My Marlin configs for Fabrikator Mini and CTC i3 Pro B
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566
  1. /**
  2. * Marlin 3D Printer Firmware
  3. * Copyright (c) 2020 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
  4. *
  5. * Based on Sprinter and grbl.
  6. * Copyright (c) 2011 Camiel Gubbels / Erik van der Zalm
  7. *
  8. * This program is free software: you can redistribute it and/or modify
  9. * it under the terms of the GNU General Public License as published by
  10. * the Free Software Foundation, either version 3 of the License, or
  11. * (at your option) any later version.
  12. *
  13. * This program is distributed in the hope that it will be useful,
  14. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  16. * GNU General Public License for more details.
  17. *
  18. * You should have received a copy of the GNU General Public License
  19. * along with this program. If not, see <http://www.gnu.org/licenses/>.
  20. *
  21. */
  22. #pragma once
  23. /**
  24. * stepper.h - stepper motor driver: executes motion plans of planner.c using the stepper motors
  25. * Derived from Grbl
  26. *
  27. * Copyright (c) 2009-2011 Simen Svale Skogsrud
  28. *
  29. * Grbl is free software: you can redistribute it and/or modify
  30. * it under the terms of the GNU General Public License as published by
  31. * the Free Software Foundation, either version 3 of the License, or
  32. * (at your option) any later version.
  33. *
  34. * Grbl is distributed in the hope that it will be useful,
  35. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  36. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  37. * GNU General Public License for more details.
  38. *
  39. * You should have received a copy of the GNU General Public License
  40. * along with Grbl. If not, see <http://www.gnu.org/licenses/>.
  41. */
  42. #include "../inc/MarlinConfig.h"
  43. #include "planner.h"
  44. #include "stepper/indirection.h"
  45. #ifdef __AVR__
  46. #include "speed_lookuptable.h"
  47. #endif
  48. // Disable multiple steps per ISR
  49. //#define DISABLE_MULTI_STEPPING
  50. //
  51. // Estimate the amount of time the Stepper ISR will take to execute
  52. //
  53. /**
  54. * The method of calculating these cycle-constants is unclear.
  55. * Most of them are no longer used directly for pulse timing, and exist
  56. * only to estimate a maximum step rate based on the user's configuration.
  57. * As 32-bit processors continue to diverge, maintaining cycle counts
  58. * will become increasingly difficult and error-prone.
  59. */
  60. #ifdef CPU_32_BIT
  61. /**
  62. * Duration of START_TIMED_PULSE
  63. *
  64. * ...as measured on an LPC1768 with a scope and converted to cycles.
  65. * Not applicable to other 32-bit processors, but as long as others
  66. * take longer, pulses will be longer. For example the SKR Pro
  67. * (stm32f407zgt6) requires ~60 cyles.
