My Marlin configs for Fabrikator Mini and CTC i3 Pro B
Você não pode selecionar mais de 25 tópicos Os tópicos devem começar com uma letra ou um número, podem incluir traços ('-') e podem ter até 35 caracteres.

stepper.cpp 39KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353
  1. /**
  2. * Marlin 3D Printer Firmware
  3. * Copyright (C) 2016 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
  4. *
  5. * Based on Sprinter and grbl.
  6. * Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  7. *
  8. * This program is free software: you can redistribute it and/or modify
  9. * it under the terms of the GNU General Public License as published by
  10. * the Free Software Foundation, either version 3 of the License, or
  11. * (at your option) any later version.
  12. *
  13. * This program is distributed in the hope that it will be useful,
  14. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  16. * GNU General Public License for more details.
  17. *
  18. * You should have received a copy of the GNU General Public License
  19. * along with this program. If not, see <http://www.gnu.org/licenses/>.
  20. *
  21. */
  22. /**
  23. * stepper.cpp - A singleton object to execute motion plans using stepper motors
  24. * Marlin Firmware
  25. *
  26. * Derived from Grbl
  27. * Copyright (c) 2009-2011 Simen Svale Skogsrud
  28. *
  29. * Grbl is free software: you can redistribute it and/or modify
  30. * it under the terms of the GNU General Public License as published by
  31. * the Free Software Foundation, either version 3 of the License, or
  32. * (at your option) any later version.
  33. *
  34. * Grbl is distributed in the hope that it will be useful,
  35. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  36. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  37. * GNU General Public License for more details.
  38. *
  39. * You should have received a copy of the GNU General Public License
  40. * along with Grbl. If not, see <http://www.gnu.org/licenses/>.
  41. */
  42. /* The timer calculations of this module informed by the 'RepRap cartesian firmware' by Zack Smith
  43. and Philipp Tiefenbacher. */
  44. #include "Marlin.h"
  45. #include "stepper.h"
  46. #include "endstops.h"
  47. #include "planner.h"
  48. #include "temperature.h"
  49. #include "ultralcd.h"
  50. #include "language.h"
  51. #include "cardreader.h"
  52. #include "speed_lookuptable.h"
  53. #if HAS_DIGIPOTSS
  54. #include <SPI.h>
  55. #endif
  56. Stepper stepper; // Singleton
  57. // public:
  58. block_t* Stepper::current_block = NULL; // A pointer to the block currently being traced
  59. #if ENABLED(ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  60. bool Stepper::abort_on_endstop_hit = false;
  61. #endif
  62. #if ENABLED(Z_DUAL_ENDSTOPS)
  63. bool Stepper::performing_homing = false;
  64. #endif
  65. // private:
  66. unsigned char Stepper::last_direction_bits = 0; // The next stepping-bits to be output
  67. unsigned int Stepper::cleaning_buffer_counter = 0;
  68. #if ENABLED(Z_DUAL_ENDSTOPS)
  69. bool Stepper::locked_z_motor = false;
  70. bool Stepper::locked_z2_motor = false;
  71. #endif
  72. long Stepper::counter_X = 0,
  73. Stepper::counter_Y = 0,
  74. Stepper::counter_Z = 0,
  75. Stepper::counter_E = 0;
  76. volatile uint32_t Stepper::step_events_completed = 0; // The number of step events executed in the current block
  77. #if ENABLED(ADVANCE) || ENABLED(LIN_ADVANCE)
  78. unsigned char Stepper::old_OCR0A = 0;
  79. volatile unsigned char Stepper::eISR_Rate = 200; // Keep the ISR at a low rate until needed
  80. #if ENABLED(LIN_ADVANCE)
  81. volatile long Stepper::e_steps[E_STEPPERS];
  82. int Stepper::extruder_advance_k = LIN_ADVANCE_K,
  83. Stepper::final_estep_rate,
  84. Stepper::current_estep_rate[E_STEPPERS],
  85. Stepper::current_adv_steps[E_STEPPERS];
  86. #else
  87. long Stepper::e_steps[E_STEPPERS],
  88. Stepper::final_advance = 0,
  89. Stepper::old_advance = 0,
  90. Stepper::advance_rate,
  91. Stepper::advance;
  92. #endif
  93. #endif
  94. long Stepper::acceleration_time, Stepper::deceleration_time;
  95. volatile long Stepper::count_position[NUM_AXIS] = { 0 };
  96. volatile signed char Stepper::count_direction[NUM_AXIS] = { 1, 1, 1, 1 };
  97. #if ENABLED(MIXING_EXTRUDER)
  98. long Stepper::counter_m[MIXING_STEPPERS];
  99. #endif
  100. unsigned short Stepper::acc_step_rate; // needed for deceleration start point
  101. uint8_t Stepper::step_loops, Stepper::step_loops_nominal;
  102. unsigned short Stepper::OCR1A_nominal;
  103. volatile long Stepper::endstops_trigsteps[XYZ];
  104. #if ENABLED(X_DUAL_STEPPER_DRIVERS)
  105. #define X_APPLY_DIR(v,Q) do{ X_DIR_WRITE(v); X2_DIR_WRITE((v) != INVERT_X2_VS_X_DIR); }while(0)
  106. #define X_APPLY_STEP(v,Q) do{ X_STEP_WRITE(v); X2_STEP_WRITE(v); }while(0)
  107. #elif ENABLED(DUAL_X_CARRIAGE)
  108. #define X_APPLY_DIR(v,ALWAYS) \
  109. if (extruder_duplication_enabled || ALWAYS) { \
  110. X_DIR_WRITE(v); \
  111. X2_DIR_WRITE(v); \
  112. } \
  113. else { \
  114. if (current_block->active_extruder) X2_DIR_WRITE(v); else X_DIR_WRITE(v); \
  115. }
  116. #define X_APPLY_STEP(v,ALWAYS) \
  117. if (extruder_duplication_enabled || ALWAYS) { \
  118. X_STEP_WRITE(v); \
  119. X2_STEP_WRITE(v); \
  120. } \
  121. else { \
  122. if (current_block->active_extruder != 0) X2_STEP_WRITE(v); else X_STEP_WRITE(v); \
  123. }
  124. #else
  125. #define X_APPLY_DIR(v,Q) X_DIR_WRITE(v)
  126. #define X_APPLY_STEP(v,Q) X_STEP_WRITE(v)
  127. #endif
  128. #if ENABLED(Y_DUAL_STEPPER_DRIVERS)
  129. #define Y_APPLY_DIR(v,Q) do{ Y_DIR_WRITE(v); Y2_DIR_WRITE((v) != INVERT_Y2_VS_Y_DIR); }while(0)
  130. #define Y_APPLY_STEP(v,Q) do{ Y_STEP_WRITE(v); Y2_STEP_WRITE(v); }while(0)
  131. #else
  132. #define Y_APPLY_DIR(v,Q) Y_DIR_WRITE(v)
  133. #define Y_APPLY_STEP(v,Q) Y_STEP_WRITE(v)
  134. #endif
  135. #if ENABLED(Z_DUAL_STEPPER_DRIVERS)
  136. #define Z_APPLY_DIR(v,Q) do{ Z_DIR_WRITE(v); Z2_DIR_WRITE(v); }while(0)
  137. #if ENABLED(Z_DUAL_ENDSTOPS)
  138. #define Z_APPLY_STEP(v,Q) \
  139. if (performing_homing) { \
  140. if (Z_HOME_DIR > 0) {\
  141. if (!(TEST(endstops.old_endstop_bits, Z_MAX) && (count_direction[Z_AXIS] > 0)) && !locked_z_motor) Z_STEP_WRITE(v); \
  142. if (!(TEST(endstops.old_endstop_bits, Z2_MAX) && (count_direction[Z_AXIS] > 0)) && !locked_z2_motor) Z2_STEP_WRITE(v); \
  143. } \
  144. else { \
  145. if (!(TEST(endstops.old_endstop_bits, Z_MIN) && (count_direction[Z_AXIS] < 0)) && !locked_z_motor) Z_STEP_WRITE(v); \
  146. if (!(TEST(endstops.old_endstop_bits, Z2_MIN) && (count_direction[Z_AXIS] < 0)) && !locked_z2_motor) Z2_STEP_WRITE(v); \
  147. } \
  148. } \
  149. else { \
  150. Z_STEP_WRITE(v); \
  151. Z2_STEP_WRITE(v); \
  152. }
  153. #else
  154. #define Z_APPLY_STEP(v,Q) do{ Z_STEP_WRITE(v); Z2_STEP_WRITE(v); }while(0)
  155. #endif
  156. #else
  157. #define Z_APPLY_DIR(v,Q) Z_DIR_WRITE(v)
  158. #define Z_APPLY_STEP(v,Q) Z_STEP_WRITE(v)
  159. #endif
  160. #if DISABLED(MIXING_EXTRUDER)
  161. #define E_APPLY_STEP(v,Q) E_STEP_WRITE(v)
  162. #endif
  163. // intRes = longIn1 * longIn2 >> 24
  164. // uses:
  165. // r26 to store 0
  166. // r27 to store bits 16-23 of the 48bit result. The top bit is used to round the two byte result.
