My Marlin configs for Fabrikator Mini and CTC i3 Pro B
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

planner.h 35KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979
  1. /**
  2. * Marlin 3D Printer Firmware
  3. * Copyright (c) 2020 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
  4. *
  5. * Based on Sprinter and grbl.
  6. * Copyright (c) 2011 Camiel Gubbels / Erik van der Zalm
  7. *
  8. * This program is free software: you can redistribute it and/or modify
  9. * it under the terms of the GNU General Public License as published by
  10. * the Free Software Foundation, either version 3 of the License, or
  11. * (at your option) any later version.
  12. *
  13. * This program is distributed in the hope that it will be useful,
  14. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  16. * GNU General Public License for more details.
  17. *
  18. * You should have received a copy of the GNU General Public License
  19. * along with this program. If not, see <https://www.gnu.org/licenses/>.
  20. *
  21. */
  22. #pragma once
  23. /**
  24. * planner.h
  25. *
  26. * Buffer movement commands and manage the acceleration profile plan
  27. *
  28. * Derived from Grbl
  29. * Copyright (c) 2009-2011 Simen Svale Skogsrud
  30. */
  31. #include "../MarlinCore.h"
  32. #if ENABLED(JD_HANDLE_SMALL_SEGMENTS)
  33. // Enable this option for perfect accuracy but maximum
  34. // computation. Should be fine on ARM processors.
  35. //#define JD_USE_MATH_ACOS
  36. // Disable this option to save 120 bytes of PROGMEM,
  37. // but incur increased computation and a reduction
  38. // in accuracy.
  39. #define JD_USE_LOOKUP_TABLE
  40. #endif
  41. #include "motion.h"
  42. #include "../gcode/queue.h"
  43. #if ENABLED(DELTA)
  44. #include "delta.h"
  45. #endif
  46. #if ABL_PLANAR
  47. #include "../libs/vector_3.h" // for matrix_3x3
  48. #endif
  49. #if ENABLED(FWRETRACT)
  50. #include "../feature/fwretract.h"
  51. #endif
  52. #if ENABLED(MIXING_EXTRUDER)
  53. #include "../feature/mixing.h"
  54. #endif
  55. #if HAS_CUTTER
  56. #include "../feature/spindle_laser_types.h"
  57. #endif
  58. #if ENABLED(DIRECT_STEPPING)
  59. #include "../feature/direct_stepping.h"
  60. #define IS_PAGE(B) TEST(B->flag, BLOCK_BIT_IS_PAGE)
  61. #else
  62. #define IS_PAGE(B) false
  63. #endif
  64. // Feedrate for manual moves
  65. #ifdef MANUAL_FEEDRATE
  66. constexpr xyze_feedrate_t _mf = MANUAL_FEEDRATE,
  67. manual_feedrate_mm_s { _mf.x / 60.0f, _mf.y / 60.0f, _mf.z / 60.0f, _mf.e / 60.0f };
  68. #endif
  69. #if IS_KINEMATIC && HAS_JUNCTION_DEVIATION
  70. #define HAS_DIST_MM_ARG 1
  71. #endif
  72. enum BlockFlagBit : char {
  73. // Recalculate trapezoids on entry junction. For optimization.
  74. BLOCK_BIT_RECALCULATE,
  75. // Nominal speed always reached.
  76. // i.e., The segment is long enough, so the nominal speed is reachable if accelerating
  77. // from a safe speed (in consideration of jerking from zero speed).
  78. BLOCK_BIT_NOMINAL_LENGTH,
  79. // The block is segment 2+ of a longer move
  80. BLOCK_BIT_CONTINUED,
  81. // Sync the stepper counts from the block
  82. BLOCK_BIT_SYNC_POSITION
  83. // Direct stepping page
  84. #if ENABLED(DIRECT_STEPPING)
  85. , BLOCK_BIT_IS_PAGE
  86. #endif
  87. };
  88. enum BlockFlag : char {
  89. BLOCK_FLAG_RECALCULATE = _BV(BLOCK_BIT_RECALCULATE)
  90. , BLOCK_FLAG_NOMINAL_LENGTH = _BV(BLOCK_BIT_NOMINAL_LENGTH)
  91. , BLOCK_FLAG_CONTINUED = _BV(BLOCK_BIT_CONTINUED)
  92. , BLOCK_FLAG_SYNC_POSITION = _BV(BLOCK_BIT_SYNC_POSITION)
  93. #if ENABLED(DIRECT_STEPPING)
  94. , BLOCK_FLAG_IS_PAGE = _BV(BLOCK_BIT_IS_PAGE)
  95. #endif
  96. };
  97. #if ENABLED(LASER_POWER_INLINE)
  98. typedef struct {
  99. bool isPlanned:1;
  100. bool isEnabled:1;
  101. bool dir:1;
  102. bool Reserved:6;
  103. } power_status_t;
  104. typedef struct {
  105. power_status_t status; // See planner settings for meaning
  106. uint8_t power; // Ditto; When in trapezoid mode this is nominal power
  107. #if ENABLED(LASER_POWER_INLINE_TRAPEZOID)
  108. uint8_t power_entry; // Entry power for the laser
  109. #if DISABLED(LASER_POWER_INLINE_TRAPEZOID_CONT)
  110. uint8_t power_exit; // Exit power for the laser
  111. uint32_t entry_per, // Steps per power increment (to avoid floats in stepper calcs)
  112. exit_per; // Steps per power decrement
  113. #endif
  114. #endif
  115. } block_laser_t;
  116. #endif
  117. /**
  118. * struct block_t
  119. *
  120. * A single entry in the planner buffer.
