My Marlin configs for Fabrikator Mini and CTC i3 Pro B
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438
  1. /**
  2. * Marlin 3D Printer Firmware
  3. * Copyright (c) 2020 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
  4. *
  5. * Based on Sprinter and grbl.
  6. * Copyright (c) 2011 Camiel Gubbels / Erik van der Zalm
  7. *
  8. * This program is free software: you can redistribute it and/or modify
  9. * it under the terms of the GNU General Public License as published by
  10. * the Free Software Foundation, either version 3 of the License, or
  11. * (at your option) any later version.
  12. *
  13. * This program is distributed in the hope that it will be useful,
  14. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  16. * GNU General Public License for more details.
  17. *
  18. * You should have received a copy of the GNU General Public License
  19. * along with this program. If not, see <https://www.gnu.org/licenses/>.
  20. *
  21. */
  22. #pragma once
  23. /**
  24. * motion.h
  25. *
  26. * High-level motion commands to feed the planner
  27. * Some of these methods may migrate to the planner class.
  28. */
  29. #include "../inc/MarlinConfig.h"
  30. #if IS_SCARA
  31. #include "scara.h"
  32. #endif
  33. // Axis homed and known-position states
  34. extern uint8_t axis_homed, axis_known_position;
  35. constexpr uint8_t xyz_bits = _BV(X_AXIS) | _BV(Y_AXIS) | _BV(Z_AXIS);
  36. FORCE_INLINE bool no_axes_homed() { return !axis_homed; }
  37. FORCE_INLINE bool all_axes_homed() { return (axis_homed & xyz_bits) == xyz_bits; }
  38. FORCE_INLINE bool all_axes_known() { return (axis_known_position & xyz_bits) == xyz_bits; }
  39. FORCE_INLINE void set_all_homed() { axis_homed = axis_known_position = xyz_bits; }
  40. FORCE_INLINE void set_all_unhomed() { axis_homed = axis_known_position = 0; }
  41. FORCE_INLINE bool homing_needed() {
  42. return !TERN(HOME_AFTER_DEACTIVATE, all_axes_known, all_axes_homed)();
  43. }
  44. // Error margin to work around float imprecision
  45. constexpr float fslop = 0.0001;
  46. extern bool relative_mode;
  47. extern xyze_pos_t current_position, // High-level current tool position
  48. destination; // Destination for a move
  49. // G60/G61 Position Save and Return
  50. #if SAVED_POSITIONS
  51. extern uint8_t saved_slots[(SAVED_POSITIONS + 7) >> 3];
  52. extern xyz_pos_t stored_position[SAVED_POSITIONS];
  53. #endif
  54. // Scratch space for a cartesian result
  55. extern xyz_pos_t cartes;
  56. // Until kinematics.cpp is created, declare this here
  57. #if IS_KINEMATIC
  58. extern abc_pos_t delta;
  59. #endif
  60. #if HAS_ABL_NOT_UBL
  61. extern float xy_probe_feedrate_mm_s;
  62. #define XY_PROBE_FEEDRATE_MM_S xy_probe_feedrate_mm_s
  63. #elif defined(XY_PROBE_SPEED)
  64. #define XY_PROBE_FEEDRATE_MM_S MMM_TO_MMS(XY_PROBE_SPEED)
  65. #else
  66. #define XY_PROBE_FEEDRATE_MM_S PLANNER_XY_FEEDRATE()
  67. #endif
  68. #if ENABLED(Z_SAFE_HOMING)
  69. constexpr xy_float_t safe_homing_xy = { Z_SAFE_HOMING_X_POINT, Z_SAFE_HOMING_Y_POINT };
  70. #endif
  71. /**
  72. * Feed rates are often configured with mm/m
  73. * but the planner and stepper like mm/s units.
  74. */
  75. extern const feedRate_t homing_feedrate_mm_s[XYZ];
  76. FORCE_INLINE feedRate_t homing_feedrate(const AxisEnum a) { return pgm_read_float(&homing_feedrate_mm_s[a]); }
  77. feedRate_t get_homing_bump_feedrate(const AxisEnum axis);
  78. extern feedRate_t feedrate_mm_s;
  79. /**
  80. * Feedrate scaling
  81. */
  82. extern int16_t feedrate_percentage;
  83. // The active extruder (tool). Set with T<extruder> command.