  167. // note that the lower two bytes and the upper byte of the 48bit result are not calculated.
  168. // this can cause the result to be out by one as the lower bytes may cause carries into the upper ones.
  169. // B0 A0 are bits 24-39 and are the returned value
  170. // C1 B1 A1 is longIn1
  171. // D2 C2 B2 A2 is longIn2
  172. //
  173. #define MultiU24X32toH16(intRes, longIn1, longIn2) \
  174. asm volatile ( \
  175. "clr r26 \n\t" \
  176. "mul %A1, %B2 \n\t" \
  177. "mov r27, r1 \n\t" \
  178. "mul %B1, %C2 \n\t" \
  179. "movw %A0, r0 \n\t" \
  180. "mul %C1, %C2 \n\t" \
  181. "add %B0, r0 \n\t" \
  182. "mul %C1, %B2 \n\t" \
  183. "add %A0, r0 \n\t" \
  184. "adc %B0, r1 \n\t" \
  185. "mul %A1, %C2 \n\t" \
  186. "add r27, r0 \n\t" \
  187. "adc %A0, r1 \n\t" \
  188. "adc %B0, r26 \n\t" \
  189. "mul %B1, %B2 \n\t" \
  190. "add r27, r0 \n\t" \
  191. "adc %A0, r1 \n\t" \
  192. "adc %B0, r26 \n\t" \
  193. "mul %C1, %A2 \n\t" \
  194. "add r27, r0 \n\t" \
  195. "adc %A0, r1 \n\t" \
  196. "adc %B0, r26 \n\t" \
  197. "mul %B1, %A2 \n\t" \
  198. "add r27, r1 \n\t" \
  199. "adc %A0, r26 \n\t" \
  200. "adc %B0, r26 \n\t" \
  201. "lsr r27 \n\t" \
  202. "adc %A0, r26 \n\t" \
  203. "adc %B0, r26 \n\t" \
  204. "mul %D2, %A1 \n\t" \
  205. "add %A0, r0 \n\t" \
  206. "adc %B0, r1 \n\t" \
  207. "mul %D2, %B1 \n\t" \
  208. "add %B0, r0 \n\t" \
  209. "clr r1 \n\t" \
  210. : \
  211. "=&r" (intRes) \
  212. : \
  213. "d" (longIn1), \
  214. "d" (longIn2) \
  215. : \
  216. "r26" , "r27" \
  217. )
  218. // Some useful constants
  219. #define ENABLE_STEPPER_DRIVER_INTERRUPT() SBI(TIMSK1, OCIE1A)
  220. #define DISABLE_STEPPER_DRIVER_INTERRUPT() CBI(TIMSK1, OCIE1A)
  221. /**
  222. * __________________________
  223. * /| |\ _________________ ^
  224. * / | | \ /| |\ |
  225. * / | | \ / | | \ s
  226. * / | | | | | \ p
  227. * / | | | | | \ e
  228. * +-----+------------------------+---+--+---------------+----+ e
  229. * | BLOCK 1 | BLOCK 2 | d
  230. *
  231. * time ----->
  232. *
  233. * The trapezoid is the shape the speed curve over time. It starts at block->initial_rate, accelerates
  234. * first block->accelerate_until step_events_completed, then keeps going at constant speed until
  235. * step_events_completed reaches block->decelerate_after after which it decelerates until the trapezoid generator is reset.
  236. * The slope of acceleration is calculated using v = u + at where t is the accumulated timer values of the steps so far.
  237. */
  238. void Stepper::wake_up() {
  239. // TCNT1 = 0;
  240. ENABLE_STEPPER_DRIVER_INTERRUPT();
  241. }
  242. /**
  243. * Set the stepper direction of each axis
  244. *
  245. * COREXY: X_AXIS=A_AXIS and Y_AXIS=B_AXIS
  246. * COREXZ: X_AXIS=A_AXIS and Z_AXIS=C_AXIS
  247. * COREYZ: Y_AXIS=B_AXIS and Z_AXIS=C_AXIS
  248. */
  249. void Stepper::set_directions() {
  250. #define SET_STEP_DIR(AXIS) \
  251. if (motor_direction(AXIS ##_AXIS)) { \
  252. AXIS ##_APPLY_DIR(INVERT_## AXIS ##_DIR, false); \
  253. count_direction[AXIS ##_AXIS] = -1; \
  254. } \
  255. else { \
  256. AXIS ##_APPLY_DIR(!INVERT_## AXIS ##_DIR, false); \
  257. count_direction[AXIS ##_AXIS] = 1; \
  258. }
  259. #if HAS_X_DIR
  260. SET_STEP_DIR(X); // A
  261. #endif
  262. #if HAS_Y_DIR
  263. SET_STEP_DIR(Y); // B
  264. #endif
  265. #if HAS_Z_DIR
  266. SET_STEP_DIR(Z); // C
  267. #endif
  268. #if DISABLED(ADVANCE) && DISABLED(LIN_ADVANCE)
  269. if (motor_direction(E_AXIS)) {
  270. REV_E_DIR();
  271. count_direction[E_AXIS] = -1;
  272. }
  273. else {
  274. NORM_E_DIR();
  275. count_direction[E_AXIS] = 1;
  276. }
  277. #endif // !ADVANCE && !LIN_ADVANCE
  278. }
  279. // "The Stepper Driver Interrupt" - This timer interrupt is the workhorse.
  280. // It pops blocks from the block_buffer and executes them by pulsing the stepper pins appropriately.