  121. * Tracks linear movement over multiple axes.
  122. *
  123. * The "nominal" values are as-specified by gcode, and
  124. * may never actually be reached due to acceleration limits.
  125. */
  126. typedef struct block_t {
  127. volatile uint8_t flag; // Block flags (See BlockFlag enum above) - Modified by ISR and main thread!
  128. // Fields used by the motion planner to manage acceleration
  129. float nominal_speed_sqr, // The nominal speed for this block in (mm/sec)^2
  130. entry_speed_sqr, // Entry speed at previous-current junction in (mm/sec)^2
  131. max_entry_speed_sqr, // Maximum allowable junction entry speed in (mm/sec)^2
  132. millimeters, // The total travel of this block in mm
  133. acceleration; // acceleration mm/sec^2
  134. union {
  135. abce_ulong_t steps; // Step count along each axis
  136. abce_long_t position; // New position to force when this sync block is executed
  137. };
  138. uint32_t step_event_count; // The number of step events required to complete this block
  139. #if HAS_MULTI_EXTRUDER
  140. uint8_t extruder; // The extruder to move (if E move)
  141. #else
  142. static constexpr uint8_t extruder = 0;
  143. #endif
  144. TERN_(MIXING_EXTRUDER, MIXER_BLOCK_FIELD); // Normalized color for the mixing steppers
  145. // Settings for the trapezoid generator
  146. uint32_t accelerate_until, // The index of the step event on which to stop acceleration
  147. decelerate_after; // The index of the step event on which to start decelerating
  148. #if ENABLED(S_CURVE_ACCELERATION)
  149. uint32_t cruise_rate, // The actual cruise rate to use, between end of the acceleration phase and start of deceleration phase
  150. acceleration_time, // Acceleration time and deceleration time in STEP timer counts
  151. deceleration_time,
  152. acceleration_time_inverse, // Inverse of acceleration and deceleration periods, expressed as integer. Scale depends on CPU being used
  153. deceleration_time_inverse;
  154. #else
  155. uint32_t acceleration_rate; // The acceleration rate used for acceleration calculation
  156. #endif
  157. uint8_t direction_bits; // The direction bit set for this block (refers to *_DIRECTION_BIT in config.h)
  158. // Advance extrusion
  159. #if ENABLED(LIN_ADVANCE)
  160. bool use_advance_lead;
  161. uint16_t advance_speed, // STEP timer value for extruder speed offset ISR
  162. max_adv_steps, // max. advance steps to get cruising speed pressure (not always nominal_speed!)
  163. final_adv_steps; // advance steps due to exit speed
  164. float e_D_ratio;
  165. #endif
  166. uint32_t nominal_rate, // The nominal step rate for this block in step_events/sec
  167. initial_rate, // The jerk-adjusted step rate at start of block
  168. final_rate, // The minimal rate at exit
  169. acceleration_steps_per_s2; // acceleration steps/sec^2
  170. #if ENABLED(DIRECT_STEPPING)
  171. page_idx_t page_idx; // Page index used for direct stepping
  172. #endif
  173. #if HAS_CUTTER
  174. cutter_power_t cutter_power; // Power level for Spindle, Laser, etc.
  175. #endif
  176. #if HAS_FAN
  177. uint8_t fan_speed[FAN_COUNT];
  178. #endif
  179. #if ENABLED(BARICUDA)
  180. uint8_t valve_pressure, e_to_p_pressure;
  181. #endif
  182. #if HAS_WIRED_LCD
  183. uint32_t segment_time_us;
  184. #endif
  185. #if ENABLED(POWER_LOSS_RECOVERY)
  186. uint32_t sdpos;
  187. #endif
  188. #if ENABLED(LASER_POWER_INLINE)
  189. block_laser_t laser;
  190. #endif
  191. } block_t;
  192. #if ANY(LIN_ADVANCE, SCARA_FEEDRATE_SCALING, GRADIENT_MIX, LCD_SHOW_E_TOTAL)
  193. #define HAS_POSITION_FLOAT 1
  194. #endif
  195. #define BLOCK_MOD(n) ((n)&(BLOCK_BUFFER_SIZE-1))
  196. #if ENABLED(LASER_POWER_INLINE)
  197. typedef struct {
  198. /**
  199. * Laser status flags
  200. */
  201. power_status_t status;
  202. /**
  203. * Laser power: 0 or 255 in case of PWM-less laser,
  204. * or the OCR (oscillator count register) value;
  205. *
  206. * Using OCR instead of raw power, because it avoids
  207. * floating point operations during the move loop.