  68. */
  69. #define TIMER_READ_ADD_AND_STORE_CYCLES 34UL
  70. // The base ISR takes 792 cycles
  71. #define ISR_BASE_CYCLES 792UL
  72. // Linear advance base time is 64 cycles
  73. #if ENABLED(LIN_ADVANCE)
  74. #define ISR_LA_BASE_CYCLES 64UL
  75. #else
  76. #define ISR_LA_BASE_CYCLES 0UL
  77. #endif
  78. // S curve interpolation adds 40 cycles
  79. #if ENABLED(S_CURVE_ACCELERATION)
  80. #define ISR_S_CURVE_CYCLES 40UL
  81. #else
  82. #define ISR_S_CURVE_CYCLES 0UL
  83. #endif
  84. // Stepper Loop base cycles
  85. #define ISR_LOOP_BASE_CYCLES 4UL
  86. // To start the step pulse, in the worst case takes
  87. #define ISR_START_STEPPER_CYCLES 13UL
  88. // And each stepper (start + stop pulse) takes in worst case
  89. #define ISR_STEPPER_CYCLES 16UL
  90. #else
  91. // Cycles to perform actions in START_TIMED_PULSE
  92. #define TIMER_READ_ADD_AND_STORE_CYCLES 13UL
  93. // The base ISR takes 752 cycles
  94. #define ISR_BASE_CYCLES 752UL
  95. // Linear advance base time is 32 cycles
  96. #if ENABLED(LIN_ADVANCE)
  97. #define ISR_LA_BASE_CYCLES 32UL
  98. #else
  99. #define ISR_LA_BASE_CYCLES 0UL
  100. #endif
  101. // S curve interpolation adds 160 cycles
  102. #if ENABLED(S_CURVE_ACCELERATION)
  103. #define ISR_S_CURVE_CYCLES 160UL
  104. #else
  105. #define ISR_S_CURVE_CYCLES 0UL
  106. #endif
  107. // Stepper Loop base cycles
  108. #define ISR_LOOP_BASE_CYCLES 32UL
  109. // To start the step pulse, in the worst case takes
  110. #define ISR_START_STEPPER_CYCLES 57UL
  111. // And each stepper (start + stop pulse) takes in worst case
  112. #define ISR_STEPPER_CYCLES 88UL
  113. #endif
  114. // Add time for each stepper
  115. #if HAS_X_STEP
  116. #define ISR_X_STEPPER_CYCLES ISR_STEPPER_CYCLES
  117. #else
  118. #define ISR_X_STEPPER_CYCLES 0UL
  119. #endif
  120. #if HAS_Y_STEP
  121. #define ISR_Y_STEPPER_CYCLES ISR_STEPPER_CYCLES
  122. #else
  123. #define ISR_START_Y_STEPPER_CYCLES 0UL
  124. #define ISR_Y_STEPPER_CYCLES 0UL
  125. #endif
  126. #if HAS_Z_STEP
  127. #define ISR_Z_STEPPER_CYCLES ISR_STEPPER_CYCLES
  128. #else
  129. #define ISR_Z_STEPPER_CYCLES 0UL
  130. #endif
  131. // E is always interpolated, even for mixing extruders
  132. #define ISR_E_STEPPER_CYCLES ISR_STEPPER_CYCLES
  133. // If linear advance is disabled, the loop also handles them
  134. #if DISABLED(LIN_ADVANCE) && ENABLED(MIXING_EXTRUDER)
  135. #define ISR_MIXING_STEPPER_CYCLES ((MIXING_STEPPERS) * (ISR_STEPPER_CYCLES))
  136. #else
  137. #define ISR_MIXING_STEPPER_CYCLES 0UL
  138. #endif
  139. // And the total minimum loop time, not including the base
  140. #define MIN_ISR_LOOP_CYCLES (ISR_X_STEPPER_CYCLES + ISR_Y_STEPPER_CYCLES + ISR_Z_STEPPER_CYCLES + ISR_E_STEPPER_CYCLES + ISR_MIXING_STEPPER_CYCLES)
  141. // Calculate the minimum MPU cycles needed per pulse to enforce, limited to the max stepper rate
  142. #define _MIN_STEPPER_PULSE_CYCLES(N) _MAX(uint32_t((F_CPU) / (MAXIMUM_STEPPER_RATE)), ((F_CPU) / 500000UL) * (N))
  143. #if MINIMUM_STEPPER_PULSE
  144. #define MIN_STEPPER_PULSE_CYCLES _MIN_STEPPER_PULSE_CYCLES(uint32_t(MINIMUM_STEPPER_PULSE))
  145. #elif HAS_DRIVER(LV8729)
  146. #define MIN_STEPPER_PULSE_CYCLES uint32_t((((F_CPU) - 1) / 2000000) + 1) // 0.5µs, aka 500ns
  147. #else
  148. #define MIN_STEPPER_PULSE_CYCLES _MIN_STEPPER_PULSE_CYCLES(1UL)
  149. #endif