  281. ISR(TIMER1_COMPA_vect) { Stepper::isr(); }
  282. void Stepper::isr() {
  283. if (cleaning_buffer_counter) {
  284. current_block = NULL;
  285. planner.discard_current_block();
  286. #ifdef SD_FINISHED_RELEASECOMMAND
  287. if ((cleaning_buffer_counter == 1) && (SD_FINISHED_STEPPERRELEASE)) enqueue_and_echo_commands_P(PSTR(SD_FINISHED_RELEASECOMMAND));
  288. #endif
  289. cleaning_buffer_counter--;
  290. OCR1A = 200;
  291. return;
  292. }
  293. // If there is no current block, attempt to pop one from the buffer
  294. if (!current_block) {
  295. // Anything in the buffer?
  296. current_block = planner.get_current_block();
  297. if (current_block) {
  298. current_block->busy = true;
  299. trapezoid_generator_reset();
  300. // Initialize Bresenham counters to 1/2 the ceiling
  301. counter_X = counter_Y = counter_Z = counter_E = -(current_block->step_event_count >> 1);
  302. #if ENABLED(MIXING_EXTRUDER)
  303. MIXING_STEPPERS_LOOP(i)
  304. counter_m[i] = -(current_block->mix_event_count[i] >> 1);
  305. #endif
  306. step_events_completed = 0;
  307. #if ENABLED(Z_LATE_ENABLE)
  308. if (current_block->steps[Z_AXIS] > 0) {
  309. enable_z();
  310. OCR1A = 2000; //1ms wait
  311. return;
  312. }
  313. #endif
  314. // #if ENABLED(ADVANCE)
  315. // e_steps[TOOL_E_INDEX] = 0;
  316. // #endif
  317. }
  318. else {
  319. OCR1A = 2000; // 1kHz.
  320. return;
  321. }
  322. }
  323. // Update endstops state, if enabled
  324. if (endstops.enabled
  325. #if HAS_BED_PROBE
  326. || endstops.z_probe_enabled
  327. #endif
  328. ) endstops.update();
  329. // Take multiple steps per interrupt (For high speed moves)
  330. bool all_steps_done = false;
  331. for (int8_t i = 0; i < step_loops; i++) {
  332. #ifndef USBCON
  333. customizedSerial.checkRx(); // Check for serial chars.
  334. #endif
  335. #if ENABLED(LIN_ADVANCE)
  336. counter_E += current_block->steps[E_AXIS];
  337. if (counter_E > 0) {
  338. counter_E -= current_block->step_event_count;
  339. #if DISABLED(MIXING_EXTRUDER)
  340. // Don't step E here for mixing extruder
  341. count_position[E_AXIS] += count_direction[E_AXIS];
  342. motor_direction(E_AXIS) ? --e_steps[TOOL_E_INDEX] : ++e_steps[TOOL_E_INDEX];
  343. #endif
  344. }
  345. #if ENABLED(MIXING_EXTRUDER)
  346. // Step mixing steppers proportionally
  347. bool dir = motor_direction(E_AXIS);
  348. MIXING_STEPPERS_LOOP(j) {
  349. counter_m[j] += current_block->steps[E_AXIS];
  350. if (counter_m[j] > 0) {
  351. counter_m[j] -= current_block->mix_event_count[j];
  352. dir ? --e_steps[j] : ++e_steps[j];
  353. }
  354. }
  355. #endif
  356. if (current_block->use_advance_lead) {
  357. int delta_adv_steps = (((long)extruder_advance_k * current_estep_rate[TOOL_E_INDEX]) >> 9) - current_adv_steps[TOOL_E_INDEX];
  358. #if ENABLED(MIXING_EXTRUDER)
  359. // Mixing extruders apply advance lead proportionally
  360. MIXING_STEPPERS_LOOP(j) {
  361. int steps = delta_adv_steps * current_block->step_event_count / current_block->mix_event_count[j];
  362. e_steps[j] += steps;
  363. current_adv_steps[j] += steps;
  364. }
  365. #else
  366. // For most extruders, advance the single E stepper
  367. e_steps[TOOL_E_INDEX] += delta_adv_steps;
  368. current_adv_steps[TOOL_E_INDEX] += delta_adv_steps;
  369. #endif
  370. }
  371. #elif ENABLED(ADVANCE)
  372. // Always count the unified E axis
  373. counter_E += current_block->steps[E_AXIS];
  374. if (counter_E > 0) {
  375. counter_E -= current_block->step_event_count;
  376. #if DISABLED(MIXING_EXTRUDER)
  377. // Don't step E here for mixing extruder
  378. motor_direction(E_AXIS) ? --e_steps[TOOL_E_INDEX] : ++e_steps[TOOL_E_INDEX];
  379. #endif
  380. }
  381. #if ENABLED(MIXING_EXTRUDER)
  382. // Step mixing steppers proportionally
  383. bool dir = motor_direction(E_AXIS);
  384. MIXING_STEPPERS_LOOP(j) {
  385. counter_m[j] += current_block->steps[E_AXIS];
  386. if (counter_m[j] > 0) {
  387. counter_m[j] -= current_block->mix_event_count[j];
  388. dir ? --e_steps[j] : ++e_steps[j];
  389. }
  390. }
  391. #endif // MIXING_EXTRUDER
  392. #endif // ADVANCE or LIN_ADVANCE
  393. #define _COUNTER(AXIS) counter_## AXIS
  394. #define _APPLY_STEP(AXIS) AXIS ##_APPLY_STEP
  395. #define _INVERT_STEP_PIN(AXIS) INVERT_## AXIS ##_STEP_PIN
  396. // Advance the Bresenham counter; start a pulse if the axis needs a step
  397. #define PULSE_START(AXIS) \
  398. _COUNTER(AXIS) += current_block->steps[_AXIS(AXIS)]; \
  399. if (_COUNTER(AXIS) > 0) { _APPLY_STEP(AXIS)(!_INVERT_STEP_PIN(AXIS),0); }
  400. // Stop an active pulse, reset the Bresenham counter, update the position
  401. #define PULSE_STOP(AXIS) \
  402. if (_COUNTER(AXIS) > 0) { \
  403. _COUNTER(AXIS) -= current_block->step_event_count; \
  404. count_position[_AXIS(AXIS)] += count_direction[_AXIS(AXIS)]; \
  405. _APPLY_STEP(AXIS)(_INVERT_STEP_PIN(AXIS),0); \
  406. }
  407. #define CYCLES_EATEN_BY_CODE 240
  408. // If a minimum pulse time was specified get the CPU clock
  409. #if STEP_PULSE_CYCLES > CYCLES_EATEN_BY_CODE
  410. static uint32_t pulse_start;
  411. pulse_start = TCNT0;
  412. #endif
  413. #if HAS_X_STEP
  414. PULSE_START(X);
  415. #endif
  416. #if HAS_Y_STEP