  208. */
  209. uint8_t power;
  210. } laser_state_t;
  211. #endif
  212. typedef struct {
  213. uint32_t max_acceleration_mm_per_s2[XYZE_N], // (mm/s^2) M201 XYZE
  214. min_segment_time_us; // (µs) M205 B
  215. float axis_steps_per_mm[XYZE_N]; // (steps) M92 XYZE - Steps per millimeter
  216. feedRate_t max_feedrate_mm_s[XYZE_N]; // (mm/s) M203 XYZE - Max speeds
  217. float acceleration, // (mm/s^2) M204 S - Normal acceleration. DEFAULT ACCELERATION for all printing moves.
  218. retract_acceleration, // (mm/s^2) M204 R - Retract acceleration. Filament pull-back and push-forward while standing still in the other axes
  219. travel_acceleration; // (mm/s^2) M204 T - Travel acceleration. DEFAULT ACCELERATION for all NON printing moves.
  220. feedRate_t min_feedrate_mm_s, // (mm/s) M205 S - Minimum linear feedrate
  221. min_travel_feedrate_mm_s; // (mm/s) M205 T - Minimum travel feedrate
  222. } planner_settings_t;
  223. #if DISABLED(SKEW_CORRECTION)
  224. #define XY_SKEW_FACTOR 0
  225. #define XZ_SKEW_FACTOR 0
  226. #define YZ_SKEW_FACTOR 0
  227. #endif
  228. typedef struct {
  229. #if ENABLED(SKEW_CORRECTION_GCODE)
  230. float xy;
  231. #if ENABLED(SKEW_CORRECTION_FOR_Z)
  232. float xz, yz;
  233. #else
  234. const float xz = XZ_SKEW_FACTOR, yz = YZ_SKEW_FACTOR;
  235. #endif
  236. #else
  237. const float xy = XY_SKEW_FACTOR,
  238. xz = XZ_SKEW_FACTOR, yz = YZ_SKEW_FACTOR;
  239. #endif
  240. } skew_factor_t;
  241. class Planner {
  242. public:
  243. /**
  244. * The move buffer, calculated in stepper steps
  245. *
  246. * block_buffer is a ring buffer...
  247. *
  248. * head,tail : indexes for write,read
  249. * head==tail : the buffer is empty
  250. * head!=tail : blocks are in the buffer
  251. * head==(tail-1)%size : the buffer is full
  252. *
  253. * Writer of head is Planner::buffer_segment().
  254. * Reader of tail is Stepper::isr(). Always consider tail busy / read-only
  255. */
  256. static block_t block_buffer[BLOCK_BUFFER_SIZE];
  257. static volatile uint8_t block_buffer_head, // Index of the next block to be pushed
  258. block_buffer_nonbusy, // Index of the first non busy block
  259. block_buffer_planned, // Index of the optimally planned block
  260. block_buffer_tail; // Index of the busy block, if any
  261. static uint16_t cleaning_buffer_counter; // A counter to disable queuing of blocks
  262. static uint8_t delay_before_delivering; // This counter delays delivery of blocks when queue becomes empty to allow the opportunity of merging blocks
  263. #if ENABLED(DISTINCT_E_FACTORS)
  264. static uint8_t last_extruder; // Respond to extruder change
  265. #endif
  266. #if ENABLED(DIRECT_STEPPING)
  267. static uint32_t last_page_step_rate; // Last page step rate given
  268. static xyze_bool_t last_page_dir; // Last page direction given
  269. #endif
  270. #if EXTRUDERS
  271. static int16_t flow_percentage[EXTRUDERS]; // Extrusion factor for each extruder
  272. static float e_factor[EXTRUDERS]; // The flow percentage and volumetric multiplier combine to scale E movement
  273. #endif
  274. #if DISABLED(NO_VOLUMETRICS)
  275. static float filament_size[EXTRUDERS], // diameter of filament (in millimeters), typically around 1.75 or 2.85, 0 disables the volumetric calculations for the extruder
  276. volumetric_area_nominal, // Nominal cross-sectional area
  277. volumetric_multiplier[EXTRUDERS]; // Reciprocal of cross-sectional area of filament (in mm^2). Pre-calculated to reduce computation in the planner
  278. // May be auto-adjusted by a filament width sensor
  279. #endif
  280. #if ENABLED(VOLUMETRIC_EXTRUDER_LIMIT)
  281. static float volumetric_extruder_limit[EXTRUDERS], // Maximum mm^3/sec the extruder can handle
  282. volumetric_extruder_feedrate_limit[EXTRUDERS]; // Feedrate limit (mm/s) calculated from volume limit
  283. #endif
  284. static planner_settings_t settings;
  285. #if ENABLED(LASER_POWER_INLINE)
  286. static laser_state_t laser_inline;
  287. #endif
  288. static uint32_t max_acceleration_steps_per_s2[XYZE_N]; // (steps/s^2) Derived from mm_per_s2
  289. static float steps_to_mm[XYZE_N]; // Millimeters per step
  290. #if HAS_JUNCTION_DEVIATION
  291. static float junction_deviation_mm; // (mm) M205 J
  292. #if HAS_LINEAR_E_JERK
  293. static float max_e_jerk[DISTINCT_E]; // Calculated from junction_deviation_mm
  294. #endif
  295. #endif
  296. #if HAS_CLASSIC_JERK
  297. // (mm/s^2) M205 XYZ(E) - The largest speed change requiring no acceleration.
