My Marlin configs for Fabrikator Mini and CTC i3 Pro B
您最多选择25个主题 主题必须以字母或数字开头,可以包含连字符 (-),并且长度不得超过35个字符

settings.cpp 105KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656
  1. /**
  2. * Marlin 3D Printer Firmware
  3. * Copyright (c) 2020 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
  4. *
  5. * Based on Sprinter and grbl.
  6. * Copyright (c) 2011 Camiel Gubbels / Erik van der Zalm
  7. *
  8. * This program is free software: you can redistribute it and/or modify
  9. * it under the terms of the GNU General Public License as published by
  10. * the Free Software Foundation, either version 3 of the License, or
  11. * (at your option) any later version.
  12. *
  13. * This program is distributed in the hope that it will be useful,
  14. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  16. * GNU General Public License for more details.
  17. *
  18. * You should have received a copy of the GNU General Public License
  19. * along with this program. If not, see <https://www.gnu.org/licenses/>.
  20. *
  21. */
  22. /**
  23. * settings.cpp
  24. *
  25. * Settings and EEPROM storage
  26. *
  27. * IMPORTANT: Whenever there are changes made to the variables stored in EEPROM
  28. * in the functions below, also increment the version number. This makes sure that
  29. * the default values are used whenever there is a change to the data, to prevent
  30. * wrong data being written to the variables.
  31. *
  32. * ALSO: Variables in the Store and Retrieve sections must be in the same order.
  33. * If a feature is disabled, some data must still be written that, when read,
  34. * either sets a Sane Default, or results in No Change to the existing value.
  35. */
  36. // Change EEPROM version if the structure changes
  37. #define EEPROM_VERSION "V86"
  38. #define EEPROM_OFFSET 100
  39. // Check the integrity of data offsets.
  40. // Can be disabled for production build.
  41. //#define DEBUG_EEPROM_READWRITE
  42. #include "settings.h"
  43. #include "endstops.h"
  44. #include "planner.h"
  45. #include "stepper.h"
  46. #include "temperature.h"
  47. #include "../lcd/marlinui.h"
  48. #include "../libs/vector_3.h" // for matrix_3x3
  49. #include "../gcode/gcode.h"
  50. #include "../MarlinCore.h"
  51. #if EITHER(EEPROM_SETTINGS, SD_FIRMWARE_UPDATE)
  52. #include "../HAL/shared/eeprom_api.h"
  53. #endif
  54. #include "probe.h"
  55. #if HAS_LEVELING
  56. #include "../feature/bedlevel/bedlevel.h"
  57. #if ENABLED(X_AXIS_TWIST_COMPENSATION)
  58. #include "../feature/x_twist.h"
  59. #endif
  60. #endif
  61. #if ENABLED(Z_STEPPER_AUTO_ALIGN)
  62. #include "../feature/z_stepper_align.h"
  63. #endif
  64. #if ENABLED(EXTENSIBLE_UI)
  65. #include "../lcd/extui/ui_api.h"
  66. #elif ENABLED(DWIN_LCD_PROUI)
  67. #include "../lcd/e3v2/proui/dwin.h"
  68. #include "../lcd/e3v2/proui/bedlevel_tools.h"
  69. #elif ENABLED(DWIN_CREALITY_LCD_JYERSUI)
  70. #include "../lcd/e3v2/jyersui/dwin.h"
  71. #endif
  72. #if ENABLED(HOST_PROMPT_SUPPORT)
  73. #include "../feature/host_actions.h"
  74. #endif
  75. #if HAS_SERVOS
  76. #include "servo.h"
  77. #endif
  78. #if HAS_SERVOS && HAS_SERVO_ANGLES
  79. #define EEPROM_NUM_SERVOS NUM_SERVOS
  80. #else
  81. #define EEPROM_NUM_SERVOS NUM_SERVO_PLUGS
  82. #endif
  83. #include "../feature/fwretract.h"
  84. #if ENABLED(POWER_LOSS_RECOVERY)
  85. #include "../feature/powerloss.h"
  86. #endif
  87. #if HAS_POWER_MONITOR
  88. #include "../feature/power_monitor.h"
  89. #endif
  90. #include "../feature/pause.h"
  91. #if ENABLED(BACKLASH_COMPENSATION)
  92. #include "../feature/backlash.h"
  93. #endif
  94. #if HAS_FILAMENT_SENSOR
  95. #include "../feature/runout.h"
  96. #ifndef FIL_RUNOUT_ENABLED_DEFAULT
  97. #define FIL_RUNOUT_ENABLED_DEFAULT true
  98. #endif
  99. #endif
  100. #if ENABLED(EXTRA_LIN_ADVANCE_K)
  101. extern float other_extruder_advance_K[EXTRUDERS];
  102. #endif
  103. #if HAS_MULTI_EXTRUDER
  104. #include "tool_change.h"
  105. void M217_report(const bool eeprom);
  106. #endif
  107. #if ENABLED(BLTOUCH)
  108. #include "../feature/bltouch.h"
  109. #endif
  110. #if HAS_TRINAMIC_CONFIG
  111. #include "stepper/indirection.h"
  112. #include "../feature/tmc_util.h"
  113. #endif
  114. #if HAS_PTC
  115. #include "../feature/probe_temp_comp.h"
  116. #endif
  117. #include "../feature/controllerfan.h"
  118. #if ENABLED(CASE_LIGHT_ENABLE)
  119. #include "../feature/caselight.h"
  120. #endif
  121. #if ENABLED(PASSWORD_FEATURE)
  122. #include "../feature/password/password.h"
  123. #endif
  124. #if ENABLED(TOUCH_SCREEN_CALIBRATION)
  125. #include "../lcd/tft_io/touch_calibration.h"
  126. #endif
  127. #if HAS_ETHERNET
  128. #include "../feature/ethernet.h"
  129. #endif
  130. #if ENABLED(SOUND_MENU_ITEM)
  131. #include "../libs/buzzer.h"
  132. #endif
  133. #if HAS_FANCHECK
  134. #include "../feature/fancheck.h"
  135. #endif
  136. #if ENABLED(DGUS_LCD_UI_MKS)
  137. #include "../lcd/extui/dgus/DGUSScreenHandler.h"
  138. #include "../lcd/extui/dgus/DGUSDisplayDef.h"
  139. #endif
  140. #pragma pack(push, 1) // No padding between variables
  141. #if HAS_ETHERNET
  142. void ETH0_report();
  143. void MAC_report();
  144. #endif
  145. #define _EN_ITEM(N) , E##N
  146. #define _EN1_ITEM(N) , E##N:1
  147. typedef struct { uint16_t MAIN_AXIS_NAMES, X2, Y2, Z2, Z3, Z4 REPEAT(E_STEPPERS, _EN_ITEM); } per_stepper_uint16_t;
  148. typedef struct { uint32_t MAIN_AXIS_NAMES, X2, Y2, Z2, Z3, Z4 REPEAT(E_STEPPERS, _EN_ITEM); } per_stepper_uint32_t;
  149. typedef struct { int16_t MAIN_AXIS_NAMES, X2, Y2, Z2, Z3, Z4; } mot_stepper_int16_t;
  150. typedef struct { bool NUM_AXIS_LIST(X:1, Y:1, Z:1, I:1, J:1, K:1, U:1, V:1, W:1), X2:1, Y2:1, Z2:1, Z3:1, Z4:1 REPEAT(E_STEPPERS, _EN1_ITEM); } per_stepper_bool_t;
  151. #undef _EN_ITEM
  152. // Limit an index to an array size
  153. #define ALIM(I,ARR) _MIN(I, (signed)COUNT(ARR) - 1)
  154. // Defaults for reset / fill in on load
  155. static const uint32_t _DMA[] PROGMEM = DEFAULT_MAX_ACCELERATION;
  156. static const float _DASU[] PROGMEM = DEFAULT_AXIS_STEPS_PER_UNIT;
  157. static const feedRate_t _DMF[] PROGMEM = DEFAULT_MAX_FEEDRATE;
  158. /**
  159. * Current EEPROM Layout
  160. *
  161. * Keep this data structure up to date so
  162. * EEPROM size is known at compile time!
  163. */
  164. typedef struct SettingsDataStruct {
  165. char version[4]; // Vnn\0
  166. #if ENABLED(EEPROM_INIT_NOW)
  167. uint32_t build_hash; // Unique build hash
  168. #endif
  169. uint16_t crc; // Data Checksum
  170. //
  171. // DISTINCT_E_FACTORS
  172. //
  173. uint8_t e_factors; // DISTINCT_AXES - NUM_AXES
  174. //
  175. // Planner settings
  176. //
  177. planner_settings_t planner_settings;
  178. xyze_float_t planner_max_jerk; // M205 XYZE planner.max_jerk
  179. float planner_junction_deviation_mm; // M205 J planner.junction_deviation_mm
  180. //
  181. // Home Offset
  182. //
  183. xyz_pos_t home_offset; // M206 XYZ / M665 TPZ
  184. //
  185. // Hotend Offset
  186. //
  187. #if HAS_HOTEND_OFFSET
  188. xyz_pos_t hotend_offset[HOTENDS - 1]; // M218 XYZ
  189. #endif
  190. //
  191. // FILAMENT_RUNOUT_SENSOR
  192. //
  193. bool runout_sensor_enabled; // M412 S
  194. float runout_distance_mm; // M412 D
  195. //
  196. // ENABLE_LEVELING_FADE_HEIGHT
  197. //
  198. float planner_z_fade_height; // M420 Zn planner.z_fade_height
  199. //
  200. // MESH_BED_LEVELING
  201. //
  202. float mbl_z_offset; // bedlevel.z_offset
  203. uint8_t mesh_num_x, mesh_num_y; // GRID_MAX_POINTS_X, GRID_MAX_POINTS_Y
  204. float mbl_z_values[TERN(MESH_BED_LEVELING, GRID_MAX_POINTS_X, 3)] // bedlevel.z_values
  205. [TERN(MESH_BED_LEVELING, GRID_MAX_POINTS_Y, 3)];
  206. //
  207. // HAS_BED_PROBE
  208. //
  209. xyz_pos_t probe_offset;
  210. //
  211. // ABL_PLANAR
  212. //
  213. matrix_3x3 planner_bed_level_matrix; // planner.bed_level_matrix
  214. //
  215. // AUTO_BED_LEVELING_BILINEAR
  216. //
  217. uint8_t grid_max_x, grid_max_y; // GRID_MAX_POINTS_X, GRID_MAX_POINTS_Y
  218. xy_pos_t bilinear_grid_spacing, bilinear_start; // G29 L F
  219. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  220. bed_mesh_t z_values; // G29
  221. #else
  222. float z_values[3][3];
  223. #endif
  224. //
  225. // X_AXIS_TWIST_COMPENSATION
  226. //
  227. #if ENABLED(X_AXIS_TWIST_COMPENSATION)
  228. float xatc_spacing; // M423 X Z
  229. float xatc_start;
  230. xatc_array_t xatc_z_offset;
  231. #endif
  232. //
  233. // AUTO_BED_LEVELING_UBL
  234. //
  235. bool planner_leveling_active; // M420 S planner.leveling_active
  236. int8_t ubl_storage_slot; // bedlevel.storage_slot
  237. //
  238. // SERVO_ANGLES
  239. //
  240. uint16_t servo_angles[EEPROM_NUM_SERVOS][2]; // M281 P L U
  241. //
  242. // Temperature first layer compensation values
  243. //
  244. #if HAS_PTC
  245. #if ENABLED(PTC_PROBE)
  246. int16_t z_offsets_probe[COUNT(ptc.z_offsets_probe)]; // M871 P I V
  247. #endif
  248. #if ENABLED(PTC_BED)
  249. int16_t z_offsets_bed[COUNT(ptc.z_offsets_bed)]; // M871 B I V
  250. #endif
  251. #if ENABLED(PTC_HOTEND)
  252. int16_t z_offsets_hotend[COUNT(ptc.z_offsets_hotend)]; // M871 E I V
  253. #endif
  254. #endif
  255. //
  256. // BLTOUCH
  257. //
  258. bool bltouch_od_5v_mode;
  259. #ifdef BLTOUCH_HS_MODE
  260. bool bltouch_high_speed_mode; // M401 S
  261. #endif
  262. //
  263. // Kinematic Settings
  264. //
  265. #if IS_KINEMATIC
  266. float segments_per_second; // M665 S
  267. #if ENABLED(DELTA)
  268. float delta_height; // M666 H
  269. abc_float_t delta_endstop_adj; // M666 X Y Z
  270. float delta_radius, // M665 R
  271. delta_diagonal_rod; // M665 L
  272. abc_float_t delta_tower_angle_trim, // M665 X Y Z
  273. delta_diagonal_rod_trim; // M665 A B C
  274. #endif
  275. #endif
  276. //
  277. // Extra Endstops offsets
  278. //
  279. #if HAS_EXTRA_ENDSTOPS
  280. float x2_endstop_adj, // M666 X
  281. y2_endstop_adj, // M666 Y
  282. z2_endstop_adj, // M666 (S2) Z
  283. z3_endstop_adj, // M666 (S3) Z
  284. z4_endstop_adj; // M666 (S4) Z
  285. #endif
  286. //
  287. // Z_STEPPER_AUTO_ALIGN, HAS_Z_STEPPER_ALIGN_STEPPER_XY
  288. //
  289. #if ENABLED(Z_STEPPER_AUTO_ALIGN)
  290. xy_pos_t z_stepper_align_xy[NUM_Z_STEPPERS]; // M422 S X Y
  291. #if HAS_Z_STEPPER_ALIGN_STEPPER_XY
  292. xy_pos_t z_stepper_align_stepper_xy[NUM_Z_STEPPERS]; // M422 W X Y
  293. #endif
  294. #endif
  295. //
  296. // Material Presets
  297. //
  298. #if HAS_PREHEAT
  299. preheat_t ui_material_preset[PREHEAT_COUNT]; // M145 S0 H B F
  300. #endif
  301. //
  302. // PIDTEMP
  303. //
  304. PIDCF_t hotendPID[HOTENDS]; // M301 En PIDCF / M303 En U
  305. int16_t lpq_len; // M301 L
  306. //
  307. // PIDTEMPBED
  308. //
  309. PID_t bedPID; // M304 PID / M303 E-1 U
  310. //
  311. // PIDTEMPCHAMBER
  312. //
  313. PID_t chamberPID; // M309 PID / M303 E-2 U
  314. //
  315. // User-defined Thermistors
  316. //
  317. #if HAS_USER_THERMISTORS
  318. user_thermistor_t user_thermistor[USER_THERMISTORS]; // M305 P0 R4700 T100000 B3950
  319. #endif
  320. //
  321. // Power monitor
  322. //
  323. uint8_t power_monitor_flags; // M430 I V W
  324. //
  325. // HAS_LCD_CONTRAST
  326. //
  327. uint8_t lcd_contrast; // M250 C
  328. //
  329. // HAS_LCD_BRIGHTNESS
  330. //
  331. uint8_t lcd_brightness; // M256 B
  332. //
  333. // Display Sleep
  334. //
  335. #if LCD_BACKLIGHT_TIMEOUT
  336. uint16_t lcd_backlight_timeout; // M255 S
  337. #elif HAS_DISPLAY_SLEEP
  338. uint8_t sleep_timeout_minutes; // M255 S
  339. #endif
  340. //
  341. // Controller fan settings
  342. //
  343. controllerFan_settings_t controllerFan_settings; // M710
  344. //
  345. // POWER_LOSS_RECOVERY
  346. //
  347. bool recovery_enabled; // M413 S
  348. //
  349. // FWRETRACT
  350. //
  351. fwretract_settings_t fwretract_settings; // M207 S F Z W, M208 S F W R
  352. bool autoretract_enabled; // M209 S
  353. //
  354. // !NO_VOLUMETRIC
  355. //
  356. bool parser_volumetric_enabled; // M200 S parser.volumetric_enabled
  357. float planner_filament_size[EXTRUDERS]; // M200 T D planner.filament_size[]
  358. float planner_volumetric_extruder_limit[EXTRUDERS]; // M200 T L planner.volumetric_extruder_limit[]
  359. //
  360. // HAS_TRINAMIC_CONFIG
  361. //
  362. per_stepper_uint16_t tmc_stepper_current; // M906 X Y Z...