  417. PULSE_START(Y);
  418. #endif
  419. #if HAS_Z_STEP
  420. PULSE_START(Z);
  421. #endif
  422. // For non-advance use linear interpolation for E also
  423. #if DISABLED(ADVANCE) && DISABLED(LIN_ADVANCE)
  424. #if ENABLED(MIXING_EXTRUDER)
  425. // Keep updating the single E axis
  426. counter_E += current_block->steps[E_AXIS];
  427. // Tick the counters used for this mix
  428. MIXING_STEPPERS_LOOP(j) {
  429. // Step mixing steppers (proportionally)
  430. counter_m[j] += current_block->steps[E_AXIS];
  431. // Step when the counter goes over zero
  432. if (counter_m[j] > 0) En_STEP_WRITE(j, !INVERT_E_STEP_PIN);
  433. }
  434. #else // !MIXING_EXTRUDER
  435. PULSE_START(E);
  436. #endif
  437. #endif // !ADVANCE && !LIN_ADVANCE
  438. // For a minimum pulse time wait before stopping pulses
  439. #if STEP_PULSE_CYCLES > CYCLES_EATEN_BY_CODE
  440. while ((uint32_t)(TCNT0 - pulse_start) < STEP_PULSE_CYCLES - CYCLES_EATEN_BY_CODE) { /* nada */ }
  441. #endif
  442. #if HAS_X_STEP
  443. PULSE_STOP(X);
  444. #endif
  445. #if HAS_Y_STEP
  446. PULSE_STOP(Y);
  447. #endif
  448. #if HAS_Z_STEP
  449. PULSE_STOP(Z);
  450. #endif
  451. #if DISABLED(ADVANCE) && DISABLED(LIN_ADVANCE)
  452. #if ENABLED(MIXING_EXTRUDER)
  453. // Always step the single E axis
  454. if (counter_E > 0) {
  455. counter_E -= current_block->step_event_count;
  456. count_position[E_AXIS] += count_direction[E_AXIS];
  457. }
  458. MIXING_STEPPERS_LOOP(j) {
  459. if (counter_m[j] > 0) {
  460. counter_m[j] -= current_block->mix_event_count[j];
  461. En_STEP_WRITE(j, INVERT_E_STEP_PIN);
  462. }
  463. }
  464. #else // !MIXING_EXTRUDER
  465. PULSE_STOP(E);
  466. #endif
  467. #endif // !ADVANCE && !LIN_ADVANCE
  468. if (++step_events_completed >= current_block->step_event_count) {
  469. all_steps_done = true;
  470. break;
  471. }
  472. }
  473. #if ENABLED(ADVANCE) || ENABLED(LIN_ADVANCE)
  474. // If we have esteps to execute, fire the next advance_isr "now"
  475. if (e_steps[TOOL_E_INDEX]) OCR0A = TCNT0 + 2;
  476. #endif
  477. // Calculate new timer value
  478. uint16_t timer, step_rate;
  479. if (step_events_completed <= (uint32_t)current_block->accelerate_until) {
  480. MultiU24X32toH16(acc_step_rate, acceleration_time, current_block->acceleration_rate);
  481. acc_step_rate += current_block->initial_rate;
  482. // upper limit
  483. NOMORE(acc_step_rate, current_block->nominal_rate);
  484. // step_rate to timer interval
  485. timer = calc_timer(acc_step_rate);
  486. OCR1A = timer;
  487. acceleration_time += timer;
  488. #if ENABLED(LIN_ADVANCE)
  489. if (current_block->use_advance_lead)
  490. current_estep_rate[TOOL_E_INDEX] = ((uint32_t)acc_step_rate * current_block->e_speed_multiplier8) >> 8;
  491. if (current_block->use_advance_lead) {
  492. #if ENABLED(MIXING_EXTRUDER)
  493. MIXING_STEPPERS_LOOP(j)
  494. current_estep_rate[j] = ((uint32_t)acc_step_rate * current_block->e_speed_multiplier8 * current_block->step_event_count / current_block->mix_event_count[j]) >> 8;
  495. #else
  496. current_estep_rate[TOOL_E_INDEX] = ((uint32_t)acc_step_rate * current_block->e_speed_multiplier8) >> 8;
  497. #endif
  498. }
  499. #elif ENABLED(ADVANCE)
  500. advance += advance_rate * step_loops;
  501. //NOLESS(advance, current_block->advance);
  502. long advance_whole = advance >> 8,
  503. advance_factor = advance_whole - old_advance;
  504. // Do E steps + advance steps
  505. #if ENABLED(MIXING_EXTRUDER)
  506. // ...for mixing steppers proportionally
  507. MIXING_STEPPERS_LOOP(j)
  508. e_steps[j] += advance_factor * current_block->step_event_count / current_block->mix_event_count[j];
  509. #else
  510. // ...for the active extruder
  511. e_steps[TOOL_E_INDEX] += advance_factor;
  512. #endif
  513. old_advance = advance_whole;
  514. #endif // ADVANCE or LIN_ADVANCE
  515. #if ENABLED(ADVANCE) || ENABLED(LIN_ADVANCE)
  516. eISR_Rate = (timer >> 2) * step_loops / abs(e_steps[TOOL_E_INDEX]);
  517. #endif
  518. }
  519. else if (step_events_completed > (uint32_t)current_block->decelerate_after) {
  520. MultiU24X32toH16(step_rate, deceleration_time, current_block->acceleration_rate);
  521. if (step_rate < acc_step_rate) { // Still decelerating?
  522. step_rate = acc_step_rate - step_rate;
  523. NOLESS(step_rate, current_block->final_rate);
  524. }
  525. else
  526. step_rate = current_block->final_rate;
  527. // step_rate to timer interval
  528. timer = calc_timer(step_rate);
  529. OCR1A = timer;
  530. deceleration_time += timer;
  531. #if ENABLED(LIN_ADVANCE)
  532. if (current_block->use_advance_lead) {
  533. #if ENABLED(MIXING_EXTRUDER)
  534. MIXING_STEPPERS_LOOP(j)
  535. current_estep_rate[j] = ((uint32_t)step_rate * current_block->e_speed_multiplier8 * current_block->step_event_count / current_block->mix_event_count[j]) >> 8;
  536. #else
  537. current_estep_rate[TOOL_E_INDEX] = ((uint32_t)step_rate * current_block->e_speed_multiplier8) >> 8;
  538. #endif
  539. }
  540. #elif ENABLED(ADVANCE)
  541. advance -= advance_rate * step_loops;
  542. NOLESS(advance, final_advance);
  543. // Do E steps + advance steps
  544. long advance_whole = advance >> 8,