  298. static TERN(HAS_LINEAR_E_JERK, xyz_pos_t, xyze_pos_t) max_jerk;
  299. #endif
  300. #if HAS_LEVELING
  301. static bool leveling_active; // Flag that bed leveling is enabled
  302. #if ABL_PLANAR
  303. static matrix_3x3 bed_level_matrix; // Transform to compensate for bed level
  304. #endif
  305. #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
  306. static float z_fade_height, inverse_z_fade_height;
  307. #endif
  308. #else
  309. static constexpr bool leveling_active = false;
  310. #endif
  311. #if ENABLED(LIN_ADVANCE)
  312. static float extruder_advance_K[EXTRUDERS];
  313. #endif
  314. /**
  315. * The current position of the tool in absolute steps
  316. * Recalculated if any axis_steps_per_mm are changed by gcode
  317. */
  318. static xyze_long_t position;
  319. #if HAS_POSITION_FLOAT
  320. static xyze_pos_t position_float;
  321. #endif
  322. #if IS_KINEMATIC
  323. static xyze_pos_t position_cart;
  324. #endif
  325. static skew_factor_t skew_factor;
  326. #if ENABLED(SD_ABORT_ON_ENDSTOP_HIT)
  327. static bool abort_on_endstop_hit;
  328. #endif
  329. #ifdef XY_FREQUENCY_LIMIT
  330. static int8_t xy_freq_limit_hz; // Minimum XY frequency setting
  331. static float xy_freq_min_speed_factor; // Minimum speed factor setting
  332. static int32_t xy_freq_min_interval_us; // Minimum segment time based on xy_freq_limit_hz
  333. static inline void refresh_frequency_limit() {
  334. //xy_freq_min_interval_us = xy_freq_limit_hz ?: LROUND(1000000.0f / xy_freq_limit_hz);
  335. if (xy_freq_limit_hz)
  336. xy_freq_min_interval_us = LROUND(1000000.0f / xy_freq_limit_hz);
  337. }
  338. static inline void set_min_speed_factor_u8(const uint8_t v255) {
  339. xy_freq_min_speed_factor = float(ui8_to_percent(v255)) / 100;
  340. }
  341. static inline void set_frequency_limit(const uint8_t hz) {
  342. xy_freq_limit_hz = constrain(hz, 0, 100);
  343. refresh_frequency_limit();
  344. }
  345. #endif
  346. private:
  347. /**
  348. * Speed of previous path line segment
  349. */
  350. static xyze_float_t previous_speed;
  351. /**
  352. * Nominal speed of previous path line segment (mm/s)^2
  353. */
  354. static float previous_nominal_speed_sqr;
  355. /**
  356. * Limit where 64bit math is necessary for acceleration calculation
  357. */
  358. static uint32_t cutoff_long;
  359. #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
  360. static float last_fade_z;
  361. #endif
  362. #if ENABLED(DISABLE_INACTIVE_EXTRUDER)
  363. // Counters to manage disabling inactive extruders
  364. static uint8_t g_uc_extruder_last_move[EXTRUDERS];
  365. #endif
  366. #if HAS_WIRED_LCD
  367. volatile static uint32_t block_buffer_runtime_us; // Theoretical block buffer runtime in µs
  368. #endif
  369. public:
  370. /**
  371. * Instance Methods
  372. */
  373. Planner();
  374. void init();
  375. /**
  376. * Static (class) Methods
  377. */
  378. static void reset_acceleration_rates();
  379. static void refresh_positioning();
  380. static void set_max_acceleration(const uint8_t axis, float targetValue);
  381. static void set_max_feedrate(const uint8_t axis, float targetValue);
  382. static void set_max_jerk(const AxisEnum axis, float targetValue);
  383. #if EXTRUDERS
  384. FORCE_INLINE static void refresh_e_factor(const uint8_t e) {
  385. e_factor[e] = flow_percentage[e] * 0.01f * TERN(NO_VOLUMETRICS, 1.0f, volumetric_multiplier[e]);
  386. }
  387. static inline void set_flow(const uint8_t e, const int16_t flow) {
  388. flow_percentage[e] = flow;
  389. refresh_e_factor(e);
  390. }
  391. #endif
  392. // Manage fans, paste pressure, etc.
  393. static void check_axes_activity();
  394. #if ENABLED(FILAMENT_WIDTH_SENSOR)
  395. void apply_filament_width_sensor(const int8_t encoded_ratio);
  396. static inline float volumetric_percent(const bool vol) {
  397. return 100.0f * (vol
  398. ? volumetric_area_nominal / volumetric_multiplier[FILAMENT_SENSOR_EXTRUDER_NUM]
  399. : volumetric_multiplier[FILAMENT_SENSOR_EXTRUDER_NUM]
  400. );
  401. }
  402. #endif
  403. #if DISABLED(NO_VOLUMETRICS)
  404. // Update multipliers based on new diameter measurements
  405. static void calculate_volumetric_multipliers();
  406. #if ENABLED(VOLUMETRIC_EXTRUDER_LIMIT)
  407. // Update pre calculated extruder feedrate limits based on volumetric values
  408. static void calculate_volumetric_extruder_limit(const uint8_t e);
  409. static void calculate_volumetric_extruder_limits();
  410. #endif
  411. FORCE_INLINE static void set_filament_size(const uint8_t e, const float &v) {
  412. filament_size[e] = v;
  413. if (v > 0) volumetric_area_nominal = CIRCLE_AREA(v * 0.5); //TODO: should it be per extruder
  414. // make sure all extruders have some sane value for the filament size
  415. LOOP_L_N(i, COUNT(filament_size))
  416. if (!filament_size[i]) filament_size[i] = DEFAULT_NOMINAL_FILAMENT_DIA;
  417. }
  418. #endif
  419. #if ENABLED(VOLUMETRIC_EXTRUDER_LIMIT)
  420. FORCE_INLINE static void set_volumetric_extruder_limit(const uint8_t e, const float &v) {
  421. volumetric_extruder_limit[e] = v;
  422. calculate_volumetric_extruder_limit(e);
  423. }
  424. #endif
  425. #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
  426. /**
  427. * Get the Z leveling fade factor based on the given Z height,
  428. * re-calculating only when needed.