  363. per_stepper_uint32_t tmc_hybrid_threshold; // M913 X Y Z...
  364. mot_stepper_int16_t tmc_sgt; // M914 X Y Z...
  365. per_stepper_bool_t tmc_stealth_enabled; // M569 X Y Z...
  366. //
  367. // LIN_ADVANCE
  368. //
  369. float planner_extruder_advance_K[_MAX(EXTRUDERS, 1)]; // M900 K planner.extruder_advance_K
  370. //
  371. // HAS_MOTOR_CURRENT_PWM
  372. //
  373. #ifndef MOTOR_CURRENT_COUNT
  374. #if HAS_MOTOR_CURRENT_PWM
  375. #define MOTOR_CURRENT_COUNT 3
  376. #elif HAS_MOTOR_CURRENT_DAC
  377. #define MOTOR_CURRENT_COUNT LOGICAL_AXES
  378. #elif HAS_MOTOR_CURRENT_I2C
  379. #define MOTOR_CURRENT_COUNT DIGIPOT_I2C_NUM_CHANNELS
  380. #else // HAS_MOTOR_CURRENT_SPI
  381. #define MOTOR_CURRENT_COUNT DISTINCT_AXES
  382. #endif
  383. #endif
  384. uint32_t motor_current_setting[MOTOR_CURRENT_COUNT]; // M907 X Z E ...
  385. //
  386. // CNC_COORDINATE_SYSTEMS
  387. //
  388. xyz_pos_t coordinate_system[MAX_COORDINATE_SYSTEMS]; // G54-G59.3
  389. //
  390. // SKEW_CORRECTION
  391. //
  392. skew_factor_t planner_skew_factor; // M852 I J K planner.skew_factor
  393. //
  394. // ADVANCED_PAUSE_FEATURE
  395. //
  396. #if HAS_EXTRUDERS
  397. fil_change_settings_t fc_settings[EXTRUDERS]; // M603 T U L
  398. #endif
  399. //
  400. // Tool-change settings
  401. //
  402. #if HAS_MULTI_EXTRUDER
  403. toolchange_settings_t toolchange_settings; // M217 S P R
  404. #endif
  405. //
  406. // BACKLASH_COMPENSATION
  407. //
  408. xyz_float_t backlash_distance_mm; // M425 X Y Z
  409. uint8_t backlash_correction; // M425 F
  410. float backlash_smoothing_mm; // M425 S
  411. //
  412. // EXTENSIBLE_UI
  413. //
  414. #if ENABLED(EXTENSIBLE_UI)
  415. uint8_t extui_data[ExtUI::eeprom_data_size];
  416. #endif
  417. //
  418. // Ender-3 V2 DWIN
  419. //
  420. #if ENABLED(DWIN_LCD_PROUI)
  421. uint8_t dwin_data[eeprom_data_size];
  422. #elif ENABLED(DWIN_CREALITY_LCD_JYERSUI)
  423. uint8_t dwin_settings[CrealityDWIN.eeprom_data_size];
  424. #endif
  425. //
  426. // CASELIGHT_USES_BRIGHTNESS
  427. //
  428. #if CASELIGHT_USES_BRIGHTNESS
  429. uint8_t caselight_brightness; // M355 P
  430. #endif
  431. //
  432. // PASSWORD_FEATURE
  433. //
  434. #if ENABLED(PASSWORD_FEATURE)
  435. bool password_is_set;
  436. uint32_t password_value;
  437. #endif
  438. //
  439. // TOUCH_SCREEN_CALIBRATION
  440. //
  441. #if ENABLED(TOUCH_SCREEN_CALIBRATION)
  442. touch_calibration_t touch_calibration_data;
  443. #endif
  444. // Ethernet settings
  445. #if HAS_ETHERNET
  446. bool ethernet_hardware_enabled; // M552 S
  447. uint32_t ethernet_ip, // M552 P
  448. ethernet_dns,
  449. ethernet_gateway, // M553 P
  450. ethernet_subnet; // M554 P
  451. #endif
  452. //
  453. // Buzzer enable/disable
  454. //
  455. #if ENABLED(SOUND_MENU_ITEM)
  456. bool sound_on;
  457. #endif
  458. //
  459. // Fan tachometer check
  460. //
  461. #if HAS_FANCHECK
  462. bool fan_check_enabled;
  463. #endif
  464. //
  465. // MKS UI controller
  466. //
  467. #if ENABLED(DGUS_LCD_UI_MKS)
  468. MKS_Language mks_language_index; // Display Language
  469. xy_int_t mks_corner_offsets[5]; // Bed Tramming
  470. xyz_int_t mks_park_pos; // Custom Parking (without NOZZLE_PARK)
  471. celsius_t mks_min_extrusion_temp; // Min E Temp (shadow M302 value)
  472. #endif
  473. #if HAS_MULTI_LANGUAGE
  474. uint8_t ui_language; // M414 S
  475. #endif
  476. //
  477. // Model predictive control
  478. //
  479. #if ENABLED(MPCTEMP)
  480. MPC_t mpc_constants[HOTENDS]; // M306
  481. #endif
  482. } SettingsData;
  483. //static_assert(sizeof(SettingsData) <= MARLIN_EEPROM_SIZE, "EEPROM too small to contain SettingsData!");
  484. MarlinSettings settings;
  485. uint16_t MarlinSettings::datasize() { return sizeof(SettingsData); }
  486. /**
  487. * Post-process after Retrieve or Reset
  488. */
  489. #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
  490. float new_z_fade_height;
  491. #endif
  492. void MarlinSettings::postprocess() {
  493. xyze_pos_t oldpos = current_position;
  494. // steps per s2 needs to be updated to agree with units per s2
  495. planner.refresh_acceleration_rates();
  496. // Make sure delta kinematics are updated before refreshing the
  497. // planner position so the stepper counts will be set correctly.
  498. TERN_(DELTA, recalc_delta_settings());
  499. TERN_(PIDTEMP, thermalManager.updatePID());
  500. #if DISABLED(NO_VOLUMETRICS)
  501. planner.calculate_volumetric_multipliers();
  502. #elif EXTRUDERS
  503. for (uint8_t i = COUNT(planner.e_factor); i--;)
  504. planner.refresh_e_factor(i);
  505. #endif
  506. // Software endstops depend on home_offset
  507. LOOP_NUM_AXES(i) {
  508. update_workspace_offset((AxisEnum)i);
  509. update_software_endstops((AxisEnum)i);
  510. }
  511. TERN_(ENABLE_LEVELING_FADE_HEIGHT, set_z_fade_height(new_z_fade_height, false)); // false = no report
  512. TERN_(AUTO_BED_LEVELING_BILINEAR, bedlevel.refresh_bed_level());
  513. TERN_(HAS_MOTOR_CURRENT_PWM, stepper.refresh_motor_power());
  514. TERN_(FWRETRACT, fwretract.refresh_autoretract());
  515. TERN_(HAS_LINEAR_E_JERK, planner.recalculate_max_e_jerk());
  516. TERN_(CASELIGHT_USES_BRIGHTNESS, caselight.update_brightness());
  517. TERN_(EXTENSIBLE_UI, ExtUI::onPostprocessSettings());
  518. // Refresh mm_per_step with the reciprocal of axis_steps_per_mm
  519. // and init stepper.count[], planner.position[] with current_position
  520. planner.refresh_positioning();
  521. // Various factors can change the current position
  522. if (oldpos != current_position)
  523. report_current_position();
  524. // Moved as last update due to interference with Neopixel init
  525. TERN_(HAS_LCD_CONTRAST, ui.refresh_contrast());
  526. TERN_(HAS_LCD_BRIGHTNESS, ui.refresh_brightness());
  527. #if LCD_BACKLIGHT_TIMEOUT
  528. ui.refresh_backlight_timeout();
  529. #elif HAS_DISPLAY_SLEEP
  530. ui.refresh_screen_timeout();
  531. #endif
  532. }
  533. #if BOTH(PRINTCOUNTER, EEPROM_SETTINGS)
  534. #include "printcounter.h"
  535. static_assert(
  536. !WITHIN(STATS_EEPROM_ADDRESS, EEPROM_OFFSET, EEPROM_OFFSET + sizeof(SettingsData)) &&
  537. !WITHIN(STATS_EEPROM_ADDRESS + sizeof(printStatistics), EEPROM_OFFSET, EEPROM_OFFSET + sizeof(SettingsData)),
  538. "STATS_EEPROM_ADDRESS collides with EEPROM settings storage."
  539. );
  540. #endif
  541. #if ENABLED(SD_FIRMWARE_UPDATE)
  542. #if ENABLED(EEPROM_SETTINGS)
  543. static_assert(
  544. !WITHIN(SD_FIRMWARE_UPDATE_EEPROM_ADDR, EEPROM_OFFSET, EEPROM_OFFSET + sizeof(SettingsData)),
  545. "SD_FIRMWARE_UPDATE_EEPROM_ADDR collides with EEPROM settings storage."
  546. );
  547. #endif
  548. bool MarlinSettings::sd_update_status() {
  549. uint8_t val;
  550. persistentStore.read_data(SD_FIRMWARE_UPDATE_EEPROM_ADDR, &val);
  551. return (val == SD_FIRMWARE_UPDATE_ACTIVE_VALUE);
  552. }
  553. bool MarlinSettings::set_sd_update_status(const bool enable) {
  554. if (enable != sd_update_status())
  555. persistentStore.write_data(
  556. SD_FIRMWARE_UPDATE_EEPROM_ADDR,
  557. enable ? SD_FIRMWARE_UPDATE_ACTIVE_VALUE : SD_FIRMWARE_UPDATE_INACTIVE_VALUE
  558. );
  559. return true;
  560. }
  561. #endif // SD_FIRMWARE_UPDATE
  562. #ifdef ARCHIM2_SPI_FLASH_EEPROM_BACKUP_SIZE
  563. static_assert(EEPROM_OFFSET + sizeof(SettingsData) < ARCHIM2_SPI_FLASH_EEPROM_BACKUP_SIZE,
  564. "ARCHIM2_SPI_FLASH_EEPROM_BACKUP_SIZE is insufficient to capture all EEPROM data.");
  565. #endif
  566. //
  567. // This file simply uses the DEBUG_ECHO macros to implement EEPROM_CHITCHAT.
  568. // For deeper debugging of EEPROM issues enable DEBUG_EEPROM_READWRITE.
  569. //
  570. #define DEBUG_OUT EITHER(EEPROM_CHITCHAT, DEBUG_LEVELING_FEATURE)
  571. #include "../core/debug_out.h"
  572. #if BOTH(EEPROM_CHITCHAT, HOST_PROMPT_SUPPORT)
  573. #define HOST_EEPROM_CHITCHAT 1
  574. #endif
  575. #if ENABLED(EEPROM_SETTINGS)
  576. #define EEPROM_ASSERT(TST,ERR) do{ if (!(TST)) { SERIAL_ERROR_MSG(ERR); eeprom_error = true; } }while(0)
  577. #if ENABLED(DEBUG_EEPROM_READWRITE)
  578. #define _FIELD_TEST(FIELD) \
  579. EEPROM_ASSERT( \
  580. eeprom_error || eeprom_index == offsetof(SettingsData, FIELD) + EEPROM_OFFSET, \
  581. "Field " STRINGIFY(FIELD) " mismatch." \
  582. )
  583. #else
  584. #define _FIELD_TEST(FIELD) NOOP
  585. #endif
  586. const char version[4] = EEPROM_VERSION;
  587. #if ENABLED(EEPROM_INIT_NOW)
  588. constexpr uint32_t strhash32(const char *s, const uint32_t h=0) {
  589. return *s ? strhash32(s + 1, ((h + *s) << (*s & 3)) ^ *s) : h;
  590. }
  591. constexpr uint32_t build_hash = strhash32(__DATE__ __TIME__);
  592. #endif
  593. bool MarlinSettings::eeprom_error, MarlinSettings::validating;
  594. int MarlinSettings::eeprom_index;
  595. uint16_t MarlinSettings::working_crc;
  596. bool MarlinSettings::size_error(const uint16_t size) {
  597. if (size != datasize()) {
  598. DEBUG_ERROR_MSG("EEPROM datasize error."
  599. #if ENABLED(MARLIN_DEV_MODE)
  600. " (Actual:", size, " Expected:", datasize(), ")"
  601. #endif
  602. );
  603. return true;
  604. }
  605. return false;
  606. }
  607. /**
  608. * M500 - Store Configuration
  609. */
  610. bool MarlinSettings::save() {
  611. float dummyf = 0;
  612. char ver[4] = "ERR";
  613. if (!EEPROM_START(EEPROM_OFFSET)) return false;
  614. eeprom_error = false;
  615. // Write or Skip version. (Flash doesn't allow rewrite without erase.)
  616. TERN(FLASH_EEPROM_EMULATION, EEPROM_SKIP, EEPROM_WRITE)(ver);
  617. #if ENABLED(EEPROM_INIT_NOW)
  618. EEPROM_SKIP(build_hash); // Skip the hash slot
  619. #endif
  620. EEPROM_SKIP(working_crc); // Skip the checksum slot
  621. working_crc = 0; // clear before first "real data"
  622. const uint8_t e_factors = DISTINCT_AXES - (NUM_AXES);
  623. _FIELD_TEST(e_factors);
  624. EEPROM_WRITE(e_factors);
  625. //
  626. // Planner Motion
  627. //
  628. {
  629. EEPROM_WRITE(planner.settings);
  630. #if HAS_CLASSIC_JERK
  631. EEPROM_WRITE(planner.max_jerk);
  632. #if HAS_LINEAR_E_JERK
  633. dummyf = float(DEFAULT_EJERK);
  634. EEPROM_WRITE(dummyf);
  635. #endif
  636. #else
  637. const xyze_pos_t planner_max_jerk = LOGICAL_AXIS_ARRAY(float(DEFAULT_EJERK), 10, 10, 0.4, 0.4, 0.4, 0.4, 0.4, 0.4, 0.4);
  638. EEPROM_WRITE(planner_max_jerk);
  639. #endif
  640. TERN_(CLASSIC_JERK, dummyf = 0.02f);
  641. EEPROM_WRITE(TERN(CLASSIC_JERK, dummyf, planner.junction_deviation_mm));
  642. }
  643. //
  644. // Home Offset
  645. //
  646. {
  647. _FIELD_TEST(home_offset);
  648. #if HAS_SCARA_OFFSET
  649. EEPROM_WRITE(scara_home_offset);
  650. #else
  651. #if !HAS_HOME_OFFSET
  652. const xyz_pos_t home_offset{0};
  653. #endif
  654. EEPROM_WRITE(home_offset);
  655. #endif
  656. }
  657. //
  658. // Hotend Offsets, if any
  659. //
  660. {
  661. #if HAS_HOTEND_OFFSET
  662. // Skip hotend 0 which must be 0
  663. LOOP_S_L_N(e, 1, HOTENDS)
  664. EEPROM_WRITE(hotend_offset[e]);
  665. #endif
  666. }
  667. //
  668. // Filament Runout Sensor
  669. //
  670. {
  671. #if HAS_FILAMENT_SENSOR
  672. const bool &runout_sensor_enabled = runout.enabled;
  673. #else
  674. constexpr int8_t runout_sensor_enabled = -1;
  675. #endif
  676. _FIELD_TEST(runout_sensor_enabled);
  677. EEPROM_WRITE(runout_sensor_enabled);
  678. #if HAS_FILAMENT_RUNOUT_DISTANCE
  679. const float &runout_distance_mm = runout.runout_distance();
  680. #else
  681. constexpr float runout_distance_mm = 0;
  682. #endif
  683. EEPROM_WRITE(runout_distance_mm);
  684. }
  685. //
  686. // Global Leveling
  687. //
  688. {
  689. const float zfh = TERN(ENABLE_LEVELING_FADE_HEIGHT, planner.z_fade_height, (DEFAULT_LEVELING_FADE_HEIGHT));
  690. EEPROM_WRITE(zfh);
  691. }
  692. //
  693. // Mesh Bed Leveling
  694. //
  695. {
  696. #if ENABLED(MESH_BED_LEVELING)
  697. static_assert(
  698. sizeof(bedlevel.z_values) == (GRID_MAX_POINTS) * sizeof(bedlevel.z_values[0][0]),
  699. "MBL Z array is the wrong size."
