endif
  1331. // Fast move towards endstop until triggered
  1332. if (DEBUGGING(LEVELING)) DEBUG_ECHOLNPGM("Home 1 Fast:");
  1333. #if BOTH(HOMING_Z_WITH_PROBE, BLTOUCH)
  1334. if (axis == Z_AXIS && bltouch.deploy()) return; // The initial DEPLOY
  1335. #endif
  1336. #if DISABLED(DELTA) && defined(SENSORLESS_BACKOFF_MM)
  1337. const xy_float_t backoff = SENSORLESS_BACKOFF_MM;
  1338. if (((ENABLED(X_SENSORLESS) && axis == X_AXIS) || (ENABLED(Y_SENSORLESS) && axis == Y_AXIS)) && backoff[axis])
  1339. do_homing_move(axis, -ABS(backoff[axis]) * axis_home_dir, homing_feedrate(axis));
  1340. #endif
  1341. do_homing_move(axis, 1.5f * max_length(TERN(DELTA, Z_AXIS, axis)) * axis_home_dir);
  1342. #if BOTH(HOMING_Z_WITH_PROBE, BLTOUCH) && DISABLED(BLTOUCH_HS_MODE)
  1343. if (axis == Z_AXIS) bltouch.stow(); // Intermediate STOW (in LOW SPEED MODE)
  1344. #endif
  1345. // When homing Z with probe respect probe clearance
  1346. const bool use_probe_bump = TERN0(HOMING_Z_WITH_PROBE, axis == Z_AXIS && home_bump_mm(Z_AXIS));
  1347. const float bump = axis_home_dir * (
  1348. use_probe_bump ? _MAX(TERN0(HOMING_Z_WITH_PROBE, Z_CLEARANCE_BETWEEN_PROBES), home_bump_mm(Z_AXIS)) : home_bump_mm(axis)
  1349. );
  1350. // If a second homing move is configured...
  1351. if (bump) {
  1352. // Move away from the endstop by the axis HOMING_BUMP_MM
  1353. if (DEBUGGING(LEVELING)) DEBUG_ECHOLNPGM("Move Away:");
  1354. do_homing_move(axis, -bump
  1355. #if HOMING_Z_WITH_PROBE
  1356. , MMM_TO_MMS(axis == Z_AXIS ? Z_PROBE_SPEED_FAST : 0)
  1357. #endif
  1358. );
  1359. #if ENABLED(DETECT_BROKEN_ENDSTOP)
  1360. // Check for a broken endstop
  1361. EndstopEnum es;
  1362. switch (axis) {
  1363. default:
  1364. case X_AXIS: es = X_ENDSTOP; break;
  1365. case Y_AXIS: es = Y_ENDSTOP; break;
  1366. case Z_AXIS: es = Z_ENDSTOP; break;
  1367. }
  1368. if (TEST(endstops.state(), es)) {
  1369. SERIAL_ECHO_MSG("Bad ", axis_codes[axis], " Endstop?");
  1370. kill(GET_TEXT(MSG_KILL_HOMING_FAILED));
  1371. }
  1372. #endif
  1373. // Slow move towards endstop until triggered
  1374. if (DEBUGGING(LEVELING)) DEBUG_ECHOLNPGM("Home 2 Slow:");
  1375. #if BOTH(HOMING_Z_WITH_PROBE, BLTOUCH) && DISABLED(BLTOUCH_HS_MODE)
  1376. if (axis == Z_AXIS && bltouch.deploy()) return; // Intermediate DEPLOY (in LOW SPEED MODE)
  1377. #endif
  1378. do_homing_move(axis, 2 * bump, get_homing_bump_feedrate(axis));
  1379. #if BOTH(HOMING_Z_WITH_PROBE, BLTOUCH)
  1380. if (axis == Z_AXIS) bltouch.stow(); // The final STOW
  1381. #endif
  1382. }
  1383. #if HAS_EXTRA_ENDSTOPS
  1384. const bool pos_dir = axis_home_dir > 0;
  1385. #if ENABLED(X_DUAL_ENDSTOPS)
  1386. if (axis == X_AXIS) {
  1387. const float adj = ABS(endstops.x2_endstop_adj);
  1388. if (adj) {
  1389. if (pos_dir ? (endstops.x2_endstop_adj > 0) : (endstops.x2_endstop_adj < 0)) stepper.set_x_lock(true); else stepper.set_x2_lock(true);
  1390. do_homing_move(axis, pos_dir ? -adj : adj);
  1391. stepper.set_x_lock(false);
  1392. stepper.set_x2_lock(false);
  1393. }
  1394. }
  1395. #endif
  1396. #if ENABLED(Y_DUAL_ENDSTOPS)
  1397. if (axis == Y_AXIS) {
  1398. const float adj = ABS(endstops.y2_endstop_adj);
  1399. if (adj) {
  1400. if (pos_dir ? (endstops.y2_endstop_adj > 0) : (endstops.y2_endstop_adj < 0)) stepper.set_y_lock(true); else stepper.set_y2_lock(true);
  1401. do_homing_move(axis, pos_dir ? -adj : adj);
  1402. stepper.set_y_lock(false);
  1403. stepper.set_y2_lock(false);
  1404. }
  1405. }
  1406. #endif
  1407. #if ENABLED(Z_MULTI_ENDSTOPS)
  1408. if (axis == Z_AXIS) {
  1409. #if NUM_Z_STEPPER_DRIVERS == 2
