123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592 |
- /*
- stepper.c - stepper motor driver: executes motion plans using stepper motors
- Part of Grbl
-
- Copyright (c) 2009-2011 Simen Svale Skogsrud
-
- Grbl is free software: you can redistribute it and/or modify
- it under the terms of the GNU General Public License as published by
- the Free Software Foundation, either version 3 of the License, or
- (at your option) any later version.
-
- Grbl is distributed in the hope that it will be useful,
- but WITHOUT ANY WARRANTY; without even the implied warranty of
- MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
- GNU General Public License for more details.
-
- You should have received a copy of the GNU General Public License
- along with Grbl. If not, see <http://www.gnu.org/licenses/>.
- */
-
- /* The timer calculations of this module informed by the 'RepRap cartesian firmware' by Zack Smith
- and Philipp Tiefenbacher. */
-
- #include "stepper.h"
- #include "Configuration.h"
- #include "Marlin.h"
- #include "planner.h"
- #include "pins.h"
- #include "fastio.h"
- #include "temperature.h"
- #include "ultralcd.h"
-
- #include "speed_lookuptable.h"
-
- // if DEBUG_STEPS is enabled, M114 can be used to compare two methods of determining the X,Y,Z position of the printer.
- // for debugging purposes only, should be disabled by default
- #ifdef DEBUG_STEPS
- volatile long count_position[NUM_AXIS] = { 0, 0, 0, 0};
- volatile int count_direction[NUM_AXIS] = { 1, 1, 1, 1};
- #endif
-
-
- // intRes = intIn1 * intIn2 >> 16
- // uses:
- // r26 to store 0
- // r27 to store the byte 1 of the 24 bit result
- #define MultiU16X8toH16(intRes, charIn1, intIn2) \
- asm volatile ( \
- "clr r26 \n\t" \
- "mul %A1, %B2 \n\t" \
- "movw %A0, r0 \n\t" \
- "mul %A1, %A2 \n\t" \
- "add %A0, r1 \n\t" \
- "adc %B0, r26 \n\t" \
- "lsr r0 \n\t" \
- "adc %A0, r26 \n\t" \
- "adc %B0, r26 \n\t" \
- "clr r1 \n\t" \
- : \
- "=&r" (intRes) \
- : \
- "d" (charIn1), \
- "d" (intIn2) \
- : \
- "r26" \
- )
-
- // intRes = longIn1 * longIn2 >> 24
- // uses:
- // r26 to store 0
- // r27 to store the byte 1 of the 48bit result
- #define MultiU24X24toH16(intRes, longIn1, longIn2) \
- asm volatile ( \
- "clr r26 \n\t" \
- "mul %A1, %B2 \n\t" \
- "mov r27, r1 \n\t" \
- "mul %B1, %C2 \n\t" \
- "movw %A0, r0 \n\t" \
- "mul %C1, %C2 \n\t" \
- "add %B0, r0 \n\t" \
- "mul %C1, %B2 \n\t" \
- "add %A0, r0 \n\t" \
- "adc %B0, r1 \n\t" \
- "mul %A1, %C2 \n\t" \
- "add r27, r0 \n\t" \
- "adc %A0, r1 \n\t" \
- "adc %B0, r26 \n\t" \
- "mul %B1, %B2 \n\t" \
- "add r27, r0 \n\t" \
- "adc %A0, r1 \n\t" \
- "adc %B0, r26 \n\t" \
- "mul %C1, %A2 \n\t" \
- "add r27, r0 \n\t" \
- "adc %A0, r1 \n\t" \
- "adc %B0, r26 \n\t" \
- "mul %B1, %A2 \n\t" \
- "add r27, r1 \n\t" \
- "adc %A0, r26 \n\t" \
- "adc %B0, r26 \n\t" \
- "lsr r27 \n\t" \
- "adc %A0, r26 \n\t" \
- "adc %B0, r26 \n\t" \
- "clr r1 \n\t" \
- : \
- "=&r" (intRes) \
- : \
- "d" (longIn1), \
- "d" (longIn2) \
- : \
- "r26" , "r27" \
- )
-
- // Some useful constants
-
- #define ENABLE_STEPPER_DRIVER_INTERRUPT() TIMSK1 |= (1<<OCIE1A)
- #define DISABLE_STEPPER_DRIVER_INTERRUPT() TIMSK1 &= ~(1<<OCIE1A)
-
- block_t *current_block; // A pointer to the block currently being traced
-
- // Variables used by The Stepper Driver Interrupt
- static unsigned char out_bits; // The next stepping-bits to be output
- static long counter_x, // Counter variables for the bresenham line tracer
- counter_y,
- counter_z,
- counter_e;
- static unsigned long step_events_completed; // The number of step events executed in the current block
- #ifdef ADVANCE
- static long advance_rate, advance, final_advance = 0;
- static short old_advance = 0;
- static short e_steps;
- #endif
- static unsigned char busy = false; // TRUE when SIG_OUTPUT_COMPARE1A is being serviced. Used to avoid retriggering that handler.