  700. );
  701. #else
  702. dummyf = 0;
  703. #endif
  704. const uint8_t mesh_num_x = TERN(MESH_BED_LEVELING, GRID_MAX_POINTS_X, 3),
  705. mesh_num_y = TERN(MESH_BED_LEVELING, GRID_MAX_POINTS_Y, 3);
  706. EEPROM_WRITE(TERN(MESH_BED_LEVELING, bedlevel.z_offset, dummyf));
  707. EEPROM_WRITE(mesh_num_x);
  708. EEPROM_WRITE(mesh_num_y);
  709. #if ENABLED(MESH_BED_LEVELING)
  710. EEPROM_WRITE(bedlevel.z_values);
  711. #else
  712. for (uint8_t q = mesh_num_x * mesh_num_y; q--;) EEPROM_WRITE(dummyf);
  713. #endif
  714. }
  715. //
  716. // Probe XYZ Offsets
  717. //
  718. {
  719. _FIELD_TEST(probe_offset);
  720. #if HAS_BED_PROBE
  721. const xyz_pos_t &zpo = probe.offset;
  722. #else
  723. constexpr xyz_pos_t zpo{0};
  724. #endif
  725. EEPROM_WRITE(zpo);
  726. }
  727. //
  728. // Planar Bed Leveling matrix
  729. //
  730. {
  731. #if ABL_PLANAR
  732. EEPROM_WRITE(planner.bed_level_matrix);
  733. #else
  734. dummyf = 0;
  735. for (uint8_t q = 9; q--;) EEPROM_WRITE(dummyf);
  736. #endif
  737. }
  738. //
  739. // Bilinear Auto Bed Leveling
  740. //
  741. {
  742. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  743. static_assert(
  744. sizeof(bedlevel.z_values) == (GRID_MAX_POINTS) * sizeof(bedlevel.z_values[0][0]),
  745. "Bilinear Z array is the wrong size."
  746. );
  747. #endif
  748. const uint8_t grid_max_x = TERN(AUTO_BED_LEVELING_BILINEAR, GRID_MAX_POINTS_X, 3),
  749. grid_max_y = TERN(AUTO_BED_LEVELING_BILINEAR, GRID_MAX_POINTS_Y, 3);
  750. EEPROM_WRITE(grid_max_x);
  751. EEPROM_WRITE(grid_max_y);
  752. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  753. EEPROM_WRITE(bedlevel.grid_spacing);
  754. EEPROM_WRITE(bedlevel.grid_start);
  755. #else
  756. const xy_pos_t bilinear_grid_spacing{0}, bilinear_start{0};
  757. EEPROM_WRITE(bilinear_grid_spacing);
  758. EEPROM_WRITE(bilinear_start);
  759. #endif
  760. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  761. EEPROM_WRITE(bedlevel.z_values); // 9-256 floats
  762. #else
  763. dummyf = 0;
  764. for (uint16_t q = grid_max_x * grid_max_y; q--;) EEPROM_WRITE(dummyf);
  765. #endif
  766. }
  767. //
  768. // X Axis Twist Compensation
  769. //
  770. #if ENABLED(X_AXIS_TWIST_COMPENSATION)
  771. _FIELD_TEST(xatc_spacing);
  772. EEPROM_WRITE(xatc.spacing);
  773. EEPROM_WRITE(xatc.start);
  774. EEPROM_WRITE(xatc.z_offset);
  775. #endif
  776. //
  777. // Unified Bed Leveling
  778. //
  779. {
  780. _FIELD_TEST(planner_leveling_active);
  781. const bool ubl_active = TERN(AUTO_BED_LEVELING_UBL, planner.leveling_active, false);
  782. const int8_t storage_slot = TERN(AUTO_BED_LEVELING_UBL, bedlevel.storage_slot, -1);
  783. EEPROM_WRITE(ubl_active);
  784. EEPROM_WRITE(storage_slot);
  785. }
  786. //
  787. // Servo Angles
  788. //
  789. {
  790. _FIELD_TEST(servo_angles);
  791. #if !HAS_SERVO_ANGLES
  792. uint16_t servo_angles[EEPROM_NUM_SERVOS][2] = { { 0, 0 } };
  793. #endif
  794. EEPROM_WRITE(servo_angles);
  795. }
  796. //
  797. // Thermal first layer compensation values
  798. //
  799. #if HAS_PTC
  800. #if ENABLED(PTC_PROBE)
  801. EEPROM_WRITE(ptc.z_offsets_probe);
  802. #endif
  803. #if ENABLED(PTC_BED)
  804. EEPROM_WRITE(ptc.z_offsets_bed);
  805. #endif
  806. #if ENABLED(PTC_HOTEND)
  807. EEPROM_WRITE(ptc.z_offsets_hotend);
  808. #endif
  809. #else
  810. // No placeholder data for this feature
  811. #endif
  812. //
  813. // BLTOUCH
  814. //
  815. {
  816. _FIELD_TEST(bltouch_od_5v_mode);
  817. const bool bltouch_od_5v_mode = TERN0(BLTOUCH, bltouch.od_5v_mode);
  818. EEPROM_WRITE(bltouch_od_5v_mode);
  819. #ifdef BLTOUCH_HS_MODE
  820. _FIELD_TEST(bltouch_high_speed_mode);
  821. const bool bltouch_high_speed_mode = TERN0(BLTOUCH, bltouch.high_speed_mode);
  822. EEPROM_WRITE(bltouch_high_speed_mode);
  823. #endif
  824. }
  825. //
  826. // Kinematic Settings
  827. //
  828. #if IS_KINEMATIC
  829. {
  830. EEPROM_WRITE(segments_per_second);
  831. #if ENABLED(DELTA)
  832. _FIELD_TEST(delta_height);
  833. EEPROM_WRITE(delta_height); // 1 float
  834. EEPROM_WRITE(delta_endstop_adj); // 3 floats
  835. EEPROM_WRITE(delta_radius); // 1 float
  836. EEPROM_WRITE(delta_diagonal_rod); // 1 float
  837. EEPROM_WRITE(delta_tower_angle_trim); // 3 floats
  838. EEPROM_WRITE(delta_diagonal_rod_trim); // 3 floats
  839. #endif
  840. }
  841. #endif
  842. //
  843. // Extra Endstops offsets
  844. //
  845. #if HAS_EXTRA_ENDSTOPS
  846. {
  847. _FIELD_TEST(x2_endstop_adj);
  848. // Write dual endstops in X, Y, Z order. Unused = 0.0
  849. dummyf = 0;
  850. EEPROM_WRITE(TERN(X_DUAL_ENDSTOPS, endstops.x2_endstop_adj, dummyf)); // 1 float
  851. EEPROM_WRITE(TERN(Y_DUAL_ENDSTOPS, endstops.y2_endstop_adj, dummyf)); // 1 float
  852. EEPROM_WRITE(TERN(Z_MULTI_ENDSTOPS, endstops.z2_endstop_adj, dummyf)); // 1 float
  853. #if ENABLED(Z_MULTI_ENDSTOPS) && NUM_Z_STEPPERS >= 3
  854. EEPROM_WRITE(endstops.z3_endstop_adj); // 1 float
  855. #else
  856. EEPROM_WRITE(dummyf);
  857. #endif
  858. #if ENABLED(Z_MULTI_ENDSTOPS) && NUM_Z_STEPPERS >= 4
  859. EEPROM_WRITE(endstops.z4_endstop_adj); // 1 float
  860. #else
  861. EEPROM_WRITE(dummyf);
  862. #endif
  863. }
  864. #endif
  865. #if ENABLED(Z_STEPPER_AUTO_ALIGN)
  866. EEPROM_WRITE(z_stepper_align.xy);
  867. #if HAS_Z_STEPPER_ALIGN_STEPPER_XY
  868. EEPROM_WRITE(z_stepper_align.stepper_xy);
  869. #endif
  870. #endif
  871. //
  872. // LCD Preheat settings
  873. //
  874. #if HAS_PREHEAT
  875. _FIELD_TEST(ui_material_preset);
  876. EEPROM_WRITE(ui.material_preset);
  877. #endif
  878. //
  879. // PIDTEMP
  880. //
  881. {
  882. _FIELD_TEST(hotendPID);
  883. HOTEND_LOOP() {
  884. PIDCF_t pidcf = {
  885. #if DISABLED(PIDTEMP)
  886. NAN, NAN, NAN,
  887. NAN, NAN
  888. #else
  889. PID_PARAM(Kp, e),
  890. unscalePID_i(PID_PARAM(Ki, e)),
  891. unscalePID_d(PID_PARAM(Kd, e)),
  892. PID_PARAM(Kc, e),
  893. PID_PARAM(Kf, e)
  894. #endif
  895. };
  896. EEPROM_WRITE(pidcf);
  897. }
  898. _FIELD_TEST(lpq_len);
  899. #if DISABLED(PID_EXTRUSION_SCALING)
  900. const int16_t lpq_len = 20;
  901. #endif
  902. EEPROM_WRITE(TERN(PID_EXTRUSION_SCALING, thermalManager.lpq_len, lpq_len));
  903. }
  904. //
  905. // PIDTEMPBED
  906. //
  907. {
  908. _FIELD_TEST(bedPID);
  909. const PID_t bed_pid = {
  910. #if DISABLED(PIDTEMPBED)
  911. NAN, NAN, NAN
  912. #else
  913. // Store the unscaled PID values
  914. thermalManager.temp_bed.pid.Kp,
  915. unscalePID_i(thermalManager.temp_bed.pid.Ki),
  916. unscalePID_d(thermalManager.temp_bed.pid.Kd)
  917. #endif
  918. };
  919. EEPROM_WRITE(bed_pid);
  920. }
  921. //
  922. // PIDTEMPCHAMBER
  923. //
  924. {
  925. _FIELD_TEST(chamberPID);
  926. const PID_t chamber_pid = {
  927. #if DISABLED(PIDTEMPCHAMBER)
  928. NAN, NAN, NAN
  929. #else
  930. // Store the unscaled PID values
  931. thermalManager.temp_chamber.pid.Kp,
  932. unscalePID_i(thermalManager.temp_chamber.pid.Ki),
  933. unscalePID_d(thermalManager.temp_chamber.pid.Kd)
  934. #endif
  935. };
  936. EEPROM_WRITE(chamber_pid);
  937. }
  938. //
  939. // User-defined Thermistors
  940. //
  941. #if HAS_USER_THERMISTORS
  942. {
  943. _FIELD_TEST(user_thermistor);
  944. EEPROM_WRITE(thermalManager.user_thermistor);
  945. }
  946. #endif
  947. //
  948. // Power monitor
  949. //
  950. {
  951. #if HAS_POWER_MONITOR
  952. const uint8_t &power_monitor_flags = power_monitor.flags;
  953. #else
  954. constexpr uint8_t power_monitor_flags = 0x00;
  955. #endif
  956. _FIELD_TEST(power_monitor_flags);
  957. EEPROM_WRITE(power_monitor_flags);
  958. }
  959. //
  960. // LCD Contrast
  961. //
  962. {
  963. _FIELD_TEST(lcd_contrast);
  964. const uint8_t lcd_contrast = TERN(HAS_LCD_CONTRAST, ui.contrast, 127);
  965. EEPROM_WRITE(lcd_contrast);
  966. }
  967. //
  968. // LCD Brightness
  969. //
  970. {
  971. _FIELD_TEST(lcd_brightness);
  972. const uint8_t lcd_brightness = TERN(HAS_LCD_BRIGHTNESS, ui.brightness, 255);
  973. EEPROM_WRITE(lcd_brightness);
  974. }
  975. //
  976. // LCD Backlight / Sleep Timeout
  977. //
  978. #if LCD_BACKLIGHT_TIMEOUT
  979. EEPROM_WRITE(ui.lcd_backlight_timeout);
  980. #elif HAS_DISPLAY_SLEEP
  981. EEPROM_WRITE(ui.sleep_timeout_minutes);
  982. #endif
  983. //
  984. // Controller Fan
  985. //
  986. {
  987. _FIELD_TEST(controllerFan_settings);
  988. #if ENABLED(USE_CONTROLLER_FAN)
  989. const controllerFan_settings_t &cfs = controllerFan.settings;
  990. #else
  991. constexpr controllerFan_settings_t cfs = controllerFan_defaults;
  992. #endif
  993. EEPROM_WRITE(cfs);
  994. }
  995. //
  996. // Power-Loss Recovery
  997. //
  998. {
  999. _FIELD_TEST(recovery_enabled);
  1000. const bool recovery_enabled = TERN(POWER_LOSS_RECOVERY, recovery.enabled, ENABLED(PLR_ENABLED_DEFAULT));
  1001. EEPROM_WRITE(recovery_enabled);
  1002. }
  1003. //
  1004. // Firmware Retraction
  1005. //
  1006. {
  1007. _FIELD_TEST(fwretract_settings);
  1008. #if DISABLED(FWRETRACT)
  1009. const fwretract_settings_t autoretract_defaults = { 3, 45, 0, 0, 0, 13, 0, 8 };
  1010. #endif
  1011. EEPROM_WRITE(TERN(FWRETRACT, fwretract.settings, autoretract_defaults));
  1012. #if DISABLED(FWRETRACT_AUTORETRACT)
  1013. const bool autoretract_enabled = false;
  1014. #endif
  1015. EEPROM_WRITE(TERN(FWRETRACT_AUTORETRACT, fwretract.autoretract_enabled, autoretract_enabled));
  1016. }
  1017. //
  1018. // Volumetric & Filament Size
  1019. //
  1020. {
  1021. _FIELD_TEST(parser_volumetric_enabled);
  1022. #if DISABLED(NO_VOLUMETRICS)
  1023. EEPROM_WRITE(parser.volumetric_enabled);
  1024. EEPROM_WRITE(planner.filament_size);
  1025. #if ENABLED(VOLUMETRIC_EXTRUDER_LIMIT)
  1026. EEPROM_WRITE(planner.volumetric_extruder_limit);
  1027. #else
  1028. dummyf = DEFAULT_VOLUMETRIC_EXTRUDER_LIMIT;
  1029. for (uint8_t q = EXTRUDERS; q--;) EEPROM_WRITE(dummyf);
  1030. #endif
  1031. #else
  1032. const bool volumetric_enabled = false;
  1033. EEPROM_WRITE(volumetric_enabled);
  1034. dummyf = DEFAULT_NOMINAL_FILAMENT_DIA;
  1035. for (uint8_t q = EXTRUDERS; q--;) EEPROM_WRITE(dummyf);
  1036. dummyf = DEFAULT_VOLUMETRIC_EXTRUDER_LIMIT;
  1037. for (uint8_t q = EXTRUDERS; q--;) EEPROM_WRITE(dummyf);
  1038. #endif
  1039. }
  1040. //
  1041. // TMC Configuration
  1042. //
  1043. {
  1044. _FIELD_TEST(tmc_stepper_current);
  1045. per_stepper_uint16_t tmc_stepper_current{0};
  1046. #if HAS_TRINAMIC_CONFIG
  1047. #if AXIS_IS_TMC(X)
  1048. tmc_stepper_current.X = stepperX.getMilliamps();
  1049. #endif
  1050. #if AXIS_IS_TMC(Y)
  1051. tmc_stepper_current.Y = stepperY.getMilliamps();
  1052. #endif
  1053. #if AXIS_IS_TMC(Z)
  1054. tmc_stepper_current.Z = stepperZ.getMilliamps();
  1055. #endif
  1056. #if AXIS_IS_TMC(I)
  1057. tmc_stepper_current.I = stepperI.getMilliamps();
  1058. #endif
  1059. #if AXIS_IS_TMC(J)
  1060. tmc_stepper_current.J = stepperJ.getMilliamps();
  1061. #endif
  1062. #if AXIS_IS_TMC(K)
  1063. tmc_stepper_current.K = stepperK.getMilliamps();
  1064. #endif
  1065. #if AXIS_IS_TMC(U)
  1066. tmc_stepper_current.U = stepperU.getMilliamps();