  150. // Calculate the minimum pulse times (high and low)
  151. #if MINIMUM_STEPPER_PULSE && MAXIMUM_STEPPER_RATE
  152. constexpr uint32_t _MIN_STEP_PERIOD_NS = 1000000000UL / MAXIMUM_STEPPER_RATE;
  153. constexpr uint32_t _MIN_PULSE_HIGH_NS = 1000UL * MINIMUM_STEPPER_PULSE;
  154. constexpr uint32_t _MIN_PULSE_LOW_NS = _MAX((_MIN_STEP_PERIOD_NS - _MIN(_MIN_STEP_PERIOD_NS, _MIN_PULSE_HIGH_NS)), _MIN_PULSE_HIGH_NS);
  155. #elif MINIMUM_STEPPER_PULSE
  156. // Assume 50% duty cycle
  157. constexpr uint32_t _MIN_PULSE_HIGH_NS = 1000UL * MINIMUM_STEPPER_PULSE;
  158. constexpr uint32_t _MIN_PULSE_LOW_NS = _MIN_PULSE_HIGH_NS;
  159. #elif MAXIMUM_STEPPER_RATE
  160. // Assume 50% duty cycle
  161. constexpr uint32_t _MIN_PULSE_HIGH_NS = 500000000UL / MAXIMUM_STEPPER_RATE;
  162. constexpr uint32_t _MIN_PULSE_LOW_NS = _MIN_PULSE_HIGH_NS;
  163. #else
  164. #error "Expected at least one of MINIMUM_STEPPER_PULSE or MAXIMUM_STEPPER_RATE to be defined"
  165. #endif
  166. // But the user could be enforcing a minimum time, so the loop time is
  167. #define ISR_LOOP_CYCLES (ISR_LOOP_BASE_CYCLES + _MAX(MIN_STEPPER_PULSE_CYCLES, MIN_ISR_LOOP_CYCLES))
  168. // If linear advance is enabled, then it is handled separately
  169. #if ENABLED(LIN_ADVANCE)
  170. // Estimate the minimum LA loop time
  171. #if ENABLED(MIXING_EXTRUDER) // ToDo: ???
  172. // HELP ME: What is what?
  173. // Directions are set up for MIXING_STEPPERS - like before.
  174. // Finding the right stepper may last up to MIXING_STEPPERS loops in get_next_stepper().
  175. // These loops are a bit faster than advancing a bresenham counter.
  176. // Always only one e-stepper is stepped.
  177. #define MIN_ISR_LA_LOOP_CYCLES ((MIXING_STEPPERS) * (ISR_STEPPER_CYCLES))
  178. #else
  179. #define MIN_ISR_LA_LOOP_CYCLES ISR_STEPPER_CYCLES
  180. #endif
  181. // And the real loop time
  182. #define ISR_LA_LOOP_CYCLES _MAX(MIN_STEPPER_PULSE_CYCLES, MIN_ISR_LA_LOOP_CYCLES)
  183. #else
  184. #define ISR_LA_LOOP_CYCLES 0UL
  185. #endif
  186. // Now estimate the total ISR execution time in cycles given a step per ISR multiplier
  187. #define ISR_EXECUTION_CYCLES(R) (((ISR_BASE_CYCLES + ISR_S_CURVE_CYCLES + (ISR_LOOP_CYCLES) * (R) + ISR_LA_BASE_CYCLES + ISR_LA_LOOP_CYCLES)) / (R))
  188. // The maximum allowable stepping frequency when doing x128-x1 stepping (in Hz)
  189. #define MAX_STEP_ISR_FREQUENCY_128X ((F_CPU) / ISR_EXECUTION_CYCLES(128))
  190. #define MAX_STEP_ISR_FREQUENCY_64X ((F_CPU) / ISR_EXECUTION_CYCLES(64))
  191. #define MAX_STEP_ISR_FREQUENCY_32X ((F_CPU) / ISR_EXECUTION_CYCLES(32))
  192. #define MAX_STEP_ISR_FREQUENCY_16X ((F_CPU) / ISR_EXECUTION_CYCLES(16))
  193. #define MAX_STEP_ISR_FREQUENCY_8X ((F_CPU) / ISR_EXECUTION_CYCLES(8))
  194. #define MAX_STEP_ISR_FREQUENCY_4X ((F_CPU) / ISR_EXECUTION_CYCLES(4))
  195. #define MAX_STEP_ISR_FREQUENCY_2X ((F_CPU) / ISR_EXECUTION_CYCLES(2))
  196. #define MAX_STEP_ISR_FREQUENCY_1X ((F_CPU) / ISR_EXECUTION_CYCLES(1))
  197. // The minimum allowable frequency for step smoothing will be 1/10 of the maximum nominal frequency (in Hz)
  198. #define MIN_STEP_ISR_FREQUENCY MAX_STEP_ISR_FREQUENCY_1X
  199. //
  200. // Stepper class definition
  201. //
  202. class Stepper {
  203. public:
  204. #if HAS_EXTRA_ENDSTOPS || ENABLED(Z_STEPPER_AUTO_ALIGN)
  205. static bool separate_multi_axis;
  206. #endif
  207. #if HAS_MOTOR_CURRENT_PWM