- static long acceleration_time, deceleration_time;
- //static unsigned long accelerate_until, decelerate_after, acceleration_rate, initial_rate, final_rate, nominal_rate;
- static unsigned short acc_step_rate; // needed for deccelaration start point
- static char step_loops;
-
-
- // __________________________
- // /| |\ _________________ ^
- // / | | \ /| |\ |
- // / | | \ / | | \ s
- // / | | | | | \ p
- // / | | | | | \ e
- // +-----+------------------------+---+--+---------------+----+ e
- // | BLOCK 1 | BLOCK 2 | d
- //
- // time ----->
- //
- // The trapezoid is the shape the speed curve over time. It starts at block->initial_rate, accelerates
- // first block->accelerate_until step_events_completed, then keeps going at constant speed until
- // step_events_completed reaches block->decelerate_after after which it decelerates until the trapezoid generator is reset.
- // The slope of acceleration is calculated with the leib ramp alghorithm.
-
- void st_wake_up() {
- // TCNT1 = 0;
- ENABLE_STEPPER_DRIVER_INTERRUPT();
- }
-
- inline unsigned short calc_timer(unsigned short step_rate) {
- unsigned short timer;
- if(step_rate > MAX_STEP_FREQUENCY) step_rate = MAX_STEP_FREQUENCY;
-
- if(step_rate > 20000) { // If steprate > 20kHz >> step 4 times
- step_rate = step_rate >> 2;
- step_loops = 4;
- }
- else if(step_rate > 10000) { // If steprate > 10kHz >> step 2 times
- step_rate = step_rate >> 1;
- step_loops = 2;
- }
- else {
- step_loops = 1;
- }
-
- if(step_rate < 32) step_rate = 32;
- step_rate -= 32; // Correct for minimal speed
- if(step_rate >= (8*256)){ // higher step rate
- unsigned short table_address = (unsigned short)&speed_lookuptable_fast[(unsigned char)(step_rate>>8)][0];
- unsigned char tmp_step_rate = (step_rate & 0x00ff);
- unsigned short gain = (unsigned short)pgm_read_word_near(table_address+2);
- MultiU16X8toH16(timer, tmp_step_rate, gain);
- timer = (unsigned short)pgm_read_word_near(table_address) - timer;
- }
- else { // lower step rates
- unsigned short table_address = (unsigned short)&speed_lookuptable_slow[0][0];
- table_address += ((step_rate)>>1) & 0xfffc;
- timer = (unsigned short)pgm_read_word_near(table_address);
- timer -= (((unsigned short)pgm_read_word_near(table_address+2) * (unsigned char)(step_rate & 0x0007))>>3);
- }
- if(timer < 100) timer = 100;
- return timer;
- }
-
- // Initializes the trapezoid generator from the current block. Called whenever a new
- // block begins.
- inline void trapezoid_generator_reset() {
- #ifdef ADVANCE
- advance = current_block->initial_advance;
- final_advance = current_block->final_advance;
- #endif
- deceleration_time = 0;
- // advance_rate = current_block->advance_rate;
- // step_rate to timer interval
- acc_step_rate = current_block->initial_rate;
- acceleration_time = calc_timer(acc_step_rate);
- OCR1A = acceleration_time;
- }
-
- // "The Stepper Driver Interrupt" - This timer interrupt is the workhorse.
- // It pops blocks from the block_buffer and executes them by pulsing the stepper pins appropriately.
- ISR(TIMER1_COMPA_vect)
- {
- if(busy){ Serial.print(*(unsigned short *)OCR1A); Serial.println(" BUSY");
- return;
- } // The busy-flag is used to avoid reentering this interrupt
-
- busy = true;
- sei(); // Re enable interrupts (normally disabled while inside an interrupt handler)
-
- // If there is no current block, attempt to pop one from the buffer
- if (current_block == NULL) {
- // Anything in the buffer?