  1067. #endif
  1068. #if AXIS_IS_TMC(V)
  1069. tmc_stepper_current.V = stepperV.getMilliamps();
  1070. #endif
  1071. #if AXIS_IS_TMC(W)
  1072. tmc_stepper_current.W = stepperW.getMilliamps();
  1073. #endif
  1074. #if AXIS_IS_TMC(X2)
  1075. tmc_stepper_current.X2 = stepperX2.getMilliamps();
  1076. #endif
  1077. #if AXIS_IS_TMC(Y2)
  1078. tmc_stepper_current.Y2 = stepperY2.getMilliamps();
  1079. #endif
  1080. #if AXIS_IS_TMC(Z2)
  1081. tmc_stepper_current.Z2 = stepperZ2.getMilliamps();
  1082. #endif
  1083. #if AXIS_IS_TMC(Z3)
  1084. tmc_stepper_current.Z3 = stepperZ3.getMilliamps();
  1085. #endif
  1086. #if AXIS_IS_TMC(Z4)
  1087. tmc_stepper_current.Z4 = stepperZ4.getMilliamps();
  1088. #endif
  1089. #if AXIS_IS_TMC(E0)
  1090. tmc_stepper_current.E0 = stepperE0.getMilliamps();
  1091. #endif
  1092. #if AXIS_IS_TMC(E1)
  1093. tmc_stepper_current.E1 = stepperE1.getMilliamps();
  1094. #endif
  1095. #if AXIS_IS_TMC(E2)
  1096. tmc_stepper_current.E2 = stepperE2.getMilliamps();
  1097. #endif
  1098. #if AXIS_IS_TMC(E3)
  1099. tmc_stepper_current.E3 = stepperE3.getMilliamps();
  1100. #endif
  1101. #if AXIS_IS_TMC(E4)
  1102. tmc_stepper_current.E4 = stepperE4.getMilliamps();
  1103. #endif
  1104. #if AXIS_IS_TMC(E5)
  1105. tmc_stepper_current.E5 = stepperE5.getMilliamps();
  1106. #endif
  1107. #if AXIS_IS_TMC(E6)
  1108. tmc_stepper_current.E6 = stepperE6.getMilliamps();
  1109. #endif
  1110. #if AXIS_IS_TMC(E7)
  1111. tmc_stepper_current.E7 = stepperE7.getMilliamps();
  1112. #endif
  1113. #endif
  1114. EEPROM_WRITE(tmc_stepper_current);
  1115. }
  1116. //
  1117. // TMC Hybrid Threshold, and placeholder values
  1118. //
  1119. {
  1120. _FIELD_TEST(tmc_hybrid_threshold);
  1121. #if ENABLED(HYBRID_THRESHOLD)
  1122. per_stepper_uint32_t tmc_hybrid_threshold{0};
  1123. TERN_(X_HAS_STEALTHCHOP, tmc_hybrid_threshold.X = stepperX.get_pwm_thrs());
  1124. TERN_(Y_HAS_STEALTHCHOP, tmc_hybrid_threshold.Y = stepperY.get_pwm_thrs());
  1125. TERN_(Z_HAS_STEALTHCHOP, tmc_hybrid_threshold.Z = stepperZ.get_pwm_thrs());
  1126. TERN_(I_HAS_STEALTHCHOP, tmc_hybrid_threshold.I = stepperI.get_pwm_thrs());
  1127. TERN_(J_HAS_STEALTHCHOP, tmc_hybrid_threshold.J = stepperJ.get_pwm_thrs());
  1128. TERN_(K_HAS_STEALTHCHOP, tmc_hybrid_threshold.K = stepperK.get_pwm_thrs());
  1129. TERN_(U_HAS_STEALTHCHOP, tmc_hybrid_threshold.U = stepperU.get_pwm_thrs());
  1130. TERN_(V_HAS_STEALTHCHOP, tmc_hybrid_threshold.V = stepperV.get_pwm_thrs());
  1131. TERN_(W_HAS_STEALTHCHOP, tmc_hybrid_threshold.W = stepperW.get_pwm_thrs());
  1132. TERN_(X2_HAS_STEALTHCHOP, tmc_hybrid_threshold.X2 = stepperX2.get_pwm_thrs());
  1133. TERN_(Y2_HAS_STEALTHCHOP, tmc_hybrid_threshold.Y2 = stepperY2.get_pwm_thrs());
  1134. TERN_(Z2_HAS_STEALTHCHOP, tmc_hybrid_threshold.Z2 = stepperZ2.get_pwm_thrs());
  1135. TERN_(Z3_HAS_STEALTHCHOP, tmc_hybrid_threshold.Z3 = stepperZ3.get_pwm_thrs());
  1136. TERN_(Z4_HAS_STEALTHCHOP, tmc_hybrid_threshold.Z4 = stepperZ4.get_pwm_thrs());
  1137. TERN_(E0_HAS_STEALTHCHOP, tmc_hybrid_threshold.E0 = stepperE0.get_pwm_thrs());
  1138. TERN_(E1_HAS_STEALTHCHOP, tmc_hybrid_threshold.E1 = stepperE1.get_pwm_thrs());
  1139. TERN_(E2_HAS_STEALTHCHOP, tmc_hybrid_threshold.E2 = stepperE2.get_pwm_thrs());
  1140. TERN_(E3_HAS_STEALTHCHOP, tmc_hybrid_threshold.E3 = stepperE3.get_pwm_thrs());
  1141. TERN_(E4_HAS_STEALTHCHOP, tmc_hybrid_threshold.E4 = stepperE4.get_pwm_thrs());
  1142. TERN_(E5_HAS_STEALTHCHOP, tmc_hybrid_threshold.E5 = stepperE5.get_pwm_thrs());
  1143. TERN_(E6_HAS_STEALTHCHOP, tmc_hybrid_threshold.E6 = stepperE6.get_pwm_thrs());
  1144. TERN_(E7_HAS_STEALTHCHOP, tmc_hybrid_threshold.E7 = stepperE7.get_pwm_thrs());
  1145. #else
  1146. #define _EN_ITEM(N) , .E##N = 30
  1147. const per_stepper_uint32_t tmc_hybrid_threshold = {
  1148. NUM_AXIS_LIST(.X = 100, .Y = 100, .Z = 3, .I = 3, .J = 3, .K = 3, .U = 3, .V = 3, .W = 3),
  1149. .X2 = 100, .Y2 = 100, .Z2 = 3, .Z3 = 3, .Z4 = 3
  1150. REPEAT(E_STEPPERS, _EN_ITEM)
  1151. };
  1152. #undef _EN_ITEM
  1153. #endif
  1154. EEPROM_WRITE(tmc_hybrid_threshold);
  1155. }
  1156. //
  1157. // TMC StallGuard threshold
  1158. //
  1159. {
  1160. mot_stepper_int16_t tmc_sgt{0};
  1161. #if USE_SENSORLESS
  1162. NUM_AXIS_CODE(
  1163. TERN_(X_SENSORLESS, tmc_sgt.X = stepperX.homing_threshold()),
  1164. TERN_(Y_SENSORLESS, tmc_sgt.Y = stepperY.homing_threshold()),
  1165. TERN_(Z_SENSORLESS, tmc_sgt.Z = stepperZ.homing_threshold()),
  1166. TERN_(I_SENSORLESS, tmc_sgt.I = stepperI.homing_threshold()),
  1167. TERN_(J_SENSORLESS, tmc_sgt.J = stepperJ.homing_threshold()),
  1168. TERN_(K_SENSORLESS, tmc_sgt.K = stepperK.homing_threshold()),
  1169. TERN_(U_SENSORLESS, tmc_sgt.U = stepperU.homing_threshold()),
  1170. TERN_(V_SENSORLESS, tmc_sgt.V = stepperV.homing_threshold()),
  1171. TERN_(W_SENSORLESS, tmc_sgt.W = stepperW.homing_threshold())
  1172. );
  1173. TERN_(X2_SENSORLESS, tmc_sgt.X2 = stepperX2.homing_threshold());
  1174. TERN_(Y2_SENSORLESS, tmc_sgt.Y2 = stepperY2.homing_threshold());
  1175. TERN_(Z2_SENSORLESS, tmc_sgt.Z2 = stepperZ2.homing_threshold());
  1176. TERN_(Z3_SENSORLESS, tmc_sgt.Z3 = stepperZ3.homing_threshold());
  1177. TERN_(Z4_SENSORLESS, tmc_sgt.Z4 = stepperZ4.homing_threshold());
  1178. #endif
  1179. EEPROM_WRITE(tmc_sgt);
  1180. }
  1181. //
  1182. // TMC stepping mode
  1183. //
  1184. {
  1185. _FIELD_TEST(tmc_stealth_enabled);
  1186. per_stepper_bool_t tmc_stealth_enabled = { false };
  1187. TERN_(X_HAS_STEALTHCHOP, tmc_stealth_enabled.X = stepperX.get_stored_stealthChop());
  1188. TERN_(Y_HAS_STEALTHCHOP, tmc_stealth_enabled.Y = stepperY.get_stored_stealthChop());
  1189. TERN_(Z_HAS_STEALTHCHOP, tmc_stealth_enabled.Z = stepperZ.get_stored_stealthChop());
  1190. TERN_(I_HAS_STEALTHCHOP, tmc_stealth_enabled.I = stepperI.get_stored_stealthChop());
  1191. TERN_(J_HAS_STEALTHCHOP, tmc_stealth_enabled.J = stepperJ.get_stored_stealthChop());
  1192. TERN_(K_HAS_STEALTHCHOP, tmc_stealth_enabled.K = stepperK.get_stored_stealthChop());
  1193. TERN_(U_HAS_STEALTHCHOP, tmc_stealth_enabled.U = stepperU.get_stored_stealthChop());
  1194. TERN_(V_HAS_STEALTHCHOP, tmc_stealth_enabled.V = stepperV.get_stored_stealthChop());
  1195. TERN_(W_HAS_STEALTHCHOP, tmc_stealth_enabled.W = stepperW.get_stored_stealthChop());
  1196. TERN_(X2_HAS_STEALTHCHOP, tmc_stealth_enabled.X2 = stepperX2.get_stored_stealthChop());
  1197. TERN_(Y2_HAS_STEALTHCHOP, tmc_stealth_enabled.Y2 = stepperY2.get_stored_stealthChop());
  1198. TERN_(Z2_HAS_STEALTHCHOP, tmc_stealth_enabled.Z2 = stepperZ2.get_stored_stealthChop());
  1199. TERN_(Z3_HAS_STEALTHCHOP, tmc_stealth_enabled.Z3 = stepperZ3.get_stored_stealthChop());
  1200. TERN_(Z4_HAS_STEALTHCHOP, tmc_stealth_enabled.Z4 = stepperZ4.get_stored_stealthChop());
  1201. TERN_(E0_HAS_STEALTHCHOP, tmc_stealth_enabled.E0 = stepperE0.get_stored_stealthChop());
  1202. TERN_(E1_HAS_STEALTHCHOP, tmc_stealth_enabled.E1 = stepperE1.get_stored_stealthChop());
  1203. TERN_(E2_HAS_STEALTHCHOP, tmc_stealth_enabled.E2 = stepperE2.get_stored_stealthChop());
  1204. TERN_(E3_HAS_STEALTHCHOP, tmc_stealth_enabled.E3 = stepperE3.get_stored_stealthChop());
  1205. TERN_(E4_HAS_STEALTHCHOP, tmc_stealth_enabled.E4 = stepperE4.get_stored_stealthChop());
  1206. TERN_(E5_HAS_STEALTHCHOP, tmc_stealth_enabled.E5 = stepperE5.get_stored_stealthChop());
  1207. TERN_(E6_HAS_STEALTHCHOP, tmc_stealth_enabled.E6 = stepperE6.get_stored_stealthChop());
  1208. TERN_(E7_HAS_STEALTHCHOP, tmc_stealth_enabled.E7 = stepperE7.get_stored_stealthChop());
  1209. EEPROM_WRITE(tmc_stealth_enabled);
  1210. }
  1211. //
  1212. // Linear Advance
  1213. //
  1214. {
  1215. _FIELD_TEST(planner_extruder_advance_K);
  1216. #if ENABLED(LIN_ADVANCE)
  1217. EEPROM_WRITE(planner.extruder_advance_K);
  1218. #else
  1219. dummyf = 0;
  1220. for (uint8_t q = _MAX(EXTRUDERS, 1); q--;) EEPROM_WRITE(dummyf);
  1221. #endif
  1222. }
  1223. //
  1224. // Motor Current PWM
  1225. //
  1226. {
  1227. _FIELD_TEST(motor_current_setting);
  1228. #if HAS_MOTOR_CURRENT_SPI || HAS_MOTOR_CURRENT_PWM
  1229. EEPROM_WRITE(stepper.motor_current_setting);
  1230. #else
  1231. const uint32_t no_current[MOTOR_CURRENT_COUNT] = { 0 };
  1232. EEPROM_WRITE(no_current);
  1233. #endif
  1234. }
  1235. //
  1236. // CNC Coordinate Systems
  1237. //
  1238. _FIELD_TEST(coordinate_system);
  1239. #if DISABLED(CNC_COORDINATE_SYSTEMS)
  1240. const xyz_pos_t coordinate_system[MAX_COORDINATE_SYSTEMS] = { { 0 } };
  1241. #endif
  1242. EEPROM_WRITE(TERN(CNC_COORDINATE_SYSTEMS, gcode.coordinate_system, coordinate_system));
  1243. //
  1244. // Skew correction factors
  1245. //
  1246. _FIELD_TEST(planner_skew_factor);
  1247. EEPROM_WRITE(planner.skew_factor);
  1248. //
  1249. // Advanced Pause filament load & unload lengths
  1250. //
  1251. #if HAS_EXTRUDERS
  1252. {
  1253. #if DISABLED(ADVANCED_PAUSE_FEATURE)
  1254. const fil_change_settings_t fc_settings[EXTRUDERS] = { 0, 0 };
  1255. #endif
  1256. _FIELD_TEST(fc_settings);
  1257. EEPROM_WRITE(fc_settings);
  1258. }
  1259. #endif
  1260. //
  1261. // Multiple Extruders
  1262. //
  1263. #if HAS_MULTI_EXTRUDER
  1264. _FIELD_TEST(toolchange_settings);
  1265. EEPROM_WRITE(toolchange_settings);
  1266. #endif
  1267. //
  1268. // Backlash Compensation
  1269. //
  1270. {
  1271. #if ENABLED(BACKLASH_GCODE)
  1272. xyz_float_t backlash_distance_mm;
  1273. LOOP_NUM_AXES(axis) backlash_distance_mm[axis] = backlash.get_distance_mm((AxisEnum)axis);
  1274. const uint8_t backlash_correction = backlash.get_correction_uint8();
  1275. #else
  1276. const xyz_float_t backlash_distance_mm{0};
  1277. const uint8_t backlash_correction = 0;
  1278. #endif
  1279. #if ENABLED(BACKLASH_GCODE) && defined(BACKLASH_SMOOTHING_MM)
  1280. const float backlash_smoothing_mm = backlash.get_smoothing_mm();
  1281. #else
  1282. const float backlash_smoothing_mm = 3;
  1283. #endif
  1284. _FIELD_TEST(backlash_distance_mm);
  1285. EEPROM_WRITE(backlash_distance_mm);
  1286. EEPROM_WRITE(backlash_correction);
  1287. EEPROM_WRITE(backlash_smoothing_mm);
  1288. }
  1289. //
  1290. // Extensible UI User Data
  1291. //
  1292. #if ENABLED(EXTENSIBLE_UI)
  1293. {
  1294. char extui_data[ExtUI::eeprom_data_size] = { 0 };
  1295. ExtUI::onStoreSettings(extui_data);
  1296. _FIELD_TEST(extui_data);
  1297. EEPROM_WRITE(extui_data);
  1298. }
  1299. #endif
  1300. //
  1301. // Creality DWIN User Data
  1302. //
  1303. #if ENABLED(DWIN_LCD_PROUI)
  1304. {
  1305. _FIELD_TEST(dwin_data);
  1306. char dwin_data[eeprom_data_size] = { 0 };
  1307. DWIN_CopySettingsTo(dwin_data);
  1308. EEPROM_WRITE(dwin_data);
  1309. }
  1310. #endif
  1311. #if ENABLED(DWIN_CREALITY_LCD_JYERSUI)
  1312. {
  1313. _FIELD_TEST(dwin_settings);
  1314. char dwin_settings[CrealityDWIN.eeprom_data_size] = { 0 };
  1315. CrealityDWIN.Save_Settings(dwin_settings);
  1316. EEPROM_WRITE(dwin_settings);
  1317. }
  1318. #endif
  1319. //
  1320. // Case Light Brightness
  1321. //
  1322. #if CASELIGHT_USES_BRIGHTNESS