  208. #ifndef PWM_MOTOR_CURRENT
  209. #define PWM_MOTOR_CURRENT DEFAULT_PWM_MOTOR_CURRENT
  210. #endif
  211. static uint32_t motor_current_setting[3];
  212. static bool initialized;
  213. #endif
  214. private:
  215. static block_t* current_block; // A pointer to the block currently being traced
  216. static uint8_t last_direction_bits, // The next stepping-bits to be output
  217. axis_did_move; // Last Movement in the given direction is not null, as computed when the last movement was fetched from planner
  218. static bool abort_current_block; // Signals to the stepper that current block should be aborted
  219. // Last-moved extruder, as set when the last movement was fetched from planner
  220. #if EXTRUDERS < 2
  221. static constexpr uint8_t last_moved_extruder = 0;
  222. #elif DISABLED(MIXING_EXTRUDER)
  223. static uint8_t last_moved_extruder;
  224. #endif
  225. #if ENABLED(X_DUAL_ENDSTOPS)
  226. static bool locked_X_motor, locked_X2_motor;
  227. #endif
  228. #if ENABLED(Y_DUAL_ENDSTOPS)
  229. static bool locked_Y_motor, locked_Y2_motor;
  230. #endif
  231. #if EITHER(Z_MULTI_ENDSTOPS, Z_STEPPER_AUTO_ALIGN)
  232. static bool locked_Z_motor, locked_Z2_motor
  233. #if NUM_Z_STEPPER_DRIVERS >= 3
  234. , locked_Z3_motor
  235. #if NUM_Z_STEPPER_DRIVERS >= 4
  236. , locked_Z4_motor
  237. #endif
  238. #endif
  239. ;
  240. #endif
  241. static uint32_t acceleration_time, deceleration_time; // time measured in Stepper Timer ticks
  242. static uint8_t steps_per_isr; // Count of steps to perform per Stepper ISR call
  243. #if ENABLED(ADAPTIVE_STEP_SMOOTHING)
  244. static uint8_t oversampling_factor; // Oversampling factor (log2(multiplier)) to increase temporal resolution of axis
  245. #else
  246. static constexpr uint8_t oversampling_factor = 0;
  247. #endif
  248. // Delta error variables for the Bresenham line tracer
  249. static xyze_long_t delta_error;
  250. static xyze_ulong_t advance_dividend;
  251. static uint32_t advance_divisor,
  252. step_events_completed, // The number of step events executed in the current block
  253. accelerate_until, // The point from where we need to stop acceleration
  254. decelerate_after, // The point from where we need to start decelerating
  255. step_event_count; // The total event count for the current block
  256. #if EXTRUDERS > 1 || ENABLED(MIXING_EXTRUDER)
  257. static uint8_t stepper_extruder;
  258. #else
  259. static constexpr uint8_t stepper_extruder = 0;
  260. #endif
  261. #if ENABLED(S_CURVE_ACCELERATION)
  262. static int32_t bezier_A, // A coefficient in Bézier speed curve
  263. bezier_B, // B coefficient in Bézier speed curve
  264. bezier_C; // C coefficient in Bézier speed curve
  265. static uint32_t bezier_F, // F coefficient in Bézier speed curve
  266. bezier_AV; // AV coefficient in Bézier speed curve
  267. #ifdef __AVR__
  268. static bool A_negative; // If A coefficient was negative
  269. #endif
  270. static bool bezier_2nd_half; // If Bézier curve has been initialized or not
  271. #endif
  272. #if ENABLED(LIN_ADVANCE)
  273. static constexpr uint32_t LA_ADV_NEVER = 0xFFFFFFFF;
  274. static uint32_t nextAdvanceISR, LA_isr_rate;
  275. static uint16_t LA_current_adv_steps, LA_final_adv_steps, LA_max_adv_steps; // Copy from current executed block. Needed because current_block is set to NULL "too early".