  545. advance_factor = advance_whole - old_advance;
  546. #if ENABLED(MIXING_EXTRUDER)
  547. MIXING_STEPPERS_LOOP(j)
  548. e_steps[j] += advance_factor * current_block->step_event_count / current_block->mix_event_count[j];
  549. #else
  550. e_steps[TOOL_E_INDEX] += advance_factor;
  551. #endif
  552. old_advance = advance_whole;
  553. #endif // ADVANCE or LIN_ADVANCE
  554. #if ENABLED(ADVANCE) || ENABLED(LIN_ADVANCE)
  555. eISR_Rate = (timer >> 2) * step_loops / abs(e_steps[TOOL_E_INDEX]);
  556. #endif
  557. }
  558. else {
  559. #if ENABLED(LIN_ADVANCE)
  560. if (current_block->use_advance_lead)
  561. current_estep_rate[TOOL_E_INDEX] = final_estep_rate;
  562. eISR_Rate = (OCR1A_nominal >> 2) * step_loops_nominal / abs(e_steps[TOOL_E_INDEX]);
  563. #endif
  564. OCR1A = OCR1A_nominal;
  565. // ensure we're running at the correct step rate, even if we just came off an acceleration
  566. step_loops = step_loops_nominal;
  567. }
  568. NOLESS(OCR1A, TCNT1 + 16);
  569. // If current block is finished, reset pointer
  570. if (all_steps_done) {
  571. current_block = NULL;
  572. planner.discard_current_block();
  573. }
  574. }
  575. #if ENABLED(ADVANCE) || ENABLED(LIN_ADVANCE)
  576. // Timer interrupt for E. e_steps is set in the main routine;
  577. // Timer 0 is shared with millies
  578. ISR(TIMER0_COMPA_vect) { Stepper::advance_isr(); }
  579. void Stepper::advance_isr() {
  580. old_OCR0A += eISR_Rate;
  581. OCR0A = old_OCR0A;
  582. #define SET_E_STEP_DIR(INDEX) \
  583. if (e_steps[INDEX]) E## INDEX ##_DIR_WRITE(e_steps[INDEX] < 0 ? INVERT_E## INDEX ##_DIR : !INVERT_E## INDEX ##_DIR)
  584. #define START_E_PULSE(INDEX) \
  585. if (e_steps[INDEX]) E## INDEX ##_STEP_WRITE(!INVERT_E_STEP_PIN)
  586. #define STOP_E_PULSE(INDEX) \
  587. if (e_steps[INDEX]) { \
  588. e_steps[INDEX] < 0 ? ++e_steps[INDEX] : --e_steps[INDEX]; \
  589. E## INDEX ##_STEP_WRITE(INVERT_E_STEP_PIN); \
  590. }
  591. SET_E_STEP_DIR(0);
  592. #if E_STEPPERS > 1
  593. SET_E_STEP_DIR(1);
  594. #if E_STEPPERS > 2
  595. SET_E_STEP_DIR(2);
  596. #if E_STEPPERS > 3
  597. SET_E_STEP_DIR(3);
  598. #endif
  599. #endif
  600. #endif
  601. #define CYCLES_EATEN_BY_E 60
  602. // Step all E steppers that have steps
  603. for (uint8_t i = 0; i < step_loops; i++) {
  604. #if STEP_PULSE_CYCLES > CYCLES_EATEN_BY_E
  605. static uint32_t pulse_start;
  606. pulse_start = TCNT0;
  607. #endif
  608. START_E_PULSE(0);
  609. #if E_STEPPERS > 1
  610. START_E_PULSE(1);
  611. #if E_STEPPERS > 2
  612. START_E_PULSE(2);
  613. #if E_STEPPERS > 3
  614. START_E_PULSE(3);
  615. #endif
  616. #endif
  617. #endif
  618. // For a minimum pulse time wait before stopping pulses
  619. #if STEP_PULSE_CYCLES > CYCLES_EATEN_BY_E
  620. while ((uint32_t)(TCNT0 - pulse_start) < STEP_PULSE_CYCLES - CYCLES_EATEN_BY_E) { /* nada */ }
  621. #endif
  622. STOP_E_PULSE(0);
  623. #if E_STEPPERS > 1
  624. STOP_E_PULSE(1);
  625. #if E_STEPPERS > 2
  626. STOP_E_PULSE(2);
  627. #if E_STEPPERS > 3
  628. STOP_E_PULSE(3);
  629. #endif
  630. #endif
  631. #endif
  632. }
  633. }
  634. #endif // ADVANCE or LIN_ADVANCE
  635. void Stepper::init() {
  636. // Init Digipot Motor Current
  637. #if HAS_DIGIPOTSS || HAS_MOTOR_CURRENT_PWM
  638. digipot_init();
  639. #endif
  640. // Init Microstepping Pins
  641. #if HAS_MICROSTEPS
  642. microstep_init();
  643. #endif
  644. // Init TMC Steppers
  645. #if ENABLED(HAVE_TMCDRIVER)
  646. tmc_init();
  647. #endif
  648. // Init L6470 Steppers
  649. #if ENABLED(HAVE_L6470DRIVER)
  650. L6470_init();
  651. #endif
  652. // Init Dir Pins
  653. #if HAS_X_DIR
  654. X_DIR_INIT;
  655. #endif
  656. #if HAS_X2_DIR
  657. X2_DIR_INIT;
  658. #endif
  659. #if HAS_Y_DIR
  660. Y_DIR_INIT;
  661. #if ENABLED(Y_DUAL_STEPPER_DRIVERS) && HAS_Y2_DIR
  662. Y2_DIR_INIT;
  663. #endif
  664. #endif
  665. #if HAS_Z_DIR
  666. Z_DIR_INIT;
  667. #if ENABLED(Z_DUAL_STEPPER_DRIVERS) && HAS_Z2_DIR
  668. Z2_DIR_INIT;
  669. #endif
  670. #endif
  671. #if HAS_E0_DIR
  672. E0_DIR_INIT;
  673. #endif
  674. #if HAS_E1_DIR
  675. E1_DIR_INIT;
  676. #endif
  677. #if HAS_E2_DIR
  678. E2_DIR_INIT;
  679. #endif
  680. #if HAS_E3_DIR
  681. E3_DIR_INIT;
  682. #endif
  683. // Init Enable Pins - steppers default to disabled.
  684. #if HAS_X_ENABLE
  685. X_ENABLE_INIT;
  686. if (!X_ENABLE_ON) X_ENABLE_WRITE(HIGH);
  687. #if ENABLED(DUAL_X_CARRIAGE) && HAS_X2_ENABLE
  688. X2_ENABLE_INIT;
  689. if (!X_ENABLE_ON) X2_ENABLE_WRITE(HIGH);
  690. #endif
  691. #endif
  692. #if HAS_Y_ENABLE
  693. Y_ENABLE_INIT;
  694. if (!Y_ENABLE_ON) Y_ENABLE_WRITE(HIGH);
  695. #if ENABLED(Y_DUAL_STEPPER_DRIVERS) && HAS_Y2_ENABLE
  696. Y2_ENABLE_INIT;
  697. if (!Y_ENABLE_ON) Y2_ENABLE_WRITE(HIGH);
  698. #endif
  699. #endif
  700. #if HAS_Z_ENABLE
  701. Z_ENABLE_INIT;
  702. if (!Z_ENABLE_ON) Z_ENABLE_WRITE(HIGH);
  703. #if ENABLED(Z_DUAL_STEPPER_DRIVERS) && HAS_Z2_ENABLE
  704. Z2_ENABLE_INIT;
  705. if (!Z_ENABLE_ON) Z2_ENABLE_WRITE(HIGH);
  706. #endif
  707. #endif
  708. #if HAS_E0_ENABLE
  709. E0_ENABLE_INIT;
  710. if (!E_ENABLE_ON) E0_ENABLE_WRITE(HIGH);
  711. #endif
  712. #if HAS_E1_ENABLE
  713. E1_ENABLE_INIT;
  714. if (!E_ENABLE_ON) E1_ENABLE_WRITE(HIGH);