  1323. EEPROM_WRITE(caselight.brightness);
  1324. #endif
  1325. //
  1326. // Password feature
  1327. //
  1328. #if ENABLED(PASSWORD_FEATURE)
  1329. EEPROM_WRITE(password.is_set);
  1330. EEPROM_WRITE(password.value);
  1331. #endif
  1332. //
  1333. // TOUCH_SCREEN_CALIBRATION
  1334. //
  1335. #if ENABLED(TOUCH_SCREEN_CALIBRATION)
  1336. EEPROM_WRITE(touch_calibration.calibration);
  1337. #endif
  1338. //
  1339. // Ethernet network info
  1340. //
  1341. #if HAS_ETHERNET
  1342. {
  1343. _FIELD_TEST(ethernet_hardware_enabled);
  1344. const bool ethernet_hardware_enabled = ethernet.hardware_enabled;
  1345. const uint32_t ethernet_ip = ethernet.ip,
  1346. ethernet_dns = ethernet.myDns,
  1347. ethernet_gateway = ethernet.gateway,
  1348. ethernet_subnet = ethernet.subnet;
  1349. EEPROM_WRITE(ethernet_hardware_enabled);
  1350. EEPROM_WRITE(ethernet_ip);
  1351. EEPROM_WRITE(ethernet_dns);
  1352. EEPROM_WRITE(ethernet_gateway);
  1353. EEPROM_WRITE(ethernet_subnet);
  1354. }
  1355. #endif
  1356. //
  1357. // Buzzer enable/disable
  1358. //
  1359. #if ENABLED(SOUND_MENU_ITEM)
  1360. EEPROM_WRITE(ui.sound_on);
  1361. #endif
  1362. //
  1363. // Fan tachometer check
  1364. //
  1365. #if HAS_FANCHECK
  1366. EEPROM_WRITE(fan_check.enabled);
  1367. #endif
  1368. //
  1369. // MKS UI controller
  1370. //
  1371. #if ENABLED(DGUS_LCD_UI_MKS)
  1372. EEPROM_WRITE(mks_language_index);
  1373. EEPROM_WRITE(mks_corner_offsets);
  1374. EEPROM_WRITE(mks_park_pos);
  1375. EEPROM_WRITE(mks_min_extrusion_temp);
  1376. #endif
  1377. //
  1378. // Selected LCD language
  1379. //
  1380. #if HAS_MULTI_LANGUAGE
  1381. EEPROM_WRITE(ui.language);
  1382. #endif
  1383. //
  1384. // Model predictive control
  1385. //
  1386. #if ENABLED(MPCTEMP)
  1387. HOTEND_LOOP()
  1388. EEPROM_WRITE(thermalManager.temp_hotend[e].constants);
  1389. #endif
  1390. //
  1391. // Report final CRC and Data Size
  1392. //
  1393. if (!eeprom_error) {
  1394. const uint16_t eeprom_size = eeprom_index - (EEPROM_OFFSET),
  1395. final_crc = working_crc;
  1396. // Write the EEPROM header
  1397. eeprom_index = EEPROM_OFFSET;
  1398. EEPROM_WRITE(version);
  1399. #if ENABLED(EEPROM_INIT_NOW)
  1400. EEPROM_WRITE(build_hash);
  1401. #endif
  1402. EEPROM_WRITE(final_crc);
  1403. // Report storage size
  1404. DEBUG_ECHO_MSG("Settings Stored (", eeprom_size, " bytes; crc ", (uint32_t)final_crc, ")");
  1405. eeprom_error |= size_error(eeprom_size);
  1406. }
  1407. EEPROM_FINISH();
  1408. //
  1409. // UBL Mesh
  1410. //
  1411. #if ENABLED(UBL_SAVE_ACTIVE_ON_M500)
  1412. if (bedlevel.storage_slot >= 0)
  1413. store_mesh(bedlevel.storage_slot);
  1414. #endif
  1415. if (!eeprom_error) {
  1416. LCD_MESSAGE(MSG_SETTINGS_STORED);
  1417. TERN_(HOST_PROMPT_SUPPORT, hostui.notify(GET_TEXT_F(MSG_SETTINGS_STORED)));
  1418. }
  1419. TERN_(EXTENSIBLE_UI, ExtUI::onSettingsStored(!eeprom_error));
  1420. return !eeprom_error;
  1421. }
  1422. /**
  1423. * M501 - Retrieve Configuration
  1424. */
  1425. bool MarlinSettings::_load() {
  1426. if (!EEPROM_START(EEPROM_OFFSET)) return false;
  1427. char stored_ver[4];
  1428. EEPROM_READ_ALWAYS(stored_ver);
  1429. // Version has to match or defaults are used
  1430. if (strncmp(version, stored_ver, 3) != 0) {
  1431. if (stored_ver[3] != '\0') {
  1432. stored_ver[0] = '?';
  1433. stored_ver[1] = '\0';
  1434. }
  1435. DEBUG_ECHO_MSG("EEPROM version mismatch (EEPROM=", stored_ver, " Marlin=" EEPROM_VERSION ")");
  1436. TERN_(DWIN_LCD_PROUI, LCD_MESSAGE(MSG_ERR_EEPROM_VERSION));
  1437. TERN_(HOST_PROMPT_SUPPORT, hostui.notify(GET_TEXT_F(MSG_ERR_EEPROM_VERSION)));
  1438. IF_DISABLED(EEPROM_AUTO_INIT, ui.eeprom_alert_version());
  1439. eeprom_error = true;
  1440. }
  1441. else {
  1442. // Optionally reset on the first boot after flashing
  1443. #if ENABLED(EEPROM_INIT_NOW)
  1444. uint32_t stored_hash;
  1445. EEPROM_READ_ALWAYS(stored_hash);
  1446. if (stored_hash != build_hash) { EEPROM_FINISH(); return false; }
  1447. #endif
  1448. uint16_t stored_crc;
  1449. EEPROM_READ_ALWAYS(stored_crc);
  1450. float dummyf = 0;
  1451. working_crc = 0; // Init to 0. Accumulated by EEPROM_READ
  1452. _FIELD_TEST(e_factors);
  1453. // Number of e_factors may change
  1454. uint8_t e_factors;
  1455. EEPROM_READ_ALWAYS(e_factors);
  1456. //
  1457. // Planner Motion
  1458. //
  1459. {
  1460. // Get only the number of E stepper parameters previously stored
  1461. // Any steppers added later are set to their defaults
  1462. uint32_t tmp1[NUM_AXES + e_factors];
  1463. float tmp2[NUM_AXES + e_factors];
  1464. feedRate_t tmp3[NUM_AXES + e_factors];
  1465. EEPROM_READ((uint8_t *)tmp1, sizeof(tmp1)); // max_acceleration_mm_per_s2
  1466. EEPROM_READ(planner.settings.min_segment_time_us);
  1467. EEPROM_READ((uint8_t *)tmp2, sizeof(tmp2)); // axis_steps_per_mm
  1468. EEPROM_READ((uint8_t *)tmp3, sizeof(tmp3)); // max_feedrate_mm_s
  1469. if (!validating) LOOP_DISTINCT_AXES(i) {
  1470. const bool in = (i < e_factors + NUM_AXES);
  1471. planner.settings.max_acceleration_mm_per_s2[i] = in ? tmp1[i] : pgm_read_dword(&_DMA[ALIM(i, _DMA)]);
  1472. planner.settings.axis_steps_per_mm[i] = in ? tmp2[i] : pgm_read_float(&_DASU[ALIM(i, _DASU)]);
  1473. planner.settings.max_feedrate_mm_s[i] = in ? tmp3[i] : pgm_read_float(&_DMF[ALIM(i, _DMF)]);
  1474. }
  1475. EEPROM_READ(planner.settings.acceleration);
  1476. EEPROM_READ(planner.settings.retract_acceleration);
  1477. EEPROM_READ(planner.settings.travel_acceleration);
  1478. EEPROM_READ(planner.settings.min_feedrate_mm_s);
  1479. EEPROM_READ(planner.settings.min_travel_feedrate_mm_s);
  1480. #if HAS_CLASSIC_JERK
  1481. EEPROM_READ(planner.max_jerk);
  1482. #if HAS_LINEAR_E_JERK
  1483. EEPROM_READ(dummyf);
  1484. #endif
  1485. #else
  1486. for (uint8_t q = LOGICAL_AXES; q--;) EEPROM_READ(dummyf);
  1487. #endif
  1488. EEPROM_READ(TERN(CLASSIC_JERK, dummyf, planner.junction_deviation_mm));
  1489. }
  1490. //
  1491. // Home Offset (M206 / M665)
  1492. //
  1493. {
  1494. _FIELD_TEST(home_offset);
  1495. #if HAS_SCARA_OFFSET
  1496. EEPROM_READ(scara_home_offset);
  1497. #else
  1498. #if !HAS_HOME_OFFSET
  1499. xyz_pos_t home_offset;
  1500. #endif
  1501. EEPROM_READ(home_offset);
  1502. #endif
  1503. }
  1504. //
  1505. // Hotend Offsets, if any
  1506. //
  1507. {
  1508. #if HAS_HOTEND_OFFSET
  1509. // Skip hotend 0 which must be 0
  1510. LOOP_S_L_N(e, 1, HOTENDS)
  1511. EEPROM_READ(hotend_offset[e]);
  1512. #endif
  1513. }
  1514. //
  1515. // Filament Runout Sensor
  1516. //
  1517. {
  1518. int8_t runout_sensor_enabled;
  1519. _FIELD_TEST(runout_sensor_enabled);
  1520. EEPROM_READ(runout_sensor_enabled);
  1521. #if HAS_FILAMENT_SENSOR
  1522. runout.enabled = runout_sensor_enabled < 0 ? FIL_RUNOUT_ENABLED_DEFAULT : runout_sensor_enabled;
  1523. #endif
  1524. TERN_(HAS_FILAMENT_SENSOR, if (runout.enabled) runout.reset());
  1525. float runout_distance_mm;
  1526. EEPROM_READ(runout_distance_mm);
  1527. #if HAS_FILAMENT_RUNOUT_DISTANCE
  1528. if (!validating) runout.set_runout_distance(runout_distance_mm);
  1529. #endif
  1530. }
  1531. //
  1532. // Global Leveling
  1533. //
  1534. EEPROM_READ(TERN(ENABLE_LEVELING_FADE_HEIGHT, new_z_fade_height, dummyf));
  1535. //
  1536. // Mesh (Manual) Bed Leveling
  1537. //
  1538. {
  1539. uint8_t mesh_num_x, mesh_num_y;
  1540. EEPROM_READ(dummyf);
  1541. EEPROM_READ_ALWAYS(mesh_num_x);
  1542. EEPROM_READ_ALWAYS(mesh_num_y);
  1543. #if ENABLED(MESH_BED_LEVELING)
  1544. if (!validating) bedlevel.z_offset = dummyf;
  1545. if (mesh_num_x == (GRID_MAX_POINTS_X) && mesh_num_y == (GRID_MAX_POINTS_Y)) {
  1546. // EEPROM data fits the current mesh
  1547. EEPROM_READ(bedlevel.z_values);
  1548. }
  1549. else {
  1550. // EEPROM data is stale
  1551. if (!validating) bedlevel.reset();
  1552. for (uint16_t q = mesh_num_x * mesh_num_y; q--;) EEPROM_READ(dummyf);
  1553. }
  1554. #else
  1555. // MBL is disabled - skip the stored data
  1556. for (uint16_t q = mesh_num_x * mesh_num_y; q--;) EEPROM_READ(dummyf);
  1557. #endif
  1558. }
  1559. //
  1560. // Probe Z Offset
  1561. //
  1562. {
  1563. _FIELD_TEST(probe_offset);
  1564. #if HAS_BED_PROBE
  1565. const xyz_pos_t &zpo = probe.offset;
  1566. #else
  1567. xyz_pos_t zpo;
  1568. #endif
  1569. EEPROM_READ(zpo);
  1570. }
  1571. //
  1572. // Planar Bed Leveling matrix
  1573. //
  1574. {
  1575. #if ABL_PLANAR
  1576. EEPROM_READ(planner.bed_level_matrix);
  1577. #else
  1578. for (uint8_t q = 9; q--;) EEPROM_READ(dummyf);
  1579. #endif
  1580. }
  1581. //
  1582. // Bilinear Auto Bed Leveling
  1583. //
  1584. {
  1585. uint8_t grid_max_x, grid_max_y;
  1586. EEPROM_READ_ALWAYS(grid_max_x); // 1 byte
  1587. EEPROM_READ_ALWAYS(grid_max_y); // 1 byte
  1588. xy_pos_t spacing, start;
  1589. EEPROM_READ(spacing); // 2 ints
  1590. EEPROM_READ(start); // 2 ints
  1591. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  1592. if (grid_max_x == (GRID_MAX_POINTS_X) && grid_max_y == (GRID_MAX_POINTS_Y)) {
  1593. if (!validating) set_bed_leveling_enabled(false);
  1594. bedlevel.set_grid(spacing, start);
  1595. EEPROM_READ(bedlevel.z_values); // 9 to 256 floats
  1596. }
  1597. else // EEPROM data is stale
  1598. #endif // AUTO_BED_LEVELING_BILINEAR
  1599. {
  1600. // Skip past disabled (or stale) Bilinear Grid data
  1601. for (uint16_t q = grid_max_x * grid_max_y; q--;) EEPROM_READ(dummyf);
  1602. }
  1603. }
  1604. //
  1605. // X Axis Twist Compensation
  1606. //
  1607. #if ENABLED(X_AXIS_TWIST_COMPENSATION)
  1608. _FIELD_TEST(xatc_spacing);
  1609. EEPROM_READ(xatc.spacing);
  1610. EEPROM_READ(xatc.start);
  1611. EEPROM_READ(xatc.z_offset);
  1612. #endif
  1613. //
  1614. // Unified Bed Leveling active state
  1615. //
  1616. {
  1617. _FIELD_TEST(planner_leveling_active);
  1618. #if ENABLED(AUTO_BED_LEVELING_UBL)
  1619. const bool &planner_leveling_active = planner.leveling_active;
  1620. const int8_t &ubl_storage_slot = bedlevel.storage_slot;
  1621. #else
  1622. bool planner_leveling_active;
  1623. int8_t ubl_storage_slot;
  1624. #endif
  1625. EEPROM_READ(planner_leveling_active);
  1626. EEPROM_READ(ubl_storage_slot);
  1627. }
  1628. //
  1629. // SERVO_ANGLES
  1630. //
  1631. {
  1632. _FIELD_TEST(servo_angles);
  1633. #if ENABLED(EDITABLE_SERVO_ANGLES)
  1634. uint16_t (&servo_angles_arr)[EEPROM_NUM_SERVOS][2] = servo_angles;
  1635. #else
  1636. uint16_t servo_angles_arr[EEPROM_NUM_SERVOS][2];
  1637. #endif
  1638. EEPROM_READ(servo_angles_arr);
  1639. }
  1640. //
  1641. // Thermal first layer compensation values
  1642. //
  1643. #if HAS_PTC
  1644. #if ENABLED(PTC_PROBE)
  1645. EEPROM_READ(ptc.z_offsets_probe);
  1646. #endif
  1647. # if ENABLED(PTC_BED)
  1648. EEPROM_READ(ptc.z_offsets_bed);
  1649. #endif
  1650. #if ENABLED(PTC_HOTEND)
  1651. EEPROM_READ(ptc.z_offsets_hotend);
  1652. #endif
  1653. ptc.reset_index();
  1654. #else
  1655. // No placeholder data for this feature
  1656. #endif
  1657. //
  1658. // BLTOUCH
  1659. //