  276. static int8_t LA_steps;
  277. static bool LA_use_advance_lead;
  278. #endif
  279. #if ENABLED(INTEGRATED_BABYSTEPPING)
  280. static constexpr uint32_t BABYSTEP_NEVER = 0xFFFFFFFF;
  281. static uint32_t nextBabystepISR;
  282. #endif
  283. static int32_t ticks_nominal;
  284. #if DISABLED(S_CURVE_ACCELERATION)
  285. static uint32_t acc_step_rate; // needed for deceleration start point
  286. #endif
  287. //
  288. // Exact steps at which an endstop was triggered
  289. //
  290. static xyz_long_t endstops_trigsteps;
  291. //
  292. // Positions of stepper motors, in step units
  293. //
  294. static xyze_long_t count_position;
  295. //
  296. // Current direction of stepper motors (+1 or -1)
  297. //
  298. static xyze_int8_t count_direction;
  299. public:
  300. // Initialize stepper hardware
  301. static void init();
  302. // Interrupt Service Routine and phases
  303. // The stepper subsystem goes to sleep when it runs out of things to execute.
  304. // Call this to notify the subsystem that it is time to go to work.
  305. static inline void wake_up() { ENABLE_STEPPER_DRIVER_INTERRUPT(); }
  306. static inline bool is_awake() { return STEPPER_ISR_ENABLED(); }
  307. static inline bool suspend() {
  308. const bool awake = is_awake();
  309. if (awake) DISABLE_STEPPER_DRIVER_INTERRUPT();
  310. return awake;
  311. }
  312. // The ISR scheduler
  313. static void isr();
  314. // The stepper pulse ISR phase
  315. static void pulse_phase_isr();
  316. // The stepper block processing ISR phase
  317. static uint32_t block_phase_isr();
  318. #if ENABLED(LIN_ADVANCE)
  319. // The Linear advance ISR phase
  320. static uint32_t advance_isr();
  321. FORCE_INLINE static void initiateLA() { nextAdvanceISR = 0; }
  322. #endif
  323. #if ENABLED(INTEGRATED_BABYSTEPPING)
  324. // The Babystepping ISR phase
  325. static uint32_t babystepping_isr();
  326. FORCE_INLINE static void initiateBabystepping() {
  327. if (nextBabystepISR == BABYSTEP_NEVER) {
  328. nextBabystepISR = 0;
  329. wake_up();
  330. }
  331. }
  332. #endif
  333. // Check if the given block is busy or not - Must not be called from ISR contexts
  334. static bool is_block_busy(const block_t* const block);
  335. // Get the position of a stepper, in steps
  336. static int32_t position(const AxisEnum axis);
  337. // Set the current position in steps
  338. static void set_position(const int32_t &a, const int32_t &b, const int32_t &c, const int32_t &e);
  339. static inline void set_position(const xyze_long_t &abce) { set_position(abce.a, abce.b, abce.c, abce.e); }
  340. static void set_axis_position(const AxisEnum a, const int32_t &v);
  341. // Report the positions of the steppers, in steps
  342. static void report_a_position(const xyz_long_t &pos);
  343. static void report_positions();
  344. // Quickly stop all steppers
  345. FORCE_INLINE static void quick_stop() { abort_current_block = true; }
  346. // The direction of a single motor
  347. FORCE_INLINE static bool motor_direction(const AxisEnum axis) { return TEST(last_direction_bits, axis); }
  348. // The last movement direction was not null on the specified axis. Note that motor direction is not necessarily the same.