  84. #if HAS_MULTI_EXTRUDER
  85. extern uint8_t active_extruder;
  86. #else
  87. constexpr uint8_t active_extruder = 0;
  88. #endif
  89. #if ENABLED(LCD_SHOW_E_TOTAL)
  90. extern float e_move_accumulator;
  91. #endif
  92. #ifdef __IMXRT1062__
  93. #define DEFS_PROGMEM
  94. #else
  95. #define DEFS_PROGMEM PROGMEM
  96. #endif
  97. inline float pgm_read_any(const float *p) { return TERN(__IMXRT1062__, *p, pgm_read_float(p)); }
  98. inline int8_t pgm_read_any(const int8_t *p) { return TERN(__IMXRT1062__, *p, pgm_read_byte(p)); }
  99. #define XYZ_DEFS(T, NAME, OPT) \
  100. inline T NAME(const AxisEnum axis) { \
  101. static const XYZval<T> NAME##_P DEFS_PROGMEM = { X_##OPT, Y_##OPT, Z_##OPT }; \
  102. return pgm_read_any(&NAME##_P[axis]); \
  103. }
  104. XYZ_DEFS(float, base_min_pos, MIN_POS);
  105. XYZ_DEFS(float, base_max_pos, MAX_POS);
  106. XYZ_DEFS(float, base_home_pos, HOME_POS);
  107. XYZ_DEFS(float, max_length, MAX_LENGTH);
  108. XYZ_DEFS(int8_t, home_dir, HOME_DIR);
  109. inline float home_bump_mm(const AxisEnum axis) {
  110. static const xyz_pos_t home_bump_mm_P DEFS_PROGMEM = HOMING_BUMP_MM;
  111. return pgm_read_any(&home_bump_mm_P[axis]);
  112. }
  113. #if HAS_WORKSPACE_OFFSET
  114. void update_workspace_offset(const AxisEnum axis);
  115. #else
  116. inline void update_workspace_offset(const AxisEnum) {}
  117. #endif
  118. #if HAS_HOTEND_OFFSET
  119. extern xyz_pos_t hotend_offset[HOTENDS];
  120. void reset_hotend_offsets();
  121. #elif HOTENDS
  122. constexpr xyz_pos_t hotend_offset[HOTENDS] = { { 0 } };
  123. #else
  124. constexpr xyz_pos_t hotend_offset[1] = { { 0 } };
  125. #endif
  126. #if HAS_SOFTWARE_ENDSTOPS
  127. typedef struct {
  128. bool _enabled, _loose;
  129. bool enabled() { return _enabled && !_loose; }
  130. xyz_pos_t min, max;
  131. void get_manual_axis_limits(const AxisEnum axis, float &amin, float &amax) {
  132. amin = -100000; amax = 100000; // "No limits"
  133. #if HAS_SOFTWARE_ENDSTOPS
  134. if (enabled()) switch (axis) {
  135. case X_AXIS:
  136. TERN_(MIN_SOFTWARE_ENDSTOP_X, amin = min.x);
  137. TERN_(MAX_SOFTWARE_ENDSTOP_X, amax = max.x);
  138. break;
  139. case Y_AXIS:
  140. TERN_(MIN_SOFTWARE_ENDSTOP_Y, amin = min.y);
  141. TERN_(MAX_SOFTWARE_ENDSTOP_Y, amax = max.y);
  142. break;
  143. case Z_AXIS:
  144. TERN_(MIN_SOFTWARE_ENDSTOP_Z, amin = min.z);
  145. TERN_(MAX_SOFTWARE_ENDSTOP_Z, amax = max.z);
  146. default: break;
  147. }
  148. #endif
  149. }
  150. } soft_endstops_t;
  151. extern soft_endstops_t soft_endstop;
  152. void apply_motion_limits(xyz_pos_t &target);
  153. void update_software_endstops(const AxisEnum axis
  154. #if HAS_HOTEND_OFFSET
  155. , const uint8_t old_tool_index=0, const uint8_t new_tool_index=0
  156. #endif
  157. );
  158. #define SET_SOFT_ENDSTOP_LOOSE(loose) (soft_endstop._loose = loose)
  159. #else // !HAS_SOFTWARE_ENDSTOPS
  160. typedef struct {
  161. bool enabled() { return false; }
  162. void get_manual_axis_limits(const AxisEnum axis, float &amin, float &amax) {
  163. // No limits
  164. amin = current_position[axis] - 1000;
  165. amax = current_position[axis] + 1000;
  166. }
  167. } soft_endstops_t;
  168. extern soft_endstops_t soft_endstop;
  169. #define apply_motion_limits(V) NOOP
  170. #define update_software_endstops(...) NOOP
  171. #define SET_SOFT_ENDSTOP_LOOSE(V) NOOP
  172. #endif // !HAS_SOFTWARE_ENDSTOPS
  173. void report_real_position();
  174. void report_current_position();
  175. void report_current_position_projected();
  176. void get_cartesian_from_steppers();
  177. void set_current_from_steppers_for_axis(const AxisEnum axis);
  178. /**
  179. * sync_plan_position
  180. *
  181. * Set the planner/stepper positions directly from current_position with
  182. * no kinematic translation. Used for homing axes and cartesian/core syncing.