  1660. {
  1661. _FIELD_TEST(bltouch_od_5v_mode);
  1662. #if ENABLED(BLTOUCH)
  1663. const bool &bltouch_od_5v_mode = bltouch.od_5v_mode;
  1664. #else
  1665. bool bltouch_od_5v_mode;
  1666. #endif
  1667. EEPROM_READ(bltouch_od_5v_mode);
  1668. #ifdef BLTOUCH_HS_MODE
  1669. _FIELD_TEST(bltouch_high_speed_mode);
  1670. #if ENABLED(BLTOUCH)
  1671. const bool &bltouch_high_speed_mode = bltouch.high_speed_mode;
  1672. #else
  1673. bool bltouch_high_speed_mode;
  1674. #endif
  1675. EEPROM_READ(bltouch_high_speed_mode);
  1676. #endif
  1677. }
  1678. //
  1679. // Kinematic Segments-per-second
  1680. //
  1681. #if IS_KINEMATIC
  1682. {
  1683. EEPROM_READ(segments_per_second);
  1684. #if ENABLED(DELTA)
  1685. _FIELD_TEST(delta_height);
  1686. EEPROM_READ(delta_height); // 1 float
  1687. EEPROM_READ(delta_endstop_adj); // 3 floats
  1688. EEPROM_READ(delta_radius); // 1 float
  1689. EEPROM_READ(delta_diagonal_rod); // 1 float
  1690. EEPROM_READ(delta_tower_angle_trim); // 3 floats
  1691. EEPROM_READ(delta_diagonal_rod_trim); // 3 floats
  1692. #endif
  1693. }
  1694. #endif
  1695. //
  1696. // Extra Endstops offsets
  1697. //
  1698. #if HAS_EXTRA_ENDSTOPS
  1699. {
  1700. _FIELD_TEST(x2_endstop_adj);
  1701. EEPROM_READ(TERN(X_DUAL_ENDSTOPS, endstops.x2_endstop_adj, dummyf)); // 1 float
  1702. EEPROM_READ(TERN(Y_DUAL_ENDSTOPS, endstops.y2_endstop_adj, dummyf)); // 1 float
  1703. EEPROM_READ(TERN(Z_MULTI_ENDSTOPS, endstops.z2_endstop_adj, dummyf)); // 1 float
  1704. #if ENABLED(Z_MULTI_ENDSTOPS) && NUM_Z_STEPPERS >= 3
  1705. EEPROM_READ(endstops.z3_endstop_adj); // 1 float
  1706. #else
  1707. EEPROM_READ(dummyf);
  1708. #endif
  1709. #if ENABLED(Z_MULTI_ENDSTOPS) && NUM_Z_STEPPERS >= 4
  1710. EEPROM_READ(endstops.z4_endstop_adj); // 1 float
  1711. #else
  1712. EEPROM_READ(dummyf);
  1713. #endif
  1714. }
  1715. #endif
  1716. #if ENABLED(Z_STEPPER_AUTO_ALIGN)
  1717. EEPROM_READ(z_stepper_align.xy);
  1718. #if HAS_Z_STEPPER_ALIGN_STEPPER_XY
  1719. EEPROM_READ(z_stepper_align.stepper_xy);
  1720. #endif
  1721. #endif
  1722. //
  1723. // LCD Preheat settings
  1724. //
  1725. #if HAS_PREHEAT
  1726. _FIELD_TEST(ui_material_preset);
  1727. EEPROM_READ(ui.material_preset);
  1728. #endif
  1729. //
  1730. // Hotend PID
  1731. //
  1732. {
  1733. HOTEND_LOOP() {
  1734. PIDCF_t pidcf;
  1735. EEPROM_READ(pidcf);
  1736. #if ENABLED(PIDTEMP)
  1737. if (!validating && !isnan(pidcf.Kp)) {
  1738. // Scale PID values since EEPROM values are unscaled
  1739. PID_PARAM(Kp, e) = pidcf.Kp;
  1740. PID_PARAM(Ki, e) = scalePID_i(pidcf.Ki);
  1741. PID_PARAM(Kd, e) = scalePID_d(pidcf.Kd);
  1742. TERN_(PID_EXTRUSION_SCALING, PID_PARAM(Kc, e) = pidcf.Kc);
  1743. TERN_(PID_FAN_SCALING, PID_PARAM(Kf, e) = pidcf.Kf);
  1744. }
  1745. #endif
  1746. }
  1747. }
  1748. //
  1749. // PID Extrusion Scaling
  1750. //
  1751. {
  1752. _FIELD_TEST(lpq_len);
  1753. #if ENABLED(PID_EXTRUSION_SCALING)
  1754. const int16_t &lpq_len = thermalManager.lpq_len;
  1755. #else
  1756. int16_t lpq_len;
  1757. #endif
  1758. EEPROM_READ(lpq_len);
  1759. }
  1760. //
  1761. // Heated Bed PID
  1762. //
  1763. {
  1764. PID_t pid;
  1765. EEPROM_READ(pid);
  1766. #if ENABLED(PIDTEMPBED)
  1767. if (!validating && !isnan(pid.Kp)) {
  1768. // Scale PID values since EEPROM values are unscaled
  1769. thermalManager.temp_bed.pid.Kp = pid.Kp;
  1770. thermalManager.temp_bed.pid.Ki = scalePID_i(pid.Ki);
  1771. thermalManager.temp_bed.pid.Kd = scalePID_d(pid.Kd);
  1772. }
  1773. #endif
  1774. }
  1775. //
  1776. // Heated Chamber PID
  1777. //
  1778. {
  1779. PID_t pid;
  1780. EEPROM_READ(pid);
  1781. #if ENABLED(PIDTEMPCHAMBER)
  1782. if (!validating && !isnan(pid.Kp)) {
  1783. // Scale PID values since EEPROM values are unscaled
  1784. thermalManager.temp_chamber.pid.Kp = pid.Kp;
  1785. thermalManager.temp_chamber.pid.Ki = scalePID_i(pid.Ki);
  1786. thermalManager.temp_chamber.pid.Kd = scalePID_d(pid.Kd);
  1787. }
  1788. #endif
  1789. }
  1790. //
  1791. // User-defined Thermistors
  1792. //
  1793. #if HAS_USER_THERMISTORS
  1794. {
  1795. user_thermistor_t user_thermistor[USER_THERMISTORS];
  1796. _FIELD_TEST(user_thermistor);
  1797. EEPROM_READ(user_thermistor);
  1798. if (!validating) COPY(thermalManager.user_thermistor, user_thermistor);
  1799. }
  1800. #endif
  1801. //
  1802. // Power monitor
  1803. //
  1804. {
  1805. uint8_t power_monitor_flags;
  1806. _FIELD_TEST(power_monitor_flags);
  1807. EEPROM_READ(power_monitor_flags);
  1808. TERN_(HAS_POWER_MONITOR, if (!validating) power_monitor.flags = power_monitor_flags);
  1809. }
  1810. //
  1811. // LCD Contrast
  1812. //
  1813. {
  1814. uint8_t lcd_contrast;
  1815. _FIELD_TEST(lcd_contrast);
  1816. EEPROM_READ(lcd_contrast);
  1817. TERN_(HAS_LCD_CONTRAST, if (!validating) ui.contrast = lcd_contrast);
  1818. }
  1819. //
  1820. // LCD Brightness
  1821. //
  1822. {
  1823. uint8_t lcd_brightness;
  1824. _FIELD_TEST(lcd_brightness);
  1825. EEPROM_READ(lcd_brightness);
  1826. TERN_(HAS_LCD_BRIGHTNESS, if (!validating) ui.brightness = lcd_brightness);
  1827. }
  1828. //
  1829. // LCD Backlight / Sleep Timeout
  1830. //
  1831. #if LCD_BACKLIGHT_TIMEOUT
  1832. EEPROM_READ(ui.lcd_backlight_timeout);
  1833. #elif HAS_DISPLAY_SLEEP
  1834. EEPROM_READ(ui.sleep_timeout_minutes);
  1835. #endif
  1836. //
  1837. // Controller Fan
  1838. //
  1839. {
  1840. controllerFan_settings_t cfs = { 0 };
  1841. _FIELD_TEST(controllerFan_settings);
  1842. EEPROM_READ(cfs);
  1843. TERN_(CONTROLLER_FAN_EDITABLE, if (!validating) controllerFan.settings = cfs);
  1844. }
  1845. //
  1846. // Power-Loss Recovery
  1847. //
  1848. {
  1849. bool recovery_enabled;
  1850. _FIELD_TEST(recovery_enabled);
  1851. EEPROM_READ(recovery_enabled);
  1852. TERN_(POWER_LOSS_RECOVERY, if (!validating) recovery.enabled = recovery_enabled);
  1853. }
  1854. //
  1855. // Firmware Retraction
  1856. //
  1857. {
  1858. fwretract_settings_t fwretract_settings;
  1859. bool autoretract_enabled;
  1860. _FIELD_TEST(fwretract_settings);
  1861. EEPROM_READ(fwretract_settings);
  1862. EEPROM_READ(autoretract_enabled);
  1863. #if ENABLED(FWRETRACT)
  1864. if (!validating) {
  1865. fwretract.settings = fwretract_settings;
  1866. TERN_(FWRETRACT_AUTORETRACT, fwretract.autoretract_enabled = autoretract_enabled);
  1867. }
  1868. #endif
  1869. }
  1870. //
  1871. // Volumetric & Filament Size
  1872. //
  1873. {
  1874. struct {
  1875. bool volumetric_enabled;
  1876. float filament_size[EXTRUDERS];
  1877. float volumetric_extruder_limit[EXTRUDERS];
  1878. } storage;
  1879. _FIELD_TEST(parser_volumetric_enabled);
  1880. EEPROM_READ(storage);
  1881. #if DISABLED(NO_VOLUMETRICS)
  1882. if (!validating) {
  1883. parser.volumetric_enabled = storage.volumetric_enabled;
  1884. COPY(planner.filament_size, storage.filament_size);
  1885. #if ENABLED(VOLUMETRIC_EXTRUDER_LIMIT)
  1886. COPY(planner.volumetric_extruder_limit, storage.volumetric_extruder_limit);
  1887. #endif
  1888. }
  1889. #endif
  1890. }
  1891. //
  1892. // TMC Stepper Settings
  1893. //
  1894. if (!validating) reset_stepper_drivers();
  1895. // TMC Stepper Current
  1896. {
  1897. _FIELD_TEST(tmc_stepper_current);
  1898. per_stepper_uint16_t currents;
  1899. EEPROM_READ(currents);
  1900. #if HAS_TRINAMIC_CONFIG
  1901. #define SET_CURR(Q) stepper##Q.rms_current(currents.Q ? currents.Q : Q##_CURRENT)
  1902. if (!validating) {
  1903. #if AXIS_IS_TMC(X)
  1904. SET_CURR(X);
  1905. #endif
  1906. #if AXIS_IS_TMC(Y)
  1907. SET_CURR(Y);
  1908. #endif
  1909. #if AXIS_IS_TMC(Z)
  1910. SET_CURR(Z);
  1911. #endif
  1912. #if AXIS_IS_TMC(X2)
  1913. SET_CURR(X2);
  1914. #endif
  1915. #if AXIS_IS_TMC(Y2)
  1916. SET_CURR(Y2);
  1917. #endif
  1918. #if AXIS_IS_TMC(Z2)
  1919. SET_CURR(Z2);
  1920. #endif
  1921. #if AXIS_IS_TMC(Z3)
  1922. SET_CURR(Z3);
  1923. #endif
  1924. #if AXIS_IS_TMC(Z4)
  1925. SET_CURR(Z4);
  1926. #endif
  1927. #if AXIS_IS_TMC(I)
  1928. SET_CURR(I);
  1929. #endif
  1930. #if AXIS_IS_TMC(J)
  1931. SET_CURR(J);
  1932. #endif
  1933. #if AXIS_IS_TMC(K)
  1934. SET_CURR(K);
  1935. #endif
  1936. #if AXIS_IS_TMC(U)
  1937. SET_CURR(U);
  1938. #endif
  1939. #if AXIS_IS_TMC(V)
  1940. SET_CURR(V);
  1941. #endif
  1942. #if AXIS_IS_TMC(W)
  1943. SET_CURR(W);
  1944. #endif
  1945. #if AXIS_IS_TMC(E0)
  1946. SET_CURR(E0);
  1947. #endif
  1948. #if AXIS_IS_TMC(E1)
  1949. SET_CURR(E1);
  1950. #endif
  1951. #if AXIS_IS_TMC(E2)
  1952. SET_CURR(E2);
  1953. #endif
  1954. #if AXIS_IS_TMC(E3)
  1955. SET_CURR(E3);
  1956. #endif
  1957. #if AXIS_IS_TMC(E4)
  1958. SET_CURR(E4);
  1959. #endif
  1960. #if AXIS_IS_TMC(E5)
  1961. SET_CURR(E5);
  1962. #endif
  1963. #if AXIS_IS_TMC(E6)
  1964. SET_CURR(E6);
  1965. #endif
  1966. #if AXIS_IS_TMC(E7)
  1967. SET_CURR(E7);
  1968. #endif
  1969. }
  1970. #endif
  1971. }
  1972. // TMC Hybrid Threshold
  1973. {
  1974. per_stepper_uint32_t tmc_hybrid_threshold;
  1975. _FIELD_TEST(tmc_hybrid_threshold);
  1976. EEPROM_READ(tmc_hybrid_threshold);
  1977. #if ENABLED(HYBRID_THRESHOLD)
  1978. if (!validating) {
  1979. TERN_(X_HAS_STEALTHCHOP, stepperX.set_pwm_thrs(tmc_hybrid_threshold.X));
  1980. TERN_(Y_HAS_STEALTHCHOP, stepperY.set_pwm_thrs(tmc_hybrid_threshold.Y));
  1981. TERN_(Z_HAS_STEALTHCHOP, stepperZ.set_pwm_thrs(tmc_hybrid_threshold.Z));
  1982. TERN_(X2_HAS_STEALTHCHOP, stepperX2.set_pwm_thrs(tmc_hybrid_threshold.X2));
  1983. TERN_(Y2_HAS_STEALTHCHOP, stepperY2.set_pwm_thrs(tmc_hybrid_threshold.Y2));
  1984. TERN_(Z2_HAS_STEALTHCHOP, stepperZ2.set_pwm_thrs(tmc_hybrid_threshold.Z2));
  1985. TERN_(Z3_HAS_STEALTHCHOP, stepperZ3.set_pwm_thrs(tmc_hybrid_threshold.Z3));
  1986. TERN_(Z4_HAS_STEALTHCHOP, stepperZ4.set_pwm_thrs(tmc_hybrid_threshold.Z4));
  1987. TERN_(I_HAS_STEALTHCHOP, stepperI.set_pwm_thrs(tmc_hybrid_threshold.I));
  1988. TERN_(J_HAS_STEALTHCHOP, stepperJ.set_pwm_thrs(tmc_hybrid_threshold.J));
  1989. TERN_(K_HAS_STEALTHCHOP, stepperK.set_pwm_thrs(tmc_hybrid_threshold.K));
  1990. TERN_(U_HAS_STEALTHCHOP, stepperU.set_pwm_thrs(tmc_hybrid_threshold.U));
  1991. TERN_(V_HAS_STEALTHCHOP, stepperV.set_pwm_thrs(tmc_hybrid_threshold.V));
  1992. TERN_(W_HAS_STEALTHCHOP, stepperW.set_pwm_thrs(tmc_hybrid_threshold.W));
  1993. TERN_(E0_HAS_STEALTHCHOP, stepperE0.set_pwm_thrs(tmc_hybrid_threshold.E0));
  1994. TERN_(E1_HAS_STEALTHCHOP, stepperE1.set_pwm_thrs(tmc_hybrid_threshold.E1));
  1995. TERN_(E2_HAS_STEALTHCHOP, stepperE2.set_pwm_thrs(tmc_hybrid_threshold.E2));
  1996. TERN_(E3_HAS_STEALTHCHOP, stepperE3.set_pwm_thrs(tmc_hybrid_threshold.E3));
  1997. TERN_(E4_HAS_STEALTHCHOP, stepperE4.set_pwm_thrs(tmc_hybrid_threshold.E4));
  1998. TERN_(E5_HAS_STEALTHCHOP, stepperE5.set_pwm_thrs(tmc_hybrid_threshold.E5));
  1999. TERN_(E6_HAS_STEALTHCHOP, stepperE6.set_pwm_thrs(tmc_hybrid_threshold.E6));
  2000. TERN_(E7_HAS_STEALTHCHOP, stepperE7.set_pwm_thrs(tmc_hybrid_threshold.E7));
  2001. }
  2002. #endif
  2003. }
  2004. //
  2005. // TMC StallGuard threshold.