  349. FORCE_INLINE static bool axis_is_moving(const AxisEnum axis) { return TEST(axis_did_move, axis); }
  350. // The extruder associated to the last movement
  351. FORCE_INLINE static uint8_t movement_extruder() {
  352. return (0
  353. #if EXTRUDERS > 1 && DISABLED(MIXING_EXTRUDER)
  354. + last_moved_extruder
  355. #endif
  356. );
  357. }
  358. // Handle a triggered endstop
  359. static void endstop_triggered(const AxisEnum axis);
  360. // Triggered position of an axis in steps
  361. static int32_t triggered_position(const AxisEnum axis);
  362. #if HAS_DIGIPOTSS || HAS_MOTOR_CURRENT_PWM
  363. static void digitalPotWrite(const int16_t address, const int16_t value);
  364. static void digipot_current(const uint8_t driver, const int16_t current);
  365. #endif
  366. #if HAS_MICROSTEPS
  367. static void microstep_ms(const uint8_t driver, const int8_t ms1, const int8_t ms2, const int8_t ms3);
  368. static void microstep_mode(const uint8_t driver, const uint8_t stepping);
  369. static void microstep_readings();
  370. #endif
  371. #if HAS_EXTRA_ENDSTOPS || ENABLED(Z_STEPPER_AUTO_ALIGN)
  372. FORCE_INLINE static void set_separate_multi_axis(const bool state) { separate_multi_axis = state; }
  373. #endif
  374. #if ENABLED(X_DUAL_ENDSTOPS)
  375. FORCE_INLINE static void set_x_lock(const bool state) { locked_X_motor = state; }
  376. FORCE_INLINE static void set_x2_lock(const bool state) { locked_X2_motor = state; }
  377. #endif
  378. #if ENABLED(Y_DUAL_ENDSTOPS)
  379. FORCE_INLINE static void set_y_lock(const bool state) { locked_Y_motor = state; }
  380. FORCE_INLINE static void set_y2_lock(const bool state) { locked_Y2_motor = state; }
  381. #endif
  382. #if EITHER(Z_MULTI_ENDSTOPS, Z_STEPPER_AUTO_ALIGN)
  383. FORCE_INLINE static void set_z_lock(const bool state) { locked_Z_motor = state; }
  384. FORCE_INLINE static void set_z2_lock(const bool state) { locked_Z2_motor = state; }
  385. #if NUM_Z_STEPPER_DRIVERS >= 3
  386. FORCE_INLINE static void set_z3_lock(const bool state) { locked_Z3_motor = state; }
  387. #if NUM_Z_STEPPER_DRIVERS >= 4
  388. FORCE_INLINE static void set_z4_lock(const bool state) { locked_Z4_motor = state; }
  389. #endif
  390. #endif
  391. #endif
  392. #if ENABLED(BABYSTEPPING)
  393. static void do_babystep(const AxisEnum axis, const bool direction); // perform a short step with a single stepper motor, outside of any convention
  394. #endif
  395. #if HAS_MOTOR_CURRENT_PWM
  396. static void refresh_motor_power();
  397. #endif
  398. // Set direction bits for all steppers
  399. static void set_directions();
  400. private:
  401. // Set the current position in steps
  402. static void _set_position(const int32_t &a, const int32_t &b, const int32_t &c, const int32_t &e);
  403. FORCE_INLINE static void _set_position(const abce_long_t &spos) { _set_position(spos.a, spos.b, spos.c, spos.e); }