- current_block = plan_get_current_block();
- if (current_block != NULL) {
- trapezoid_generator_reset();
- counter_x = -(current_block->step_event_count >> 1);
- counter_y = counter_x;
- counter_z = counter_x;
- counter_e = counter_x;
- step_events_completed = 0;
- #ifdef ADVANCE
- e_steps = 0;
- #endif
- }
- else {
- // DISABLE_STEPPER_DRIVER_INTERRUPT();
- }
- }
-
- if (current_block != NULL) {
- // Set directions TO DO This should be done once during init of trapezoid. Endstops -> interrupt
- out_bits = current_block->direction_bits;
-
- #ifdef ADVANCE
- // Calculate E early.
- counter_e += current_block->steps_e;
- if (counter_e > 0) {
- counter_e -= current_block->step_event_count;
- if ((out_bits & (1<<E_AXIS)) != 0) { // - direction
- CRITICAL_SECTION_START;
- e_steps--;
- CRITICAL_SECTION_END;
- }
- else {
- CRITICAL_SECTION_START;
- e_steps++;
- CRITICAL_SECTION_END;
- }
- }
- // Do E steps + advance steps
- CRITICAL_SECTION_START;
- e_steps += ((advance >> 16) - old_advance);
- CRITICAL_SECTION_END;
- old_advance = advance >> 16;
- #endif //ADVANCE
-
- // Set direction en check limit switches
- if ((out_bits & (1<<X_AXIS)) != 0) { // -direction
- WRITE(X_DIR_PIN, INVERT_X_DIR);
- #ifdef DEBUG_STEPS
- count_direction[X_AXIS]=-1;
- #endif
- #if X_MIN_PIN > -1
- if(READ(X_MIN_PIN) != ENDSTOPS_INVERTING) {
- step_events_completed = current_block->step_event_count;
- }
- #endif
- }
- else { // +direction
- WRITE(X_DIR_PIN,!INVERT_X_DIR);
- #ifdef DEBUG_STEPS
- count_direction[X_AXIS]=1;
- #endif
- #if X_MAX_PIN > -1
- if((READ(X_MAX_PIN) != ENDSTOPS_INVERTING) && (current_block->steps_x >0)){
- step_events_completed = current_block->step_event_count;
- }
- #endif
- }
-
- if ((out_bits & (1<<Y_AXIS)) != 0) { // -direction
- WRITE(Y_DIR_PIN,INVERT_Y_DIR);
- #ifdef DEBUG_STEPS
- count_direction[Y_AXIS]=-1;
- #endif
- #if Y_MIN_PIN > -1
- if(READ(Y_MIN_PIN) != ENDSTOPS_INVERTING) {
- step_events_completed = current_block->step_event_count;
- }
- #endif
- }
- else { // +direction
- WRITE(Y_DIR_PIN,!INVERT_Y_DIR);
- #ifdef DEBUG_STEPS
- count_direction[Y_AXIS]=1;
- #endif
- #if Y_MAX_PIN > -1
- if((READ(Y_MAX_PIN) != ENDSTOPS_INVERTING) && (current_block->steps_y >0)){
- step_events_completed = current_block->step_event_count;
- }
- #endif
- }
-
- if ((out_bits & (1<<Z_AXIS)) != 0) { // -direction
- WRITE(Z_DIR_PIN,INVERT_Z_DIR);
- #ifdef DEBUG_STEPS
- count_direction[Z_AXIS]=-1;
- #endif
- #if Z_MIN_PIN > -1
- if(READ(Z_MIN_PIN) != ENDSTOPS_INVERTING) {
- step_events_completed = current_block->step_event_count;
- }
- #endif
- }
- else { // +direction
- WRITE(Z_DIR_PIN,!INVERT_Z_DIR);
- #ifdef DEBUG_STEPS
- count_direction[Z_AXIS]=1;
- #endif
- #if Z_MAX_PIN > -1
- if((READ(Z_MAX_PIN) != ENDSTOPS_INVERTING) && (current_block->steps_z >0)){
- step_events_completed = current_block->step_event_count;
- }
- #endif
- }
-
- #ifndef ADVANCE
- if ((out_bits & (1<<E_AXIS)) != 0) // -direction
- WRITE(E_DIR_PIN,INVERT_E_DIR);
- else // +direction
- WRITE(E_DIR_PIN,!INVERT_E_DIR);
- #endif //!ADVANCE
-
- for(char i=0; i < step_loops; i++) { // Take multiple steps per interrupt (For high speed moves)
- counter_x += current_block->steps_x;
- if (counter_x > 0) {
- WRITE(X_STEP_PIN, HIGH);
- counter_x -= current_block->step_event_count;
- WRITE(X_STEP_PIN, LOW);
- #ifdef DEBUG_STEPS
- count_position[X_AXIS]+=count_direction[X_AXIS];