  1410. const float adj = ABS(endstops.z2_endstop_adj);
  1411. if (adj) {
  1412. if (pos_dir ? (endstops.z2_endstop_adj > 0) : (endstops.z2_endstop_adj < 0)) stepper.set_z1_lock(true); else stepper.set_z2_lock(true);
  1413. do_homing_move(axis, pos_dir ? -adj : adj);
  1414. stepper.set_z1_lock(false);
  1415. stepper.set_z2_lock(false);
  1416. }
  1417. #else
  1418. // Handy arrays of stepper lock function pointers
  1419. typedef void (*adjustFunc_t)(const bool);
  1420. adjustFunc_t lock[] = {
  1421. stepper.set_z1_lock, stepper.set_z2_lock, stepper.set_z3_lock
  1422. #if NUM_Z_STEPPER_DRIVERS >= 4
  1423. , stepper.set_z4_lock
  1424. #endif
  1425. };
  1426. float adj[] = {
  1427. 0, endstops.z2_endstop_adj, endstops.z3_endstop_adj
  1428. #if NUM_Z_STEPPER_DRIVERS >= 4
  1429. , endstops.z4_endstop_adj
  1430. #endif
  1431. };
  1432. adjustFunc_t tempLock;
  1433. float tempAdj;
  1434. // Manual bubble sort by adjust value
  1435. if (adj[1] < adj[0]) {
  1436. tempLock = lock[0], tempAdj = adj[0];
  1437. lock[0] = lock[1], adj[0] = adj[1];
  1438. lock[1] = tempLock, adj[1] = tempAdj;
  1439. }
  1440. if (adj[2] < adj[1]) {
  1441. tempLock = lock[1], tempAdj = adj[1];
  1442. lock[1] = lock[2], adj[1] = adj[2];
  1443. lock[2] = tempLock, adj[2] = tempAdj;
  1444. }
  1445. #if NUM_Z_STEPPER_DRIVERS >= 4
  1446. if (adj[3] < adj[2]) {
  1447. tempLock = lock[2], tempAdj = adj[2];
  1448. lock[2] = lock[3], adj[2] = adj[3];
  1449. lock[3] = tempLock, adj[3] = tempAdj;
  1450. }
  1451. if (adj[2] < adj[1]) {
  1452. tempLock = lock[1], tempAdj = adj[1];
  1453. lock[1] = lock[2], adj[1] = adj[2];
  1454. lock[2] = tempLock, adj[2] = tempAdj;
  1455. }
  1456. #endif
  1457. if (adj[1] < adj[0]) {
  1458. tempLock = lock[0], tempAdj = adj[0];
  1459. lock[0] = lock[1], adj[0] = adj[1];
  1460. lock[1] = tempLock, adj[1] = tempAdj;
  1461. }
  1462. if (pos_dir) {
  1463. // normalize adj to smallest value and do the first move
  1464. (*lock[0])(true);
  1465. do_homing_move(axis, adj[1] - adj[0]);
  1466. // lock the second stepper for the final correction
  1467. (*lock[1])(true);
  1468. do_homing_move(axis, adj[2] - adj[1]);
  1469. #if NUM_Z_STEPPER_DRIVERS >= 4
  1470. // lock the third stepper for the final correction
  1471. (*lock[2])(true);
  1472. do_homing_move(axis, adj[3] - adj[2]);
  1473. #endif
  1474. }
  1475. else {
  1476. #if NUM_Z_STEPPER_DRIVERS >= 4
  1477. (*lock[3])(true);
  1478. do_homing_move(axis, adj[2] - adj[3]);
  1479. #endif
  1480. (*lock[2])(true);
  1481. do_homing_move(axis, adj[1] - adj[2]);
  1482. (*lock[1])(true);
  1483. do_homing_move(axis, adj[0] - adj[1]);
  1484. }
  1485. stepper.set_z1_lock(false);
  1486. stepper.set_z2_lock(false);
  1487. stepper.set_z3_lock(false);
  1488. #if NUM_Z_STEPPER_DRIVERS >= 4
  1489. stepper.set_z4_lock(false);
  1490. #endif
  1491. #endif
  1492. }
  1493. #endif
  1494. // Reset flags for X, Y, Z motor locking
  1495. switch (axis) {
  1496. default: break;
  1497. TERN_(X_DUAL_ENDSTOPS, case X_AXIS:)
  1498. TERN_(Y_DUAL_ENDSTOPS, case Y_AXIS:)
  1499. TERN_(Z_MULTI_ENDSTOPS, case Z_AXIS:)
  1500. stepper.set_separate_multi_axis(false);
  1501. }
  1502. #endif
  1503. #ifdef TMC_HOME_PHASE
  1504. // move back to homing phase if configured and capable
  1505. backout_to_tmc_homing_phase(axis);
  1506. #endif
  1507. #if IS_SCARA
  1508. set_axis_is_at_home(axis);
  1509. sync_plan_position();
  1510. #elif ENABLED(DELTA)
  1511. // Delta has already moved all three towers up in G28
  1512. // so here it re-homes each tower in turn.