  429. *
  430. * Returns 1.0 if planner.z_fade_height is 0.0.
  431. * Returns 0.0 if Z is past the specified 'Fade Height'.
  432. */
  433. static inline float fade_scaling_factor_for_z(const float &rz) {
  434. static float z_fade_factor = 1;
  435. if (!z_fade_height) return 1;
  436. if (rz >= z_fade_height) return 0;
  437. if (last_fade_z != rz) {
  438. last_fade_z = rz;
  439. z_fade_factor = 1 - rz * inverse_z_fade_height;
  440. }
  441. return z_fade_factor;
  442. }
  443. FORCE_INLINE static void force_fade_recalc() { last_fade_z = -999.999f; }
  444. FORCE_INLINE static void set_z_fade_height(const float &zfh) {
  445. z_fade_height = zfh > 0 ? zfh : 0;
  446. inverse_z_fade_height = RECIPROCAL(z_fade_height);
  447. force_fade_recalc();
  448. }
  449. FORCE_INLINE static bool leveling_active_at_z(const float &rz) {
  450. return !z_fade_height || rz < z_fade_height;
  451. }
  452. #else
  453. FORCE_INLINE static float fade_scaling_factor_for_z(const float&) { return 1; }
  454. FORCE_INLINE static bool leveling_active_at_z(const float&) { return true; }
  455. #endif
  456. #if ENABLED(SKEW_CORRECTION)
  457. FORCE_INLINE static void skew(float &cx, float &cy, const float &cz) {
  458. if (WITHIN(cx, X_MIN_POS + 1, X_MAX_POS) && WITHIN(cy, Y_MIN_POS + 1, Y_MAX_POS)) {
  459. const float sx = cx - cy * skew_factor.xy - cz * (skew_factor.xz - (skew_factor.xy * skew_factor.yz)),
  460. sy = cy - cz * skew_factor.yz;
  461. if (WITHIN(sx, X_MIN_POS, X_MAX_POS) && WITHIN(sy, Y_MIN_POS, Y_MAX_POS)) {
  462. cx = sx; cy = sy;
  463. }
  464. }
  465. }
  466. FORCE_INLINE static void skew(xyz_pos_t &raw) { skew(raw.x, raw.y, raw.z); }
  467. FORCE_INLINE static void unskew(float &cx, float &cy, const float &cz) {
  468. if (WITHIN(cx, X_MIN_POS, X_MAX_POS) && WITHIN(cy, Y_MIN_POS, Y_MAX_POS)) {
  469. const float sx = cx + cy * skew_factor.xy + cz * skew_factor.xz,
  470. sy = cy + cz * skew_factor.yz;
  471. if (WITHIN(sx, X_MIN_POS, X_MAX_POS) && WITHIN(sy, Y_MIN_POS, Y_MAX_POS)) {
  472. cx = sx; cy = sy;
  473. }
  474. }
  475. }
  476. FORCE_INLINE static void unskew(xyz_pos_t &raw) { unskew(raw.x, raw.y, raw.z); }
  477. #endif // SKEW_CORRECTION
  478. #if HAS_LEVELING
  479. /**
  480. * Apply leveling to transform a cartesian position
  481. * as it will be given to the planner and steppers.