- #endif
- }
-
- counter_y += current_block->steps_y;
- if (counter_y > 0) {
- WRITE(Y_STEP_PIN, HIGH);
- counter_y -= current_block->step_event_count;
- WRITE(Y_STEP_PIN, LOW);
- #ifdef DEBUG_STEPS
- count_position[Y_AXIS]+=count_direction[Y_AXIS];
- #endif
- }
-
- counter_z += current_block->steps_z;
- if (counter_z > 0) {
- WRITE(Z_STEP_PIN, HIGH);
- counter_z -= current_block->step_event_count;
- WRITE(Z_STEP_PIN, LOW);
- #ifdef DEBUG_STEPS
- count_position[Z_AXIS]+=count_direction[Z_AXIS];
- #endif
- }
-
- #ifndef ADVANCE
- counter_e += current_block->steps_e;
- if (counter_e > 0) {
- WRITE(E_STEP_PIN, HIGH);
- counter_e -= current_block->step_event_count;
- WRITE(E_STEP_PIN, LOW);
- }
- #endif //!ADVANCE
- step_events_completed += 1;
- if(step_events_completed >= current_block->step_event_count) break;
- }
- // Calculare new timer value
- unsigned short timer;
- unsigned short step_rate;
- if (step_events_completed <= current_block->accelerate_until) {
- MultiU24X24toH16(acc_step_rate, acceleration_time, current_block->acceleration_rate);
- acc_step_rate += current_block->initial_rate;
-
- // upper limit
- if(acc_step_rate > current_block->nominal_rate)
- acc_step_rate = current_block->nominal_rate;
-
- // step_rate to timer interval
- timer = calc_timer(acc_step_rate);
- #ifdef ADVANCE
- advance += advance_rate;
- #endif
- acceleration_time += timer;
- OCR1A = timer;
- }
- else if (step_events_completed > current_block->decelerate_after) {
- MultiU24X24toH16(step_rate, deceleration_time, current_block->acceleration_rate);
-
- if(step_rate > acc_step_rate) { // Check step_rate stays positive
- step_rate = current_block->final_rate;
- }
- else {
- step_rate = acc_step_rate - step_rate; // Decelerate from aceleration end point.
- }
-
- // lower limit
- if(step_rate < current_block->final_rate)
- step_rate = current_block->final_rate;
-
- // step_rate to timer interval
- timer = calc_timer(step_rate);
- #ifdef ADVANCE
- advance -= advance_rate;
- if(advance < final_advance)
- advance = final_advance;
- #endif //ADVANCE
- deceleration_time += timer;
- OCR1A = timer;
- }
- // If current block is finished, reset pointer
- if (step_events_completed >= current_block->step_event_count) {
- current_block = NULL;
- plan_discard_current_block();
- }
- }
- cli(); // disable interrupts
- busy=false;
- }
-
- #ifdef ADVANCE
-
- unsigned char old_OCR0A;
- // Timer interrupt for E. e_steps is set in the main routine;
- // Timer 0 is shared with millies
- ISR(TIMER0_COMPA_vect)
- {
- // Critical section needed because Timer 1 interrupt has higher priority.
- // The pin set functions are placed on trategic position to comply with the stepper driver timing.
- WRITE(E_STEP_PIN, LOW);
- // Set E direction (Depends on E direction + advance)
- if (e_steps < 0) {
- WRITE(E_DIR_PIN,INVERT_E_DIR);
- e_steps++;
- WRITE(E_STEP_PIN, HIGH);
- }
- if (e_steps > 0) {
- WRITE(E_DIR_PIN,!INVERT_E_DIR);
- e_steps--;
- WRITE(E_STEP_PIN, HIGH);
- }
- old_OCR0A += 25; // 10kHz interrupt
- OCR0A = old_OCR0A;
- }
- #endif // ADVANCE
-
- void st_init()
- {
- //Initialize Dir Pins
- #if X_DIR_PIN > -1
- SET_OUTPUT(X_DIR_PIN);
- #endif
- #if Y_DIR_PIN > -1
- SET_OUTPUT(Y_DIR_PIN);
- #endif
- #if Z_DIR_PIN > -1
- SET_OUTPUT(Z_DIR_PIN);
- #endif
- #if E_DIR_PIN > -1
- SET_OUTPUT(E_DIR_PIN);
- #endif
-
- //Initialize Enable Pins - steppers default to disabled.