  183. */
  184. void sync_plan_position();
  185. void sync_plan_position_e();
  186. /**
  187. * Move the planner to the current position from wherever it last moved
  188. * (or from wherever it has been told it is located).
  189. */
  190. void line_to_current_position(const feedRate_t &fr_mm_s=feedrate_mm_s);
  191. #if EXTRUDERS
  192. void unscaled_e_move(const float &length, const feedRate_t &fr_mm_s);
  193. #endif
  194. void prepare_line_to_destination();
  195. void _internal_move_to_destination(const feedRate_t &fr_mm_s=0.0f
  196. #if IS_KINEMATIC
  197. , const bool is_fast=false
  198. #endif
  199. );
  200. inline void prepare_internal_move_to_destination(const feedRate_t &fr_mm_s=0.0f) {
  201. _internal_move_to_destination(fr_mm_s);
  202. }
  203. #if IS_KINEMATIC
  204. void prepare_fast_move_to_destination(const feedRate_t &scaled_fr_mm_s=MMS_SCALED(feedrate_mm_s));
  205. inline void prepare_internal_fast_move_to_destination(const feedRate_t &fr_mm_s=0.0f) {
  206. _internal_move_to_destination(fr_mm_s, true);
  207. }
  208. #endif
  209. /**
  210. * Blocking movement and shorthand functions
  211. */
  212. void do_blocking_move_to(const float rx, const float ry, const float rz, const feedRate_t &fr_mm_s=0.0f);
  213. void do_blocking_move_to(const xy_pos_t &raw, const feedRate_t &fr_mm_s=0.0f);
  214. void do_blocking_move_to(const xyz_pos_t &raw, const feedRate_t &fr_mm_s=0.0f);
  215. void do_blocking_move_to(const xyze_pos_t &raw, const feedRate_t &fr_mm_s=0.0f);
  216. void do_blocking_move_to_x(const float &rx, const feedRate_t &fr_mm_s=0.0f);
  217. void do_blocking_move_to_y(const float &ry, const feedRate_t &fr_mm_s=0.0f);
  218. void do_blocking_move_to_z(const float &rz, const feedRate_t &fr_mm_s=0.0f);
  219. void do_blocking_move_to_xy(const float &rx, const float &ry, const feedRate_t &fr_mm_s=0.0f);
  220. void do_blocking_move_to_xy(const xy_pos_t &raw, const feedRate_t &fr_mm_s=0.0f);
  221. FORCE_INLINE void do_blocking_move_to_xy(const xyz_pos_t &raw, const feedRate_t &fr_mm_s=0.0f) { do_blocking_move_to_xy(xy_pos_t(raw), fr_mm_s); }
  222. FORCE_INLINE void do_blocking_move_to_xy(const xyze_pos_t &raw, const feedRate_t &fr_mm_s=0.0f) { do_blocking_move_to_xy(xy_pos_t(raw), fr_mm_s); }
  223. void do_blocking_move_to_xy_z(const xy_pos_t &raw, const float &z, const feedRate_t &fr_mm_s=0.0f);
  224. FORCE_INLINE void do_blocking_move_to_xy_z(const xyz_pos_t &raw, const float &z, const feedRate_t &fr_mm_s=0.0f) { do_blocking_move_to_xy_z(xy_pos_t(raw), z, fr_mm_s); }
  225. FORCE_INLINE void do_blocking_move_to_xy_z(const xyze_pos_t &raw, const float &z, const feedRate_t &fr_mm_s=0.0f) { do_blocking_move_to_xy_z(xy_pos_t(raw), z, fr_mm_s); }
  226. void remember_feedrate_and_scaling();
  227. void remember_feedrate_scaling_off();
  228. void restore_feedrate_and_scaling();
  229. void do_z_clearance(const float &zclear, const bool z_known=true, const bool raise_on_unknown=true, const bool lower_allowed=false);
  230. //
  231. // Homing
  232. //
  233. void homeaxis(const AxisEnum axis);
  234. void set_axis_is_at_home(const AxisEnum axis);
  235. void set_axis_never_homed(const AxisEnum axis);