  2006. //
  2007. {
  2008. mot_stepper_int16_t tmc_sgt;
  2009. _FIELD_TEST(tmc_sgt);
  2010. EEPROM_READ(tmc_sgt);
  2011. #if USE_SENSORLESS
  2012. if (!validating) {
  2013. NUM_AXIS_CODE(
  2014. TERN_(X_SENSORLESS, stepperX.homing_threshold(tmc_sgt.X)),
  2015. TERN_(Y_SENSORLESS, stepperY.homing_threshold(tmc_sgt.Y)),
  2016. TERN_(Z_SENSORLESS, stepperZ.homing_threshold(tmc_sgt.Z)),
  2017. TERN_(I_SENSORLESS, stepperI.homing_threshold(tmc_sgt.I)),
  2018. TERN_(J_SENSORLESS, stepperJ.homing_threshold(tmc_sgt.J)),
  2019. TERN_(K_SENSORLESS, stepperK.homing_threshold(tmc_sgt.K)),
  2020. TERN_(U_SENSORLESS, stepperU.homing_threshold(tmc_sgt.U)),
  2021. TERN_(V_SENSORLESS, stepperV.homing_threshold(tmc_sgt.V)),
  2022. TERN_(W_SENSORLESS, stepperW.homing_threshold(tmc_sgt.W))
  2023. );
  2024. TERN_(X2_SENSORLESS, stepperX2.homing_threshold(tmc_sgt.X2));
  2025. TERN_(Y2_SENSORLESS, stepperY2.homing_threshold(tmc_sgt.Y2));
  2026. TERN_(Z2_SENSORLESS, stepperZ2.homing_threshold(tmc_sgt.Z2));
  2027. TERN_(Z3_SENSORLESS, stepperZ3.homing_threshold(tmc_sgt.Z3));
  2028. TERN_(Z4_SENSORLESS, stepperZ4.homing_threshold(tmc_sgt.Z4));
  2029. }
  2030. #endif
  2031. }
  2032. // TMC stepping mode
  2033. {
  2034. _FIELD_TEST(tmc_stealth_enabled);
  2035. per_stepper_bool_t tmc_stealth_enabled;
  2036. EEPROM_READ(tmc_stealth_enabled);
  2037. #if HAS_TRINAMIC_CONFIG
  2038. #define SET_STEPPING_MODE(ST) stepper##ST.stored.stealthChop_enabled = tmc_stealth_enabled.ST; stepper##ST.refresh_stepping_mode();
  2039. if (!validating) {
  2040. TERN_(X_HAS_STEALTHCHOP, SET_STEPPING_MODE(X));
  2041. TERN_(Y_HAS_STEALTHCHOP, SET_STEPPING_MODE(Y));
  2042. TERN_(Z_HAS_STEALTHCHOP, SET_STEPPING_MODE(Z));
  2043. TERN_(I_HAS_STEALTHCHOP, SET_STEPPING_MODE(I));
  2044. TERN_(J_HAS_STEALTHCHOP, SET_STEPPING_MODE(J));
  2045. TERN_(K_HAS_STEALTHCHOP, SET_STEPPING_MODE(K));
  2046. TERN_(U_HAS_STEALTHCHOP, SET_STEPPING_MODE(U));
  2047. TERN_(V_HAS_STEALTHCHOP, SET_STEPPING_MODE(V));
  2048. TERN_(W_HAS_STEALTHCHOP, SET_STEPPING_MODE(W));
  2049. TERN_(X2_HAS_STEALTHCHOP, SET_STEPPING_MODE(X2));
  2050. TERN_(Y2_HAS_STEALTHCHOP, SET_STEPPING_MODE(Y2));
  2051. TERN_(Z2_HAS_STEALTHCHOP, SET_STEPPING_MODE(Z2));
  2052. TERN_(Z3_HAS_STEALTHCHOP, SET_STEPPING_MODE(Z3));
  2053. TERN_(Z4_HAS_STEALTHCHOP, SET_STEPPING_MODE(Z4));
  2054. TERN_(E0_HAS_STEALTHCHOP, SET_STEPPING_MODE(E0));
  2055. TERN_(E1_HAS_STEALTHCHOP, SET_STEPPING_MODE(E1));
  2056. TERN_(E2_HAS_STEALTHCHOP, SET_STEPPING_MODE(E2));
  2057. TERN_(E3_HAS_STEALTHCHOP, SET_STEPPING_MODE(E3));
  2058. TERN_(E4_HAS_STEALTHCHOP, SET_STEPPING_MODE(E4));
  2059. TERN_(E5_HAS_STEALTHCHOP, SET_STEPPING_MODE(E5));
  2060. TERN_(E6_HAS_STEALTHCHOP, SET_STEPPING_MODE(E6));
  2061. TERN_(E7_HAS_STEALTHCHOP, SET_STEPPING_MODE(E7));
  2062. }
  2063. #endif
  2064. }
  2065. //
  2066. // Linear Advance
  2067. //
  2068. {
  2069. float extruder_advance_K[_MAX(EXTRUDERS, 1)];
  2070. _FIELD_TEST(planner_extruder_advance_K);
  2071. EEPROM_READ(extruder_advance_K);
  2072. #if ENABLED(LIN_ADVANCE)
  2073. if (!validating)
  2074. COPY(planner.extruder_advance_K, extruder_advance_K);
  2075. #endif
  2076. }
  2077. //
  2078. // Motor Current PWM
  2079. //
  2080. {
  2081. _FIELD_TEST(motor_current_setting);
  2082. uint32_t motor_current_setting[MOTOR_CURRENT_COUNT]
  2083. #if HAS_MOTOR_CURRENT_SPI
  2084. = DIGIPOT_MOTOR_CURRENT
  2085. #endif
  2086. ;
  2087. #if HAS_MOTOR_CURRENT_SPI
  2088. DEBUG_ECHO_MSG("DIGIPOTS Loading");
  2089. #endif
  2090. EEPROM_READ(motor_current_setting);
  2091. #if HAS_MOTOR_CURRENT_SPI
  2092. DEBUG_ECHO_MSG("DIGIPOTS Loaded");
  2093. #endif
  2094. #if HAS_MOTOR_CURRENT_SPI || HAS_MOTOR_CURRENT_PWM
  2095. if (!validating)
  2096. COPY(stepper.motor_current_setting, motor_current_setting);
  2097. #endif
  2098. }
  2099. //
  2100. // CNC Coordinate System
  2101. //
  2102. {
  2103. _FIELD_TEST(coordinate_system);
  2104. #if ENABLED(CNC_COORDINATE_SYSTEMS)
  2105. if (!validating) (void)gcode.select_coordinate_system(-1); // Go back to machine space
  2106. EEPROM_READ(gcode.coordinate_system);
  2107. #else
  2108. xyz_pos_t coordinate_system[MAX_COORDINATE_SYSTEMS];
  2109. EEPROM_READ(coordinate_system);
  2110. #endif
  2111. }
  2112. //
  2113. // Skew correction factors
  2114. //
  2115. {
  2116. skew_factor_t skew_factor;
  2117. _FIELD_TEST(planner_skew_factor);
  2118. EEPROM_READ(skew_factor);
  2119. #if ENABLED(SKEW_CORRECTION_GCODE)
  2120. if (!validating) {
  2121. planner.skew_factor.xy = skew_factor.xy;
  2122. #if ENABLED(SKEW_CORRECTION_FOR_Z)
  2123. planner.skew_factor.xz = skew_factor.xz;
  2124. planner.skew_factor.yz = skew_factor.yz;
  2125. #endif
  2126. }
  2127. #endif
  2128. }
  2129. //
  2130. // Advanced Pause filament load & unload lengths
  2131. //
  2132. #if HAS_EXTRUDERS
  2133. {
  2134. #if DISABLED(ADVANCED_PAUSE_FEATURE)
  2135. fil_change_settings_t fc_settings[EXTRUDERS];
  2136. #endif
  2137. _FIELD_TEST(fc_settings);
  2138. EEPROM_READ(fc_settings);
  2139. }
  2140. #endif
  2141. //
  2142. // Tool-change settings
  2143. //
  2144. #if HAS_MULTI_EXTRUDER
  2145. _FIELD_TEST(toolchange_settings);
  2146. EEPROM_READ(toolchange_settings);
  2147. #endif
  2148. //
  2149. // Backlash Compensation
  2150. //
  2151. {
  2152. xyz_float_t backlash_distance_mm;
  2153. uint8_t backlash_correction;
  2154. float backlash_smoothing_mm;
  2155. _FIELD_TEST(backlash_distance_mm);
  2156. EEPROM_READ(backlash_distance_mm);
  2157. EEPROM_READ(backlash_correction);
  2158. EEPROM_READ(backlash_smoothing_mm);
  2159. #if ENABLED(BACKLASH_GCODE)
  2160. LOOP_NUM_AXES(axis) backlash.set_distance_mm((AxisEnum)axis, backlash_distance_mm[axis]);
  2161. backlash.set_correction_uint8(backlash_correction);
  2162. #ifdef BACKLASH_SMOOTHING_MM
  2163. backlash.set_smoothing_mm(backlash_smoothing_mm);
  2164. #endif
  2165. #endif
  2166. }
  2167. //
  2168. // Extensible UI User Data
  2169. //
  2170. #if ENABLED(EXTENSIBLE_UI)
  2171. { // This is a significant hardware change; don't reserve EEPROM space when not present
  2172. const char extui_data[ExtUI::eeprom_data_size] = { 0 };
  2173. _FIELD_TEST(extui_data);
  2174. EEPROM_READ(extui_data);
  2175. if (!validating) ExtUI::onLoadSettings(extui_data);
  2176. }
  2177. #endif
  2178. //
  2179. // Creality DWIN User Data
  2180. //
  2181. #if ENABLED(DWIN_LCD_PROUI)
  2182. {
  2183. const char dwin_data[eeprom_data_size] = { 0 };
  2184. _FIELD_TEST(dwin_data);
  2185. EEPROM_READ(dwin_data);
  2186. if (!validating) DWIN_CopySettingsFrom(dwin_data);
  2187. }
  2188. #elif ENABLED(DWIN_CREALITY_LCD_JYERSUI)
  2189. {
  2190. const char dwin_settings[CrealityDWIN.eeprom_data_size] = { 0 };
  2191. _FIELD_TEST(dwin_settings);
  2192. EEPROM_READ(dwin_settings);
  2193. if (!validating) CrealityDWIN.Load_Settings(dwin_settings);
  2194. }
  2195. #endif
  2196. //
  2197. // Case Light Brightness
  2198. //
  2199. #if CASELIGHT_USES_BRIGHTNESS
  2200. _FIELD_TEST(caselight_brightness);
  2201. EEPROM_READ(caselight.brightness);
  2202. #endif
  2203. //
  2204. // Password feature
  2205. //
  2206. #if ENABLED(PASSWORD_FEATURE)
  2207. _FIELD_TEST(password_is_set);
  2208. EEPROM_READ(password.is_set);
  2209. EEPROM_READ(password.value);
  2210. #endif
  2211. //
  2212. // TOUCH_SCREEN_CALIBRATION
  2213. //
  2214. #if ENABLED(TOUCH_SCREEN_CALIBRATION)
  2215. _FIELD_TEST(touch_calibration_data);
  2216. EEPROM_READ(touch_calibration.calibration);
  2217. #endif
  2218. //
  2219. // Ethernet network info
  2220. //
  2221. #if HAS_ETHERNET
  2222. _FIELD_TEST(ethernet_hardware_enabled);
  2223. uint32_t ethernet_ip, ethernet_dns, ethernet_gateway, ethernet_subnet;
  2224. EEPROM_READ(ethernet.hardware_enabled);
  2225. EEPROM_READ(ethernet_ip); ethernet.ip = ethernet_ip;
  2226. EEPROM_READ(ethernet_dns); ethernet.myDns = ethernet_dns;
  2227. EEPROM_READ(ethernet_gateway); ethernet.gateway = ethernet_gateway;
  2228. EEPROM_READ(ethernet_subnet); ethernet.subnet = ethernet_subnet;
  2229. #endif
  2230. //
  2231. // Buzzer enable/disable
  2232. //
  2233. #if ENABLED(SOUND_MENU_ITEM)
  2234. _FIELD_TEST(sound_on);
  2235. EEPROM_READ(ui.sound_on);
  2236. #endif
  2237. //
  2238. // Fan tachometer check
  2239. //
  2240. #if HAS_FANCHECK
  2241. _FIELD_TEST(fan_check_enabled);
  2242. EEPROM_READ(fan_check.enabled);
  2243. #endif
  2244. //
  2245. // MKS UI controller
  2246. //
  2247. #if ENABLED(DGUS_LCD_UI_MKS)
  2248. _FIELD_TEST(mks_language_index);
  2249. EEPROM_READ(mks_language_index);
  2250. EEPROM_READ(mks_corner_offsets);
  2251. EEPROM_READ(mks_park_pos);
  2252. EEPROM_READ(mks_min_extrusion_temp);
  2253. #endif
  2254. //
  2255. // Selected LCD language
  2256. //
  2257. #if HAS_MULTI_LANGUAGE
  2258. {
  2259. uint8_t ui_language;
  2260. EEPROM_READ(ui_language);
  2261. if (ui_language >= NUM_LANGUAGES) ui_language = 0;
  2262. ui.set_language(ui_language);
  2263. }
  2264. #endif
  2265. //
  2266. // Model predictive control
  2267. //
  2268. #if ENABLED(MPCTEMP)
  2269. {
  2270. HOTEND_LOOP()
  2271. EEPROM_READ(thermalManager.temp_hotend[e].constants);
  2272. }
  2273. #endif
  2274. //
  2275. // Validate Final Size and CRC
  2276. //
  2277. eeprom_error = size_error(eeprom_index - (EEPROM_OFFSET));
  2278. if (eeprom_error) {
  2279. DEBUG_ECHO_MSG("Index: ", eeprom_index - (EEPROM_OFFSET), " Size: ", datasize());
  2280. IF_DISABLED(EEPROM_AUTO_INIT, ui.eeprom_alert_index());
  2281. }
  2282. else if (working_crc != stored_crc) {
  2283. eeprom_error = true;
  2284. DEBUG_ERROR_MSG("EEPROM CRC mismatch - (stored) ", stored_crc, " != ", working_crc, " (calculated)!");
  2285. TERN_(DWIN_LCD_PROUI, LCD_MESSAGE(MSG_ERR_EEPROM_CRC));
  2286. TERN_(HOST_EEPROM_CHITCHAT, hostui.notify(GET_TEXT_F(MSG_ERR_EEPROM_CRC)));
  2287. IF_DISABLED(EEPROM_AUTO_INIT, ui.eeprom_alert_crc());
  2288. }
  2289. else if (!validating) {
  2290. DEBUG_ECHO_START();
  2291. DEBUG_ECHO(version);
  2292. DEBUG_ECHOLNPGM(" stored settings retrieved (", eeprom_index - (EEPROM_OFFSET), " bytes; crc ", (uint32_t)working_crc, ")");
  2293. TERN_(HOST_EEPROM_CHITCHAT, hostui.notify(F("Stored settings retrieved")));
  2294. }
  2295. if (!validating && !eeprom_error) postprocess();
  2296. #if ENABLED(AUTO_BED_LEVELING_UBL)
  2297. if (!validating) {
  2298. bedlevel.report_state();
  2299. if (!bedlevel.sanity_check()) {
  2300. #if BOTH(EEPROM_CHITCHAT, DEBUG_LEVELING_FEATURE)
  2301. bedlevel.echo_name();
  2302. DEBUG_ECHOLNPGM(" initialized.\n");
  2303. #endif
  2304. }
  2305. else {
  2306. eeprom_error = true;
  2307. #if BOTH(EEPROM_CHITCHAT, DEBUG_LEVELING_FEATURE)
  2308. DEBUG_ECHOPGM("?Can't enable ");
  2309. bedlevel.echo_name();