  482. */
  483. static void apply_leveling(xyz_pos_t &raw);
  484. static void unapply_leveling(xyz_pos_t &raw);
  485. FORCE_INLINE static void force_unapply_leveling(xyz_pos_t &raw) {
  486. leveling_active = true;
  487. unapply_leveling(raw);
  488. leveling_active = false;
  489. }
  490. #else
  491. FORCE_INLINE static void apply_leveling(xyz_pos_t&) {}
  492. FORCE_INLINE static void unapply_leveling(xyz_pos_t&) {}
  493. #endif
  494. #if ENABLED(FWRETRACT)
  495. static void apply_retract(float &rz, float &e);
  496. FORCE_INLINE static void apply_retract(xyze_pos_t &raw) { apply_retract(raw.z, raw.e); }
  497. static void unapply_retract(float &rz, float &e);
  498. FORCE_INLINE static void unapply_retract(xyze_pos_t &raw) { unapply_retract(raw.z, raw.e); }
  499. #endif
  500. #if HAS_POSITION_MODIFIERS
  501. FORCE_INLINE static void apply_modifiers(xyze_pos_t &pos, bool leveling=ENABLED(PLANNER_LEVELING)) {
  502. TERN_(SKEW_CORRECTION, skew(pos));
  503. if (leveling) apply_leveling(pos);
  504. TERN_(FWRETRACT, apply_retract(pos));
  505. }
  506. FORCE_INLINE static void unapply_modifiers(xyze_pos_t &pos, bool leveling=ENABLED(PLANNER_LEVELING)) {
  507. TERN_(FWRETRACT, unapply_retract(pos));
  508. if (leveling) unapply_leveling(pos);
  509. TERN_(SKEW_CORRECTION, unskew(pos));
  510. }
  511. #endif // HAS_POSITION_MODIFIERS
  512. // Number of moves currently in the planner including the busy block, if any
  513. FORCE_INLINE static uint8_t movesplanned() { return BLOCK_MOD(block_buffer_head - block_buffer_tail); }
  514. // Number of nonbusy moves currently in the planner
  515. FORCE_INLINE static uint8_t nonbusy_movesplanned() { return BLOCK_MOD(block_buffer_head - block_buffer_nonbusy); }
  516. // Remove all blocks from the buffer
  517. FORCE_INLINE static void clear_block_buffer() { block_buffer_nonbusy = block_buffer_planned = block_buffer_head = block_buffer_tail = 0; }
  518. // Check if movement queue is full
  519. FORCE_INLINE static bool is_full() { return block_buffer_tail == next_block_index(block_buffer_head); }
  520. // Get count of movement slots free
  521. FORCE_INLINE static uint8_t moves_free() { return BLOCK_BUFFER_SIZE - 1 - movesplanned(); }
  522. /**
  523. * Planner::get_next_free_block
  524. *
  525. * - Get the next head indices (passed by reference)
  526. * - Wait for the number of spaces to open up in the planner
  527. * - Return the first head block
  528. */
  529. FORCE_INLINE static block_t* get_next_free_block(uint8_t &next_buffer_head, const uint8_t count=1) {
  530. // Wait until there are enough slots free
  531. while (moves_free() < count) { idle(); }
  532. // Return the first available block
  533. next_buffer_head = next_block_index(block_buffer_head);
  534. return &block_buffer[block_buffer_head];
  535. }
  536. /**
  537. * Planner::_buffer_steps
  538. *
  539. * Add a new linear movement to the buffer (in terms of steps).
  540. *
  541. * target - target position in steps units
  542. * fr_mm_s - (target) speed of the move
  543. * extruder - target extruder
  544. * millimeters - the length of the movement, if known
  545. *
  546. * Returns true if movement was buffered, false otherwise
  547. */
  548. static bool _buffer_steps(const xyze_long_t &target
  549. #if HAS_POSITION_FLOAT
  550. , const xyze_pos_t &target_float
  551. #endif
  552. #if HAS_DIST_MM_ARG
  553. , const xyze_float_t &cart_dist_mm
  554. #endif
  555. , feedRate_t fr_mm_s, const uint8_t extruder, const float &millimeters=0.0
  556. );
  557. /**
  558. * Planner::_populate_block
  559. *
  560. * Fills a new linear movement in the block (in terms of steps).
  561. *
  562. * target - target position in steps units
  563. * fr_mm_s - (target) speed of the move
  564. * extruder - target extruder
  565. * millimeters - the length of the movement, if known
  566. *
  567. * Returns true is movement is acceptable, false otherwise
  568. */
  569. static bool _populate_block(block_t * const block, bool split_move,
  570. const xyze_long_t &target
  571. #if HAS_POSITION_FLOAT
  572. , const xyze_pos_t &target_float
  573. #endif
  574. #if HAS_DIST_MM_ARG
  575. , const xyze_float_t &cart_dist_mm
  576. #endif
  577. , feedRate_t fr_mm_s, const uint8_t extruder, const float &millimeters=0.0
  578. );
  579. /**
  580. * Planner::buffer_sync_block
  581. * Add a block to the buffer that just updates the position
  582. */
  583. static void buffer_sync_block();
  584. #if IS_KINEMATIC
  585. private:
  586. // Allow do_homing_move to access internal functions, such as buffer_segment.
  587. friend void do_homing_move(const AxisEnum, const float, const feedRate_t);
  588. #endif
  589. /**
  590. * Planner::buffer_segment
  591. *
  592. * Add a new linear movement to the buffer in axis units.
  593. *
  594. * Leveling and kinematics should be applied ahead of calling this.
  595. *
  596. * a,b,c,e - target positions in mm and/or degrees
  597. * fr_mm_s - (target) speed of the move
  598. * extruder - target extruder
  599. * millimeters - the length of the movement, if known
  600. */
  601. static bool buffer_segment(const float &a, const float &b, const float &c, const float &e
  602. #if HAS_DIST_MM_ARG
  603. , const xyze_float_t &cart_dist_mm
  604. #endif
  605. , const feedRate_t &fr_mm_s, const uint8_t extruder, const float &millimeters=0.0
  606. );
  607. FORCE_INLINE static bool buffer_segment(abce_pos_t &abce
  608. #if HAS_DIST_MM_ARG
  609. , const xyze_float_t &cart_dist_mm
  610. #endif
  611. , const feedRate_t &fr_mm_s, const uint8_t extruder, const float &millimeters=0.0
  612. ) {
  613. return buffer_segment(abce.a, abce.b, abce.c, abce.e
  614. #if HAS_DIST_MM_ARG
  615. , cart_dist_mm
  616. #endif
  617. , fr_mm_s, extruder, millimeters);
  618. }
  619. public:
  620. /**
  621. * Add a new linear movement to the buffer.