  1513. // Delta homing treats the axes as normal linear axes.
  1514. const float adjDistance = delta_endstop_adj[axis],
  1515. minDistance = (MIN_STEPS_PER_SEGMENT) * planner.steps_to_mm[axis];
  1516. // Retrace by the amount specified in delta_endstop_adj if more than min steps.
  1517. if (adjDistance * (Z_HOME_DIR) < 0 && ABS(adjDistance) > minDistance) { // away from endstop, more than min distance
  1518. if (DEBUGGING(LEVELING)) DEBUG_ECHOLNPAIR("adjDistance:", adjDistance);
  1519. do_homing_move(axis, adjDistance, get_homing_bump_feedrate(axis));
  1520. }
  1521. #else // CARTESIAN / CORE / MARKFORGED_XY
  1522. set_axis_is_at_home(axis);
  1523. sync_plan_position();
  1524. destination[axis] = current_position[axis];
  1525. if (DEBUGGING(LEVELING)) DEBUG_POS("> AFTER set_axis_is_at_home", current_position);
  1526. #endif
  1527. // Put away the Z probe
  1528. #if HOMING_Z_WITH_PROBE
  1529. if (axis == Z_AXIS && probe.stow()) return;
  1530. #endif
  1531. #if DISABLED(DELTA) && defined(HOMING_BACKOFF_POST_MM)
  1532. const xyz_float_t endstop_backoff = HOMING_BACKOFF_POST_MM;
  1533. if (endstop_backoff[axis]) {
  1534. current_position[axis] -= ABS(endstop_backoff[axis]) * axis_home_dir;
  1535. line_to_current_position(
  1536. #if HOMING_Z_WITH_PROBE
  1537. (axis == Z_AXIS) ? MMM_TO_MMS(Z_PROBE_SPEED_FAST) :
  1538. #endif
  1539. homing_feedrate(axis)
  1540. );
  1541. #if ENABLED(SENSORLESS_HOMING)
  1542. planner.synchronize();
  1543. if (false
  1544. #if EITHER(IS_CORE, MARKFORGED_XY)
  1545. || axis != NORMAL_AXIS
  1546. #endif
  1547. ) safe_delay(200); // Short delay to allow belts to spring back
  1548. #endif
  1549. }
  1550. #endif
  1551. // Clear retracted status if homing the Z axis
  1552. #if ENABLED(FWRETRACT)
  1553. if (axis == Z_AXIS) fwretract.current_hop = 0.0;
  1554. #endif
  1555. if (DEBUGGING(LEVELING)) DEBUG_ECHOLNPAIR("<<< homeaxis(", axis_codes[axis], ")");
  1556. } // homeaxis()
  1557. #if HAS_WORKSPACE_OFFSET
  1558. void update_workspace_offset(const AxisEnum axis) {
  1559. workspace_offset[axis] = home_offset[axis] + position_shift[axis];
  1560. if (DEBUGGING(LEVELING)) DEBUG_ECHOLNPAIR("Axis ", XYZ_CHAR(axis), " home_offset = ", home_offset[axis], " position_shift = ", position_shift[axis]);
  1561. }
  1562. #endif
  1563. #if HAS_M206_COMMAND
  1564. /**
  1565. * Change the home offset for an axis.
  1566. * Also refreshes the workspace offset.
  1567. */
  1568. void set_home_offset(const AxisEnum axis, const float v) {
  1569. home_offset[axis] = v;
  1570. update_workspace_offset(axis);
  1571. }
  1572. #endif // HAS_M206_COMMAND