  404. FORCE_INLINE static uint32_t calc_timer_interval(uint32_t step_rate, uint8_t* loops) {
  405. uint32_t timer;
  406. // Scale the frequency, as requested by the caller
  407. step_rate <<= oversampling_factor;
  408. uint8_t multistep = 1;
  409. #if DISABLED(DISABLE_MULTI_STEPPING)
  410. // The stepping frequency limits for each multistepping rate
  411. static const uint32_t limit[] PROGMEM = {
  412. ( MAX_STEP_ISR_FREQUENCY_1X ),
  413. ( MAX_STEP_ISR_FREQUENCY_2X >> 1),
  414. ( MAX_STEP_ISR_FREQUENCY_4X >> 2),
  415. ( MAX_STEP_ISR_FREQUENCY_8X >> 3),
  416. ( MAX_STEP_ISR_FREQUENCY_16X >> 4),
  417. ( MAX_STEP_ISR_FREQUENCY_32X >> 5),
  418. ( MAX_STEP_ISR_FREQUENCY_64X >> 6),
  419. (MAX_STEP_ISR_FREQUENCY_128X >> 7)
  420. };
  421. // Select the proper multistepping
  422. uint8_t idx = 0;
  423. while (idx < 7 && step_rate > (uint32_t)pgm_read_dword(&limit[idx])) {
  424. step_rate >>= 1;
  425. multistep <<= 1;
  426. ++idx;
  427. };
  428. #else
  429. NOMORE(step_rate, uint32_t(MAX_STEP_ISR_FREQUENCY_1X));
  430. #endif
  431. *loops = multistep;
  432. #ifdef CPU_32_BIT
  433. // In case of high-performance processor, it is able to calculate in real-time
  434. timer = uint32_t(STEPPER_TIMER_RATE) / step_rate;
  435. #else
  436. constexpr uint32_t min_step_rate = F_CPU / 500000U;
  437. NOLESS(step_rate, min_step_rate);
  438. step_rate -= min_step_rate; // Correct for minimal speed
  439. if (step_rate >= (8 * 256)) { // higher step rate
  440. const uint8_t tmp_step_rate = (step_rate & 0x00FF);
  441. const uint16_t table_address = (uint16_t)&speed_lookuptable_fast[(uint8_t)(step_rate >> 8)][0],
  442. gain = (uint16_t)pgm_read_word(table_address + 2);
  443. timer = MultiU16X8toH16(tmp_step_rate, gain);
  444. timer = (uint16_t)pgm_read_word(table_address) - timer;
  445. }
  446. else { // lower step rates
  447. uint16_t table_address = (uint16_t)&speed_lookuptable_slow[0][0];
  448. table_address += ((step_rate) >> 1) & 0xFFFC;
  449. timer = (uint16_t)pgm_read_word(table_address)
  450. - (((uint16_t)pgm_read_word(table_address + 2) * (uint8_t)(step_rate & 0x0007)) >> 3);
  451. }
  452. // (there is no need to limit the timer value here. All limits have been
  453. // applied above, and AVR is able to keep up at 30khz Stepping ISR rate)
  454. #endif
  455. return timer;
  456. }
  457. #if ENABLED(S_CURVE_ACCELERATION)
  458. static void _calc_bezier_curve_coeffs(const int32_t v0, const int32_t v1, const uint32_t av);
  459. static int32_t _eval_bezier_curve(const uint32_t curr_step);
  460. #endif
  461. #if HAS_DIGIPOTSS || HAS_MOTOR_CURRENT_PWM
  462. static void digipot_init();
  463. #endif
  464. #if HAS_MICROSTEPS
  465. static void microstep_init();
  466. #endif
  467. };
  468. extern Stepper stepper;