  715. #endif
  716. #if HAS_E2_ENABLE
  717. E2_ENABLE_INIT;
  718. if (!E_ENABLE_ON) E2_ENABLE_WRITE(HIGH);
  719. #endif
  720. #if HAS_E3_ENABLE
  721. E3_ENABLE_INIT;
  722. if (!E_ENABLE_ON) E3_ENABLE_WRITE(HIGH);
  723. #endif
  724. // Init endstops and pullups
  725. endstops.init();
  726. #define _STEP_INIT(AXIS) AXIS ##_STEP_INIT
  727. #define _WRITE_STEP(AXIS, HIGHLOW) AXIS ##_STEP_WRITE(HIGHLOW)
  728. #define _DISABLE(axis) disable_## axis()
  729. #define AXIS_INIT(axis, AXIS, PIN) \
  730. _STEP_INIT(AXIS); \
  731. _WRITE_STEP(AXIS, _INVERT_STEP_PIN(PIN)); \
  732. _DISABLE(axis)
  733. #define E_AXIS_INIT(NUM) AXIS_INIT(e## NUM, E## NUM, E)
  734. // Init Step Pins
  735. #if HAS_X_STEP
  736. #if ENABLED(X_DUAL_STEPPER_DRIVERS) || ENABLED(DUAL_X_CARRIAGE)
  737. X2_STEP_INIT;
  738. X2_STEP_WRITE(INVERT_X_STEP_PIN);
  739. #endif
  740. AXIS_INIT(x, X, X);
  741. #endif
  742. #if HAS_Y_STEP
  743. #if ENABLED(Y_DUAL_STEPPER_DRIVERS)
  744. Y2_STEP_INIT;
  745. Y2_STEP_WRITE(INVERT_Y_STEP_PIN);
  746. #endif
  747. AXIS_INIT(y, Y, Y);
  748. #endif
  749. #if HAS_Z_STEP
  750. #if ENABLED(Z_DUAL_STEPPER_DRIVERS)
  751. Z2_STEP_INIT;
  752. Z2_STEP_WRITE(INVERT_Z_STEP_PIN);
  753. #endif
  754. AXIS_INIT(z, Z, Z);
  755. #endif
  756. #if HAS_E0_STEP
  757. E_AXIS_INIT(0);
  758. #endif
  759. #if HAS_E1_STEP
  760. E_AXIS_INIT(1);
  761. #endif
  762. #if HAS_E2_STEP
  763. E_AXIS_INIT(2);
  764. #endif
  765. #if HAS_E3_STEP
  766. E_AXIS_INIT(3);
  767. #endif
  768. // waveform generation = 0100 = CTC
  769. CBI(TCCR1B, WGM13);
  770. SBI(TCCR1B, WGM12);
  771. CBI(TCCR1A, WGM11);
  772. CBI(TCCR1A, WGM10);
  773. // output mode = 00 (disconnected)
  774. TCCR1A &= ~(3 << COM1A0);
  775. TCCR1A &= ~(3 << COM1B0);
  776. // Set the timer pre-scaler
  777. // Generally we use a divider of 8, resulting in a 2MHz timer
  778. // frequency on a 16MHz MCU. If you are going to change this, be
  779. // sure to regenerate speed_lookuptable.h with
  780. // create_speed_lookuptable.py
  781. TCCR1B = (TCCR1B & ~(0x07 << CS10)) | (2 << CS10);
  782. OCR1A = 0x4000;
  783. TCNT1 = 0;
  784. ENABLE_STEPPER_DRIVER_INTERRUPT();
  785. #if ENABLED(ADVANCE) || ENABLED(LIN_ADVANCE)
  786. for (int i = 0; i < E_STEPPERS; i++) {
  787. e_steps[i] = 0;
  788. #if ENABLED(LIN_ADVANCE)
  789. current_adv_steps[i] = 0;
  790. #endif
  791. }
  792. #if defined(TCCR0A) && defined(WGM01)
  793. CBI(TCCR0A, WGM01);
  794. CBI(TCCR0A, WGM00);
  795. #endif
  796. SBI(TIMSK0, OCIE0A);
  797. #endif // ADVANCE or LIN_ADVANCE
  798. endstops.enable(true); // Start with endstops active. After homing they can be disabled
  799. sei();
  800. set_directions(); // Init directions to last_direction_bits = 0
  801. }
  802. /**
  803. * Block until all buffered steps are executed
  804. */
  805. void Stepper::synchronize() { while (planner.blocks_queued()) idle(); }
  806. /**
  807. * Set the stepper positions directly in steps
  808. *
  809. * The input is based on the typical per-axis XYZ steps.
  810. * For CORE machines XYZ needs to be translated to ABC.
  811. *
  812. * This allows get_axis_position_mm to correctly
  813. * derive the current XYZ position later on.
  814. */
  815. void Stepper::set_position(const long& x, const long& y, const long& z, const long& e) {
  816. synchronize(); // Bad to set stepper counts in the middle of a move
  817. CRITICAL_SECTION_START;
  818. #if ENABLED(COREXY)
  819. // corexy positioning
  820. // these equations follow the form of the dA and dB equations on http://www.corexy.com/theory.html
  821. count_position[A_AXIS] = x + y;
  822. count_position[B_AXIS] = x - y;
  823. count_position[Z_AXIS] = z;
  824. #elif ENABLED(COREXZ)
  825. // corexz planning
  826. count_position[A_AXIS] = x + z;
  827. count_position[Y_AXIS] = y;
  828. count_position[C_AXIS] = x - z;
  829. #elif ENABLED(COREYZ)
  830. // coreyz planning
  831. count_position[X_AXIS] = x;
  832. count_position[B_AXIS] = y + z;
  833. count_position[C_AXIS] = y - z;
  834. #else
  835. // default non-h-bot planning
  836. count_position[X_AXIS] = x;
  837. count_position[Y_AXIS] = y;
  838. count_position[Z_AXIS] = z;
  839. #endif
  840. count_position[E_AXIS] = e;
  841. CRITICAL_SECTION_END;
  842. }
  843. void Stepper::set_position(const AxisEnum &axis, const long& v) {
  844. CRITICAL_SECTION_START;
  845. count_position[axis] = v;
  846. CRITICAL_SECTION_END;
  847. }
  848. void Stepper::set_e_position(const long& e) {
  849. CRITICAL_SECTION_START;
  850. count_position[E_AXIS] = e;
  851. CRITICAL_SECTION_END;
  852. }
  853. /**
  854. * Get a stepper's position in steps.
  855. */
  856. long Stepper::position(AxisEnum axis) {
  857. CRITICAL_SECTION_START;
  858. long count_pos = count_position[axis];
  859. CRITICAL_SECTION_END;
  860. return count_pos;
  861. }
  862. /**
  863. * Get an axis position according to stepper position(s)
  864. * For CORE machines apply translation from ABC to XYZ.
  865. */
  866. float Stepper::get_axis_position_mm(AxisEnum axis) {
  867. float axis_steps;
  868. #if ENABLED(COREXY) || ENABLED(COREXZ) || ENABLED(COREYZ)
  869. // Requesting one of the "core" axes?