-
- #if (X_ENABLE_PIN > -1)
- SET_OUTPUT(X_ENABLE_PIN);
- if(!X_ENABLE_ON) WRITE(X_ENABLE_PIN,HIGH);
- #endif
- #if (Y_ENABLE_PIN > -1)
- SET_OUTPUT(Y_ENABLE_PIN);
- if(!Y_ENABLE_ON) WRITE(Y_ENABLE_PIN,HIGH);
- #endif
- #if (Z_ENABLE_PIN > -1)
- SET_OUTPUT(Z_ENABLE_PIN);
- if(!Z_ENABLE_ON) WRITE(Z_ENABLE_PIN,HIGH);
- #endif
- #if (E_ENABLE_PIN > -1)
- SET_OUTPUT(E_ENABLE_PIN);
- if(!E_ENABLE_ON) WRITE(E_ENABLE_PIN,HIGH);
- #endif
-
- //endstops and pullups
- #ifdef ENDSTOPPULLUPS
- #if X_MIN_PIN > -1
- SET_INPUT(X_MIN_PIN);
- WRITE(X_MIN_PIN,HIGH);
- #endif
- #if X_MAX_PIN > -1
- SET_INPUT(X_MAX_PIN);
- WRITE(X_MAX_PIN,HIGH);
- #endif
- #if Y_MIN_PIN > -1
- SET_INPUT(Y_MIN_PIN);
- WRITE(Y_MIN_PIN,HIGH);
- #endif
- #if Y_MAX_PIN > -1
- SET_INPUT(Y_MAX_PIN);
- WRITE(Y_MAX_PIN,HIGH);
- #endif
- #if Z_MIN_PIN > -1
- SET_INPUT(Z_MIN_PIN);
- WRITE(Z_MIN_PIN,HIGH);
- #endif
- #if Z_MAX_PIN > -1
- SET_INPUT(Z_MAX_PIN);
- WRITE(Z_MAX_PIN,HIGH);
- #endif
- #else //ENDSTOPPULLUPS
- #if X_MIN_PIN > -1
- SET_INPUT(X_MIN_PIN);
- #endif
- #if X_MAX_PIN > -1
- SET_INPUT(X_MAX_PIN);
- #endif
- #if Y_MIN_PIN > -1
- SET_INPUT(Y_MIN_PIN);
- #endif
- #if Y_MAX_PIN > -1
- SET_INPUT(Y_MAX_PIN);
- #endif
- #if Z_MIN_PIN > -1
- SET_INPUT(Z_MIN_PIN);
- #endif
- #if Z_MAX_PIN > -1
- SET_INPUT(Z_MAX_PIN);
- #endif
- #endif //ENDSTOPPULLUPS
-
-
- //Initialize Step Pins
- #if (X_STEP_PIN > -1)
- SET_OUTPUT(X_STEP_PIN);
- #endif
- #if (Y_STEP_PIN > -1)
- SET_OUTPUT(Y_STEP_PIN);
- #endif
- #if (Z_STEP_PIN > -1)
- SET_OUTPUT(Z_STEP_PIN);
- #endif
- #if (E_STEP_PIN > -1)
- SET_OUTPUT(E_STEP_PIN);
- #endif
-
- // waveform generation = 0100 = CTC
- TCCR1B &= ~(1<<WGM13);
- TCCR1B |= (1<<WGM12);
- TCCR1A &= ~(1<<WGM11);
- TCCR1A &= ~(1<<WGM10);
-
- // output mode = 00 (disconnected)
- TCCR1A &= ~(3<<COM1A0);
- TCCR1A &= ~(3<<COM1B0);
- TCCR1B = (TCCR1B & ~(0x07<<CS10)) | (2<<CS10); // 2MHz timer
-
- OCR1A = 0x4000;
- DISABLE_STEPPER_DRIVER_INTERRUPT();
-
- #ifdef ADVANCE
- e_steps = 0;
- TIMSK0 |= (1<<OCIE0A);
- #endif //ADVANCE
- sei();
- }
-
- // Block until all buffered steps are executed
- void st_synchronize()
- {
- while(plan_get_current_block()) {
- manage_heater();
- manage_inactivity(1);
- LCD_STATUS;
- }
- }
|