  622. * The target is cartesian. It's translated to
  623. * delta/scara if needed.
  624. *
  625. * rx,ry,rz,e - target position in mm or degrees
  626. * fr_mm_s - (target) speed of the move (mm/s)
  627. * extruder - target extruder
  628. * millimeters - the length of the movement, if known
  629. * inv_duration - the reciprocal if the duration of the movement, if known (kinematic only if feeedrate scaling is enabled)
  630. */
  631. static bool buffer_line(const float &rx, const float &ry, const float &rz, const float &e, const feedRate_t &fr_mm_s, const uint8_t extruder, const float millimeters=0.0
  632. #if ENABLED(SCARA_FEEDRATE_SCALING)
  633. , const float &inv_duration=0.0
  634. #endif
  635. );
  636. FORCE_INLINE static bool buffer_line(const xyze_pos_t &cart, const feedRate_t &fr_mm_s, const uint8_t extruder, const float millimeters=0.0
  637. #if ENABLED(SCARA_FEEDRATE_SCALING)
  638. , const float &inv_duration=0.0
  639. #endif
  640. ) {
  641. return buffer_line(cart.x, cart.y, cart.z, cart.e, fr_mm_s, extruder, millimeters
  642. #if ENABLED(SCARA_FEEDRATE_SCALING)
  643. , inv_duration
  644. #endif
  645. );
  646. }
  647. #if ENABLED(DIRECT_STEPPING)
  648. static void buffer_page(const page_idx_t page_idx, const uint8_t extruder, const uint16_t num_steps);
  649. #endif
  650. /**
  651. * Set the planner.position and individual stepper positions.
  652. * Used by G92, G28, G29, and other procedures.
  653. *
  654. * The supplied position is in the cartesian coordinate space and is
  655. * translated in to machine space as needed. Modifiers such as leveling
  656. * and skew are also applied.
  657. *
  658. * Multiplies by axis_steps_per_mm[] and does necessary conversion
  659. * for COREXY / COREXZ / COREYZ to set the corresponding stepper positions.
  660. *
  661. * Clears previous speed values.
  662. */
  663. static void set_position_mm(const float &rx, const float &ry, const float &rz, const float &e);
  664. FORCE_INLINE static void set_position_mm(const xyze_pos_t &cart) { set_position_mm(cart.x, cart.y, cart.z, cart.e); }
  665. static void set_e_position_mm(const float &e);
  666. /**
  667. * Set the planner.position and individual stepper positions.
  668. *
  669. * The supplied position is in machine space, and no additional
  670. * conversions are applied.
  671. */
  672. static void set_machine_position_mm(const float &a, const float &b, const float &c, const float &e);
  673. FORCE_INLINE static void set_machine_position_mm(const abce_pos_t &abce) { set_machine_position_mm(abce.a, abce.b, abce.c, abce.e); }
  674. /**
  675. * Get an axis position according to stepper position(s)
  676. * For CORE machines apply translation from ABC to XYZ.
  677. */
  678. static float get_axis_position_mm(const AxisEnum axis);
  679. static inline abce_pos_t get_axis_positions_mm() {
  680. const abce_pos_t out = {
  681. get_axis_position_mm(A_AXIS),
  682. get_axis_position_mm(B_AXIS),
  683. get_axis_position_mm(C_AXIS),
  684. get_axis_position_mm(E_AXIS)
  685. };
  686. return out;
  687. }
  688. // SCARA AB axes are in degrees, not mm
  689. #if IS_SCARA
  690. FORCE_INLINE static float get_axis_position_degrees(const AxisEnum axis) { return get_axis_position_mm(axis); }
  691. #endif
  692. // Called to force a quick stop of the machine (for example, when
  693. // a Full Shutdown is required, or when endstops are hit)
  694. static void quick_stop();
  695. // Called when an endstop is triggered. Causes the machine to stop inmediately
  696. static void endstop_triggered(const AxisEnum axis);
  697. // Triggered position of an axis in mm (not core-savvy)
  698. static float triggered_position_mm(const AxisEnum axis);
  699. // Block until all buffered steps are executed / cleaned
  700. static void synchronize();
  701. // Wait for moves to finish and disable all steppers
  702. static void finish_and_disable();
  703. // Periodic tick to handle cleaning timeouts
  704. // Called from the Temperature ISR at ~1kHz
  705. static void tick() {
  706. if (cleaning_buffer_counter) --cleaning_buffer_counter;
  707. }
  708. /**
  709. * Does the buffer have any blocks queued?
  710. */
  711. FORCE_INLINE static bool has_blocks_queued() { return (block_buffer_head != block_buffer_tail); }
  712. /**
  713. * Get the current block for processing
  714. * and mark the block as busy.
  715. * Return nullptr if the buffer is empty
  716. * or if there is a first-block delay.