  236. uint8_t axes_should_home(uint8_t axis_bits=0x07);
  237. bool homing_needed_error(uint8_t axis_bits=0x07);
  238. #if ENABLED(NO_MOTION_BEFORE_HOMING)
  239. #define MOTION_CONDITIONS (IsRunning() && !homing_needed_error())
  240. #else
  241. #define MOTION_CONDITIONS IsRunning()
  242. #endif
  243. /**
  244. * Workspace offsets
  245. */
  246. #if HAS_HOME_OFFSET || HAS_POSITION_SHIFT
  247. #if HAS_HOME_OFFSET
  248. extern xyz_pos_t home_offset;
  249. #endif
  250. #if HAS_POSITION_SHIFT
  251. extern xyz_pos_t position_shift;
  252. #endif
  253. #if HAS_HOME_OFFSET && HAS_POSITION_SHIFT
  254. extern xyz_pos_t workspace_offset;
  255. #define _WS workspace_offset
  256. #elif HAS_HOME_OFFSET
  257. #define _WS home_offset
  258. #else
  259. #define _WS position_shift
  260. #endif
  261. #define NATIVE_TO_LOGICAL(POS, AXIS) ((POS) + _WS[AXIS])
  262. #define LOGICAL_TO_NATIVE(POS, AXIS) ((POS) - _WS[AXIS])
  263. FORCE_INLINE void toLogical(xy_pos_t &raw) { raw += _WS; }
  264. FORCE_INLINE void toLogical(xyz_pos_t &raw) { raw += _WS; }
  265. FORCE_INLINE void toLogical(xyze_pos_t &raw) { raw += _WS; }
  266. FORCE_INLINE void toNative(xy_pos_t &raw) { raw -= _WS; }
  267. FORCE_INLINE void toNative(xyz_pos_t &raw) { raw -= _WS; }
  268. FORCE_INLINE void toNative(xyze_pos_t &raw) { raw -= _WS; }
  269. #else
  270. #define NATIVE_TO_LOGICAL(POS, AXIS) (POS)
  271. #define LOGICAL_TO_NATIVE(POS, AXIS) (POS)
  272. FORCE_INLINE void toLogical(xy_pos_t&) {}
  273. FORCE_INLINE void toLogical(xyz_pos_t&) {}
  274. FORCE_INLINE void toLogical(xyze_pos_t&) {}
  275. FORCE_INLINE void toNative(xy_pos_t&) {}
  276. FORCE_INLINE void toNative(xyz_pos_t&) {}
  277. FORCE_INLINE void toNative(xyze_pos_t&) {}
  278. #endif
  279. #define LOGICAL_X_POSITION(POS) NATIVE_TO_LOGICAL(POS, X_AXIS)
  280. #define LOGICAL_Y_POSITION(POS) NATIVE_TO_LOGICAL(POS, Y_AXIS)
  281. #define LOGICAL_Z_POSITION(POS) NATIVE_TO_LOGICAL(POS, Z_AXIS)
  282. #define RAW_X_POSITION(POS) LOGICAL_TO_NATIVE(POS, X_AXIS)
  283. #define RAW_Y_POSITION(POS) LOGICAL_TO_NATIVE(POS, Y_AXIS)
  284. #define RAW_Z_POSITION(POS) LOGICAL_TO_NATIVE(POS, Z_AXIS)
  285. /**
  286. * position_is_reachable family of functions
  287. */
  288. #if IS_KINEMATIC // (DELTA or SCARA)
  289. #if HAS_SCARA_OFFSET
  290. extern abc_pos_t scara_home_offset; // A and B angular offsets, Z mm offset
  291. #endif
  292. // Return true if the given point is within the printable area
  293. inline bool position_is_reachable(const float &rx, const float &ry, const float inset=0) {
  294. #if ENABLED(DELTA)
  295. return HYPOT2(rx, ry) <= sq(DELTA_PRINTABLE_RADIUS - inset + fslop);
  296. #elif IS_SCARA
  297. const float R2 = HYPOT2(rx - SCARA_OFFSET_X, ry - SCARA_OFFSET_Y);
  298. return (
  299. R2 <= sq(L1 + L2) - inset
  300. #if MIDDLE_DEAD_ZONE_R > 0
  301. && R2 >= sq(float(MIDDLE_DEAD_ZONE_R))
  302. #endif
  303. );
  304. #endif
  305. }
  306. inline bool position_is_reachable(const xy_pos_t &pos, const float inset=0) {
  307. return position_is_reachable(pos.x, pos.y, inset);
  308. }
  309. #else // CARTESIAN
  310. // Return true if the given position is within the machine bounds.