  870. if (axis == CORE_AXIS_1 || axis == CORE_AXIS_2) {
  871. CRITICAL_SECTION_START;
  872. long pos1 = count_position[CORE_AXIS_1],
  873. pos2 = count_position[CORE_AXIS_2];
  874. CRITICAL_SECTION_END;
  875. // ((a1+a2)+(a1-a2))/2 -> (a1+a2+a1-a2)/2 -> (a1+a1)/2 -> a1
  876. // ((a1+a2)-(a1-a2))/2 -> (a1+a2-a1+a2)/2 -> (a2+a2)/2 -> a2
  877. axis_steps = (pos1 + ((axis == CORE_AXIS_1) ? pos2 : -pos2)) * 0.5f;
  878. }
  879. else
  880. axis_steps = position(axis);
  881. #else
  882. axis_steps = position(axis);
  883. #endif
  884. return axis_steps * planner.steps_to_mm[axis];
  885. }
  886. void Stepper::finish_and_disable() {
  887. synchronize();
  888. disable_all_steppers();
  889. }
  890. void Stepper::quick_stop() {
  891. cleaning_buffer_counter = 5000;
  892. DISABLE_STEPPER_DRIVER_INTERRUPT();
  893. while (planner.blocks_queued()) planner.discard_current_block();
  894. current_block = NULL;
  895. ENABLE_STEPPER_DRIVER_INTERRUPT();
  896. }
  897. void Stepper::endstop_triggered(AxisEnum axis) {
  898. #if ENABLED(COREXY) || ENABLED(COREXZ) || ENABLED(COREYZ)
  899. float axis_pos = count_position[axis];
  900. if (axis == CORE_AXIS_1)
  901. axis_pos = (axis_pos + count_position[CORE_AXIS_2]) * 0.5;
  902. else if (axis == CORE_AXIS_2)
  903. axis_pos = (count_position[CORE_AXIS_1] - axis_pos) * 0.5;
  904. endstops_trigsteps[axis] = axis_pos;
  905. #else // !COREXY && !COREXZ && !COREYZ
  906. endstops_trigsteps[axis] = count_position[axis];
  907. #endif // !COREXY && !COREXZ && !COREYZ
  908. kill_current_block();
  909. }
  910. void Stepper::report_positions() {
  911. CRITICAL_SECTION_START;
  912. long xpos = count_position[X_AXIS],
  913. ypos = count_position[Y_AXIS],
  914. zpos = count_position[Z_AXIS];
  915. CRITICAL_SECTION_END;
  916. #if ENABLED(COREXY) || ENABLED(COREXZ) || IS_SCARA
  917. SERIAL_PROTOCOLPGM(MSG_COUNT_A);
  918. #else
  919. SERIAL_PROTOCOLPGM(MSG_COUNT_X);
  920. #endif
  921. SERIAL_PROTOCOL(xpos);
  922. #if ENABLED(COREXY) || ENABLED(COREYZ) || IS_SCARA
  923. SERIAL_PROTOCOLPGM(" B:");
  924. #else
  925. SERIAL_PROTOCOLPGM(" Y:");
  926. #endif
  927. SERIAL_PROTOCOL(ypos);
  928. #if ENABLED(COREXZ) || ENABLED(COREYZ)
  929. SERIAL_PROTOCOLPGM(" C:");
  930. #else
  931. SERIAL_PROTOCOLPGM(" Z:");
  932. #endif
  933. SERIAL_PROTOCOL(zpos);
  934. SERIAL_EOL;
  935. }
  936. #if ENABLED(BABYSTEPPING)
  937. // MUST ONLY BE CALLED BY AN ISR,
  938. // No other ISR should ever interrupt this!
  939. void Stepper::babystep(const uint8_t axis, const bool direction) {
  940. #define _ENABLE(axis) enable_## axis()
  941. #define _READ_DIR(AXIS) AXIS ##_DIR_READ
  942. #define _INVERT_DIR(AXIS) INVERT_## AXIS ##_DIR
  943. #define _APPLY_DIR(AXIS, INVERT) AXIS ##_APPLY_DIR(INVERT, true)
  944. #define BABYSTEP_AXIS(axis, AXIS, INVERT) { \
  945. _ENABLE(axis); \
  946. uint8_t old_pin = _READ_DIR(AXIS); \
  947. _APPLY_DIR(AXIS, _INVERT_DIR(AXIS)^direction^INVERT); \
  948. _APPLY_STEP(AXIS)(!_INVERT_STEP_PIN(AXIS), true); \
  949. delayMicroseconds(2); \
  950. _APPLY_STEP(AXIS)(_INVERT_STEP_PIN(AXIS), true); \
  951. _APPLY_DIR(AXIS, old_pin); \
  952. }
  953. switch (axis) {
  954. case X_AXIS:
  955. BABYSTEP_AXIS(x, X, false);
  956. break;
  957. case Y_AXIS:
  958. BABYSTEP_AXIS(y, Y, false);
  959. break;
  960. case Z_AXIS: {
  961. #if DISABLED(DELTA)
  962. BABYSTEP_AXIS(z, Z, BABYSTEP_INVERT_Z);
  963. #else // DELTA
  964. bool z_direction = direction ^ BABYSTEP_INVERT_Z;
  965. enable_x();
  966. enable_y();
  967. enable_z();
  968. uint8_t old_x_dir_pin = X_DIR_READ,
  969. old_y_dir_pin = Y_DIR_READ,
  970. old_z_dir_pin = Z_DIR_READ;
  971. //setup new step
  972. X_DIR_WRITE(INVERT_X_DIR ^ z_direction);
  973. Y_DIR_WRITE(INVERT_Y_DIR ^ z_direction);
  974. Z_DIR_WRITE(INVERT_Z_DIR ^ z_direction);
  975. //perform step
  976. X_STEP_WRITE(!INVERT_X_STEP_PIN);
  977. Y_STEP_WRITE(!INVERT_Y_STEP_PIN);
  978. Z_STEP_WRITE(!INVERT_Z_STEP_PIN);
  979. delayMicroseconds(2);
  980. X_STEP_WRITE(INVERT_X_STEP_PIN);
  981. Y_STEP_WRITE(INVERT_Y_STEP_PIN);
  982. Z_STEP_WRITE(INVERT_Z_STEP_PIN);
  983. //get old pin state back.
  984. X_DIR_WRITE(old_x_dir_pin);
  985. Y_DIR_WRITE(old_y_dir_pin);
  986. Z_DIR_WRITE(old_z_dir_pin);
  987. #endif
  988. } break;
  989. default: break;
  990. }
  991. }
  992. #endif //BABYSTEPPING
  993. /**
  994. * Software-controlled Stepper Motor Current
  995. */
  996. #if HAS_DIGIPOTSS
  997. // From Arduino DigitalPotControl example
  998. void Stepper::digitalPotWrite(int address, int value) {
  999. WRITE(DIGIPOTSS_PIN, LOW); // take the SS pin low to select the chip
  1000. SPI.transfer(address); // send in the address and value via SPI:
  1001. SPI.transfer(value);
  1002. WRITE(DIGIPOTSS_PIN, HIGH); // take the SS pin high to de-select the chip:
  1003. //delay(10);
  1004. }
  1005. #endif //HAS_DIGIPOTSS
  1006. #if HAS_DIGIPOTSS || HAS_MOTOR_CURRENT_PWM
  1007. void Stepper::digipot_init() {
  1008. #if HAS_DIGIPOTSS
  1009. static const uint8_t digipot_motor_current[] = DIGIPOT_MOTOR_CURRENT;
  1010. SPI.begin();
  1011. SET_OUTPUT(DIGIPOTSS_PIN);
  1012. for (uint8_t i = 0; i < COUNT(digipot_motor_current); i++) {