  717. *
  718. * WARNING: Called from Stepper ISR context!
  719. */
  720. static block_t* get_current_block();
  721. /**
  722. * "Release" the current block so its slot can be reused.
  723. * Called when the current block is no longer needed.
  724. */
  725. FORCE_INLINE static void release_current_block() {
  726. if (has_blocks_queued())
  727. block_buffer_tail = next_block_index(block_buffer_tail);
  728. }
  729. #if HAS_WIRED_LCD
  730. static uint16_t block_buffer_runtime();
  731. static void clear_block_buffer_runtime();
  732. #endif
  733. #if ENABLED(AUTOTEMP)
  734. static float autotemp_min, autotemp_max, autotemp_factor;
  735. static bool autotemp_enabled;
  736. static void getHighESpeed();
  737. static void autotemp_M104_M109();
  738. static void autotemp_update();
  739. #endif
  740. #if HAS_LINEAR_E_JERK
  741. FORCE_INLINE static void recalculate_max_e_jerk() {
  742. const float prop = junction_deviation_mm * SQRT(0.5) / (1.0f - SQRT(0.5));
  743. LOOP_L_N(i, EXTRUDERS)
  744. max_e_jerk[E_INDEX_N(i)] = SQRT(prop * settings.max_acceleration_mm_per_s2[E_INDEX_N(i)]);
  745. }
  746. #endif
  747. private:
  748. /**
  749. * Get the index of the next / previous block in the ring buffer
  750. */
  751. static constexpr uint8_t next_block_index(const uint8_t block_index) { return BLOCK_MOD(block_index + 1); }
  752. static constexpr uint8_t prev_block_index(const uint8_t block_index) { return BLOCK_MOD(block_index - 1); }
  753. /**
  754. * Calculate the distance (not time) it takes to accelerate
  755. * from initial_rate to target_rate using the given acceleration:
  756. */
  757. static float estimate_acceleration_distance(const float &initial_rate, const float &target_rate, const float &accel) {
  758. if (accel == 0) return 0; // accel was 0, set acceleration distance to 0
  759. return (sq(target_rate) - sq(initial_rate)) / (accel * 2);
  760. }
  761. /**
  762. * Return the point at which you must start braking (at the rate of -'accel') if
  763. * you start at 'initial_rate', accelerate (until reaching the point), and want to end at
  764. * 'final_rate' after traveling 'distance'.
  765. *
  766. * This is used to compute the intersection point between acceleration and deceleration
  767. * in cases where the "trapezoid" has no plateau (i.e., never reaches maximum speed)
  768. */
  769. static float intersection_distance(const float &initial_rate, const float &final_rate, const float &accel, const float &distance) {
  770. if (accel == 0) return 0; // accel was 0, set intersection distance to 0
  771. return (accel * 2 * distance - sq(initial_rate) + sq(final_rate)) / (accel * 4);
  772. }
  773. /**
  774. * Calculate the maximum allowable speed squared at this point, in order
  775. * to reach 'target_velocity_sqr' using 'acceleration' within a given
  776. * 'distance'.
  777. */
  778. static float max_allowable_speed_sqr(const float &accel, const float &target_velocity_sqr, const float &distance) {
  779. return target_velocity_sqr - 2 * accel * distance;
  780. }
  781. #if ENABLED(S_CURVE_ACCELERATION)
  782. /**
  783. * Calculate the speed reached given initial speed, acceleration and distance
  784. */
  785. static float final_speed(const float &initial_velocity, const float &accel, const float &distance) {
  786. return SQRT(sq(initial_velocity) + 2 * accel * distance);
  787. }
  788. #endif
  789. static void calculate_trapezoid_for_block(block_t* const block, const float &entry_factor, const float &exit_factor);
  790. static void reverse_pass_kernel(block_t* const current, const block_t * const next);
  791. static void forward_pass_kernel(const block_t * const previous, block_t* const current, uint8_t block_index);
  792. static void reverse_pass();
  793. static void forward_pass();
  794. static void recalculate_trapezoids();
  795. static void recalculate();
  796. #if HAS_JUNCTION_DEVIATION
  797. FORCE_INLINE static void normalize_junction_vector(xyze_float_t &vector) {
  798. float magnitude_sq = 0;
  799. LOOP_XYZE(idx) if (vector[idx]) magnitude_sq += sq(vector[idx]);
  800. vector *= RSQRT(magnitude_sq);
  801. }
  802. FORCE_INLINE static float limit_value_by_axis_maximum(const float &max_value, xyze_float_t &unit_vec) {
  803. float limit_value = max_value;
  804. LOOP_XYZE(idx) {
  805. if (unit_vec[idx]) {
  806. if (limit_value * ABS(unit_vec[idx]) > settings.max_acceleration_mm_per_s2[idx])
  807. limit_value = ABS(settings.max_acceleration_mm_per_s2[idx] / unit_vec[idx]);
  808. }
  809. }
  810. return limit_value;
  811. }
  812. #endif // !CLASSIC_JERK
  813. };
  814. #define PLANNER_XY_FEEDRATE() (_MIN(planner.settings.max_feedrate_mm_s[X_AXIS], planner.settings.max_feedrate_mm_s[Y_AXIS]))
  815. extern Planner planner;