  311. inline bool position_is_reachable(const float &rx, const float &ry) {
  312. if (!WITHIN(ry, Y_MIN_POS - fslop, Y_MAX_POS + fslop)) return false;
  313. #if ENABLED(DUAL_X_CARRIAGE)
  314. if (active_extruder)
  315. return WITHIN(rx, X2_MIN_POS - fslop, X2_MAX_POS + fslop);
  316. else
  317. return WITHIN(rx, X1_MIN_POS - fslop, X1_MAX_POS + fslop);
  318. #else
  319. return WITHIN(rx, X_MIN_POS - fslop, X_MAX_POS + fslop);
  320. #endif
  321. }
  322. inline bool position_is_reachable(const xy_pos_t &pos) { return position_is_reachable(pos.x, pos.y); }
  323. #endif // CARTESIAN
  324. /**
  325. * Duplication mode
  326. */
  327. #if HAS_DUPLICATION_MODE
  328. extern bool extruder_duplication_enabled, // Used in Dual X mode 2
  329. mirrored_duplication_mode; // Used in Dual X mode 3
  330. #if ENABLED(MULTI_NOZZLE_DUPLICATION)
  331. extern uint8_t duplication_e_mask;
  332. #endif
  333. #endif
  334. /**
  335. * Dual X Carriage
  336. */
  337. #if ENABLED(DUAL_X_CARRIAGE)
  338. enum DualXMode : char {
  339. DXC_FULL_CONTROL_MODE,
  340. DXC_AUTO_PARK_MODE,
  341. DXC_DUPLICATION_MODE,
  342. DXC_MIRRORED_MODE
  343. };
  344. extern DualXMode dual_x_carriage_mode;
  345. extern float inactive_extruder_x_pos, // Used in mode 0 & 1
  346. duplicate_extruder_x_offset; // Used in mode 2 & 3
  347. extern xyz_pos_t raised_parked_position; // Used in mode 1
  348. extern bool active_extruder_parked; // Used in mode 1, 2 & 3
  349. extern millis_t delayed_move_time; // Used in mode 1
  350. extern int16_t duplicate_extruder_temp_offset; // Used in mode 2 & 3
  351. FORCE_INLINE bool dxc_is_duplicating() { return dual_x_carriage_mode >= DXC_DUPLICATION_MODE; }
  352. float x_home_pos(const uint8_t extruder);
  353. FORCE_INLINE int x_home_dir(const uint8_t extruder) { return extruder ? X2_HOME_DIR : X_HOME_DIR; }
  354. #else
  355. #if ENABLED(MULTI_NOZZLE_DUPLICATION)
  356. enum DualXMode : char { DXC_DUPLICATION_MODE = 2 };
  357. #endif
  358. FORCE_INLINE int x_home_dir(const uint8_t) { return home_dir(X_AXIS); }
  359. #endif
  360. #if HAS_M206_COMMAND
  361. void set_home_offset(const AxisEnum axis, const float v);
  362. #endif
  363. #if USE_SENSORLESS
  364. struct sensorless_t;
  365. sensorless_t start_sensorless_homing_per_axis(const AxisEnum axis);
  366. void end_sensorless_homing_per_axis(const AxisEnum axis, sensorless_t enable_stealth);
  367. #endif