  1013. //digitalPotWrite(digipot_ch[i], digipot_motor_current[i]);
  1014. digipot_current(i, digipot_motor_current[i]);
  1015. }
  1016. #elif HAS_MOTOR_CURRENT_PWM
  1017. #if PIN_EXISTS(MOTOR_CURRENT_PWM_XY)
  1018. SET_OUTPUT(MOTOR_CURRENT_PWM_XY_PIN);
  1019. digipot_current(0, motor_current_setting[0]);
  1020. #endif
  1021. #if PIN_EXISTS(MOTOR_CURRENT_PWM_Z)
  1022. SET_OUTPUT(MOTOR_CURRENT_PWM_Z_PIN);
  1023. digipot_current(1, motor_current_setting[1]);
  1024. #endif
  1025. #if PIN_EXISTS(MOTOR_CURRENT_PWM_E)
  1026. SET_OUTPUT(MOTOR_CURRENT_PWM_E_PIN);
  1027. digipot_current(2, motor_current_setting[2]);
  1028. #endif
  1029. //Set timer5 to 31khz so the PWM of the motor power is as constant as possible. (removes a buzzing noise)
  1030. TCCR5B = (TCCR5B & ~(_BV(CS50) | _BV(CS51) | _BV(CS52))) | _BV(CS50);
  1031. #endif
  1032. }
  1033. void Stepper::digipot_current(uint8_t driver, int current) {
  1034. #if HAS_DIGIPOTSS
  1035. const uint8_t digipot_ch[] = DIGIPOT_CHANNELS;
  1036. digitalPotWrite(digipot_ch[driver], current);
  1037. #elif HAS_MOTOR_CURRENT_PWM
  1038. #define _WRITE_CURRENT_PWM(P) analogWrite(P, 255L * current / (MOTOR_CURRENT_PWM_RANGE))
  1039. switch (driver) {
  1040. #if PIN_EXISTS(MOTOR_CURRENT_PWM_XY)
  1041. case 0: _WRITE_CURRENT_PWM(MOTOR_CURRENT_PWM_XY_PIN); break;
  1042. #endif
  1043. #if PIN_EXISTS(MOTOR_CURRENT_PWM_Z)
  1044. case 1: _WRITE_CURRENT_PWM(MOTOR_CURRENT_PWM_Z_PIN); break;
  1045. #endif
  1046. #if PIN_EXISTS(MOTOR_CURRENT_PWM_E)
  1047. case 2: _WRITE_CURRENT_PWM(MOTOR_CURRENT_PWM_E_PIN); break;
  1048. #endif
  1049. }
  1050. #endif
  1051. }
  1052. #endif
  1053. #if HAS_MICROSTEPS
  1054. /**
  1055. * Software-controlled Microstepping
  1056. */
  1057. void Stepper::microstep_init() {
  1058. SET_OUTPUT(X_MS1_PIN);
  1059. SET_OUTPUT(X_MS2_PIN);
  1060. #if HAS_MICROSTEPS_Y
  1061. SET_OUTPUT(Y_MS1_PIN);
  1062. SET_OUTPUT(Y_MS2_PIN);
  1063. #endif
  1064. #if HAS_MICROSTEPS_Z
  1065. SET_OUTPUT(Z_MS1_PIN);
  1066. SET_OUTPUT(Z_MS2_PIN);
  1067. #endif
  1068. #if HAS_MICROSTEPS_E0
  1069. SET_OUTPUT(E0_MS1_PIN);
  1070. SET_OUTPUT(E0_MS2_PIN);
  1071. #endif
  1072. #if HAS_MICROSTEPS_E1
  1073. SET_OUTPUT(E1_MS1_PIN);
  1074. SET_OUTPUT(E1_MS2_PIN);
  1075. #endif
  1076. static const uint8_t microstep_modes[] = MICROSTEP_MODES;
  1077. for (uint16_t i = 0; i < COUNT(microstep_modes); i++)
  1078. microstep_mode(i, microstep_modes[i]);
  1079. }
  1080. void Stepper::microstep_ms(uint8_t driver, int8_t ms1, int8_t ms2) {
  1081. if (ms1 >= 0) switch (driver) {
  1082. case 0: digitalWrite(X_MS1_PIN, ms1); break;
  1083. #if HAS_MICROSTEPS_Y
  1084. case 1: digitalWrite(Y_MS1_PIN, ms1); break;
  1085. #endif
  1086. #if HAS_MICROSTEPS_Z
  1087. case 2: digitalWrite(Z_MS1_PIN, ms1); break;
  1088. #endif
  1089. #if HAS_MICROSTEPS_E0
  1090. case 3: digitalWrite(E0_MS1_PIN, ms1); break;
  1091. #endif
  1092. #if HAS_MICROSTEPS_E1
  1093. case 4: digitalWrite(E1_MS1_PIN, ms1); break;
  1094. #endif
  1095. }
  1096. if (ms2 >= 0) switch (driver) {
  1097. case 0: digitalWrite(X_MS2_PIN, ms2); break;
  1098. #if HAS_MICROSTEPS_Y
  1099. case 1: digitalWrite(Y_MS2_PIN, ms2); break;
  1100. #endif
  1101. #if HAS_MICROSTEPS_Z
  1102. case 2: digitalWrite(Z_MS2_PIN, ms2); break;
  1103. #endif
  1104. #if HAS_MICROSTEPS_E0
  1105. case 3: digitalWrite(E0_MS2_PIN, ms2); break;
  1106. #endif
  1107. #if HAS_MICROSTEPS_E1
  1108. case 4: digitalWrite(E1_MS2_PIN, ms2); break;
  1109. #endif
  1110. }
  1111. }
  1112. void Stepper::microstep_mode(uint8_t driver, uint8_t stepping_mode) {
  1113. switch (stepping_mode) {
  1114. case 1: microstep_ms(driver, MICROSTEP1); break;
  1115. case 2: microstep_ms(driver, MICROSTEP2); break;
  1116. case 4: microstep_ms(driver, MICROSTEP4); break;
  1117. case 8: microstep_ms(driver, MICROSTEP8); break;
  1118. case 16: microstep_ms(driver, MICROSTEP16); break;
  1119. }
  1120. }
  1121. void Stepper::microstep_readings() {
  1122. SERIAL_PROTOCOLLNPGM("MS1,MS2 Pins");
  1123. SERIAL_PROTOCOLPGM("X: ");
  1124. SERIAL_PROTOCOL(READ(X_MS1_PIN));
  1125. SERIAL_PROTOCOLLN(READ(X_MS2_PIN));
  1126. #if HAS_MICROSTEPS_Y
  1127. SERIAL_PROTOCOLPGM("Y: ");
  1128. SERIAL_PROTOCOL(READ(Y_MS1_PIN));
  1129. SERIAL_PROTOCOLLN(READ(Y_MS2_PIN));
  1130. #endif
  1131. #if HAS_MICROSTEPS_Z
  1132. SERIAL_PROTOCOLPGM("Z: ");
  1133. SERIAL_PROTOCOL(READ(Z_MS1_PIN));
  1134. SERIAL_PROTOCOLLN(READ(Z_MS2_PIN));
  1135. #endif
  1136. #if HAS_MICROSTEPS_E0
  1137. SERIAL_PROTOCOLPGM("E0: ");
  1138. SERIAL_PROTOCOL(READ(E0_MS1_PIN));
  1139. SERIAL_PROTOCOLLN(READ(E0_MS2_PIN));
  1140. #endif
  1141. #if HAS_MICROSTEPS_E1
  1142. SERIAL_PROTOCOLPGM("E1: ");
  1143. SERIAL_PROTOCOL(READ(E1_MS1_PIN));
  1144. SERIAL_PROTOCOLLN(READ(E1_MS2_PIN));
  1145. #endif
  1146. }
  1147. #endif // HAS_MICROSTEPS
  1148. #if ENABLED(LIN_ADVANCE)
  1149. void Stepper::advance_M905(const float &k) {
  1150. if (k >= 0) extruder_advance_k = k;
  1151. SERIAL_ECHO_START;
  1152. SERIAL_ECHOPAIR("Advance factor: ", extruder_advance_k);
  1153. SERIAL_EOL;
  1154. }
  1155. #endif // LIN_ADVANCE