  2310. DEBUG_ECHOLNPGM(".");
  2311. #endif
  2312. bedlevel.reset();
  2313. }
  2314. if (bedlevel.storage_slot >= 0) {
  2315. load_mesh(bedlevel.storage_slot);
  2316. DEBUG_ECHOLNPGM("Mesh ", bedlevel.storage_slot, " loaded from storage.");
  2317. }
  2318. else {
  2319. bedlevel.reset();
  2320. DEBUG_ECHOLNPGM("UBL reset");
  2321. }
  2322. }
  2323. #endif
  2324. }
  2325. #if ENABLED(EEPROM_CHITCHAT) && DISABLED(DISABLE_M503)
  2326. // Report the EEPROM settings
  2327. if (!validating && TERN1(EEPROM_BOOT_SILENT, IsRunning())) report();
  2328. #endif
  2329. EEPROM_FINISH();
  2330. return !eeprom_error;
  2331. }
  2332. #ifdef ARCHIM2_SPI_FLASH_EEPROM_BACKUP_SIZE
  2333. extern bool restoreEEPROM();
  2334. #endif
  2335. bool MarlinSettings::validate() {
  2336. validating = true;
  2337. #ifdef ARCHIM2_SPI_FLASH_EEPROM_BACKUP_SIZE
  2338. bool success = _load();
  2339. if (!success && restoreEEPROM()) {
  2340. SERIAL_ECHOLNPGM("Recovered backup EEPROM settings from SPI Flash");
  2341. success = _load();
  2342. }
  2343. #else
  2344. const bool success = _load();
  2345. #endif
  2346. validating = false;
  2347. return success;
  2348. }
  2349. bool MarlinSettings::load() {
  2350. if (validate()) {
  2351. const bool success = _load();
  2352. TERN_(EXTENSIBLE_UI, ExtUI::onSettingsLoaded(success));
  2353. return success;
  2354. }
  2355. reset();
  2356. #if EITHER(EEPROM_AUTO_INIT, EEPROM_INIT_NOW)
  2357. (void)save();
  2358. SERIAL_ECHO_MSG("EEPROM Initialized");
  2359. #endif
  2360. return false;
  2361. }
  2362. #if ENABLED(AUTO_BED_LEVELING_UBL)
  2363. inline void ubl_invalid_slot(const int s) {
  2364. DEBUG_ECHOLNPGM("?Invalid slot.\n", s, " mesh slots available.");
  2365. UNUSED(s);
  2366. }
  2367. // 128 (+1 because of the change to capacity rather than last valid address)
  2368. // is a placeholder for the size of the MAT; the MAT will always
  2369. // live at the very end of the eeprom
  2370. const uint16_t MarlinSettings::meshes_end = persistentStore.capacity() - 129;
  2371. uint16_t MarlinSettings::meshes_start_index() {
  2372. // Pad the end of configuration data so it can float up
  2373. // or down a little bit without disrupting the mesh data
  2374. return (datasize() + EEPROM_OFFSET + 32) & 0xFFF8;
  2375. }
  2376. #define MESH_STORE_SIZE sizeof(TERN(OPTIMIZED_MESH_STORAGE, mesh_store_t, bedlevel.z_values))
  2377. uint16_t MarlinSettings::calc_num_meshes() {
  2378. return (meshes_end - meshes_start_index()) / MESH_STORE_SIZE;
  2379. }
  2380. int MarlinSettings::mesh_slot_offset(const int8_t slot) {
  2381. return meshes_end - (slot + 1) * MESH_STORE_SIZE;
  2382. }
  2383. void MarlinSettings::store_mesh(const int8_t slot) {
  2384. #if ENABLED(AUTO_BED_LEVELING_UBL)
  2385. const int16_t a = calc_num_meshes();
  2386. if (!WITHIN(slot, 0, a - 1)) {
  2387. ubl_invalid_slot(a);
  2388. DEBUG_ECHOLNPGM("E2END=", persistentStore.capacity() - 1, " meshes_end=", meshes_end, " slot=", slot);
  2389. DEBUG_EOL();
  2390. return;
  2391. }
  2392. int pos = mesh_slot_offset(slot);
  2393. uint16_t crc = 0;
  2394. #if ENABLED(OPTIMIZED_MESH_STORAGE)
  2395. int16_t z_mesh_store[GRID_MAX_POINTS_X][GRID_MAX_POINTS_Y];
  2396. bedlevel.set_store_from_mesh(bedlevel.z_values, z_mesh_store);
  2397. uint8_t * const src = (uint8_t*)&z_mesh_store;
  2398. #else
  2399. uint8_t * const src = (uint8_t*)&bedlevel.z_values;
  2400. #endif
  2401. // Write crc to MAT along with other data, or just tack on to the beginning or end
  2402. persistentStore.access_start();
  2403. const bool status = persistentStore.write_data(pos, src, MESH_STORE_SIZE, &crc);
  2404. persistentStore.access_finish();
  2405. if (status) SERIAL_ECHOLNPGM("?Unable to save mesh data.");
  2406. else DEBUG_ECHOLNPGM("Mesh saved in slot ", slot);
  2407. #else
  2408. // Other mesh types
  2409. #endif
  2410. }
  2411. void MarlinSettings::load_mesh(const int8_t slot, void * const into/*=nullptr*/) {
  2412. #if ENABLED(AUTO_BED_LEVELING_UBL)
  2413. const int16_t a = settings.calc_num_meshes();
  2414. if (!WITHIN(slot, 0, a - 1)) {
  2415. ubl_invalid_slot(a);
  2416. return;
  2417. }
  2418. int pos = mesh_slot_offset(slot);
  2419. uint16_t crc = 0;
  2420. #if ENABLED(OPTIMIZED_MESH_STORAGE)
  2421. int16_t z_mesh_store[GRID_MAX_POINTS_X][GRID_MAX_POINTS_Y];
  2422. uint8_t * const dest = (uint8_t*)&z_mesh_store;
  2423. #else
  2424. uint8_t * const dest = into ? (uint8_t*)into : (uint8_t*)&bedlevel.z_values;
  2425. #endif
  2426. persistentStore.access_start();
  2427. uint16_t status = persistentStore.read_data(pos, dest, MESH_STORE_SIZE, &crc);
  2428. persistentStore.access_finish();
  2429. #if ENABLED(OPTIMIZED_MESH_STORAGE)
  2430. if (into) {
  2431. float z_values[GRID_MAX_POINTS_X][GRID_MAX_POINTS_Y];
  2432. bedlevel.set_mesh_from_store(z_mesh_store, z_values);
  2433. memcpy(into, z_values, sizeof(z_values));
  2434. }
  2435. else
  2436. bedlevel.set_mesh_from_store(z_mesh_store, bedlevel.z_values);
  2437. #endif
  2438. #if ENABLED(DWIN_LCD_PROUI)
  2439. status = !BedLevelTools.meshvalidate();
  2440. if (status) {
  2441. bedlevel.invalidate();
  2442. LCD_MESSAGE(MSG_UBL_MESH_INVALID);
  2443. }
  2444. else
  2445. ui.status_printf(0, GET_TEXT_F(MSG_MESH_LOADED), bedlevel.storage_slot);
  2446. #endif
  2447. if (status) SERIAL_ECHOLNPGM("?Unable to load mesh data.");
  2448. else DEBUG_ECHOLNPGM("Mesh loaded from slot ", slot);
  2449. EEPROM_FINISH();
  2450. #else
  2451. // Other mesh types
  2452. #endif
  2453. }
  2454. //void MarlinSettings::delete_mesh() { return; }
  2455. //void MarlinSettings::defrag_meshes() { return; }
  2456. #endif // AUTO_BED_LEVELING_UBL
  2457. #else // !EEPROM_SETTINGS
  2458. bool MarlinSettings::save() {
  2459. DEBUG_ERROR_MSG("EEPROM disabled");
  2460. return false;
  2461. }
  2462. #endif // !EEPROM_SETTINGS
  2463. /**
  2464. * M502 - Reset Configuration
  2465. */
  2466. void MarlinSettings::reset() {
  2467. LOOP_DISTINCT_AXES(i) {
  2468. planner.settings.max_acceleration_mm_per_s2[i] = pgm_read_dword(&_DMA[ALIM(i, _DMA)]);
  2469. planner.settings.axis_steps_per_mm[i] = pgm_read_float(&_DASU[ALIM(i, _DASU)]);
  2470. planner.settings.max_feedrate_mm_s[i] = pgm_read_float(&_DMF[ALIM(i, _DMF)]);
  2471. }
  2472. planner.settings.min_segment_time_us = DEFAULT_MINSEGMENTTIME;
  2473. planner.settings.acceleration = DEFAULT_ACCELERATION;
  2474. planner.settings.retract_acceleration = DEFAULT_RETRACT_ACCELERATION;
  2475. planner.settings.travel_acceleration = DEFAULT_TRAVEL_ACCELERATION;
  2476. planner.settings.min_feedrate_mm_s = feedRate_t(DEFAULT_MINIMUMFEEDRATE);
  2477. planner.settings.min_travel_feedrate_mm_s = feedRate_t(DEFAULT_MINTRAVELFEEDRATE);
  2478. #if HAS_CLASSIC_JERK
  2479. #ifndef DEFAULT_XJERK
  2480. #define DEFAULT_XJERK 0
  2481. #endif
  2482. #if HAS_Y_AXIS && !defined(DEFAULT_YJERK)
  2483. #define DEFAULT_YJERK 0
  2484. #endif
  2485. #if HAS_Z_AXIS && !defined(DEFAULT_ZJERK)
  2486. #define DEFAULT_ZJERK 0
  2487. #endif
  2488. #if HAS_I_AXIS && !defined(DEFAULT_IJERK)
  2489. #define DEFAULT_IJERK 0
  2490. #endif
  2491. #if HAS_J_AXIS && !defined(DEFAULT_JJERK)
  2492. #define DEFAULT_JJERK 0
  2493. #endif
  2494. #if HAS_K_AXIS && !defined(DEFAULT_KJERK)
  2495. #define DEFAULT_KJERK 0
  2496. #endif
  2497. #if HAS_U_AXIS && !defined(DEFAULT_UJERK)
  2498. #define DEFAULT_UJERK 0
  2499. #endif
  2500. #if HAS_V_AXIS && !defined(DEFAULT_VJERK)
  2501. #define DEFAULT_VJERK 0
  2502. #endif
  2503. #if HAS_W_AXIS && !defined(DEFAULT_WJERK)
  2504. #define DEFAULT_WJERK 0
  2505. #endif
  2506. planner.max_jerk.set(
  2507. NUM_AXIS_LIST(DEFAULT_XJERK, DEFAULT_YJERK, DEFAULT_ZJERK, DEFAULT_IJERK, DEFAULT_JJERK, DEFAULT_KJERK, DEFAULT_UJERK, DEFAULT_VJERK, DEFAULT_WJERK)
  2508. );
  2509. TERN_(HAS_CLASSIC_E_JERK, planner.max_jerk.e = DEFAULT_EJERK);
  2510. #endif
  2511. TERN_(HAS_JUNCTION_DEVIATION, planner.junction_deviation_mm = float(JUNCTION_DEVIATION_MM));
  2512. #if HAS_SCARA_OFFSET
  2513. scara_home_offset.reset();
  2514. #elif HAS_HOME_OFFSET
  2515. home_offset.reset();
  2516. #endif
  2517. TERN_(HAS_HOTEND_OFFSET, reset_hotend_offsets());
  2518. //
  2519. // Filament Runout Sensor
  2520. //
  2521. #if HAS_FILAMENT_SENSOR
  2522. runout.enabled = FIL_RUNOUT_ENABLED_DEFAULT;
  2523. runout.reset();
  2524. TERN_(HAS_FILAMENT_RUNOUT_DISTANCE, runout.set_runout_distance(FILAMENT_RUNOUT_DISTANCE_MM));
  2525. #endif
  2526. //
  2527. // Tool-change Settings
  2528. //
  2529. #if HAS_MULTI_EXTRUDER
  2530. #if ENABLED(TOOLCHANGE_FILAMENT_SWAP)
  2531. toolchange_settings.swap_length = TOOLCHANGE_FS_LENGTH;
  2532. toolchange_settings.extra_resume = TOOLCHANGE_FS_EXTRA_RESUME_LENGTH;
  2533. toolchange_settings.retract_speed = TOOLCHANGE_FS_RETRACT_SPEED;
  2534. toolchange_settings.unretract_speed = TOOLCHANGE_FS_UNRETRACT_SPEED;
  2535. toolchange_settings.extra_prime = TOOLCHANGE_FS_EXTRA_PRIME;
  2536. toolchange_settings.prime_speed = TOOLCHANGE_FS_PRIME_SPEED;
  2537. toolchange_settings.fan_speed = TOOLCHANGE_FS_FAN_SPEED;
  2538. toolchange_settings.fan_time = TOOLCHANGE_FS_FAN_TIME;
  2539. #endif
  2540. #if ENABLED(TOOLCHANGE_FS_PRIME_FIRST_USED)
  2541. enable_first_prime = false;
  2542. #endif
  2543. #if ENABLED(TOOLCHANGE_PARK)
  2544. constexpr xyz_pos_t tpxy = TOOLCHANGE_PARK_XY;
  2545. toolchange_settings.enable_park = true;
  2546. toolchange_settings.change_point = tpxy;
  2547. #endif
  2548. toolchange_settings.z_raise = TOOLCHANGE_ZRAISE;
  2549. #if ENABLED(TOOLCHANGE_MIGRATION_FEATURE)
  2550. migration = migration_defaults;
  2551. #endif
  2552. #endif
  2553. #if ENABLED(BACKLASH_GCODE)
  2554. backlash.set_correction(BACKLASH_CORRECTION);
  2555. constexpr xyz_float_t tmp = BACKLASH_DISTANCE_MM;
  2556. LOOP_NUM_AXES(axis) backlash.set_distance_mm((AxisEnum)axis, tmp[axis]);
  2557. #ifdef BACKLASH_SMOOTHING_MM
  2558. backlash.set_smoothing_mm(BACKLASH_SMOOTHING_MM);
  2559. #endif
  2560. #endif
  2561. TERN_(DWIN_CREALITY_LCD_JYERSUI, CrealityDWIN.Reset_Settings());
  2562. //
  2563. // Case Light Brightness
  2564. //
  2565. TERN_(CASELIGHT_USES_BRIGHTNESS, caselight.brightness = CASE_LIGHT_DEFAULT_BRIGHTNESS);
  2566. //
  2567. // TOUCH_SCREEN_CALIBRATION
  2568. //
  2569. TERN_(TOUCH_SCREEN_CALIBRATION, touch_calibration.calibration_reset());
  2570. //
  2571. // Buzzer enable/disable
  2572. //
  2573. #if ENABLED(SOUND_MENU_ITEM)
  2574. ui.sound_on = ENABLED(SOUND_ON_DEFAULT);
  2575. #endif
  2576. //
  2577. // Magnetic Parking Extruder
  2578. //
  2579. TERN_(MAGNETIC_PARKING_EXTRUDER, mpe_settings_init());
  2580. //
  2581. // Global Leveling
  2582. //
  2583. TERN_(ENABLE_LEVELING_FADE_HEIGHT, new_z_fade_height = (DEFAULT_LEVELING_FADE_HEIGHT));
  2584. TERN_(HAS_LEVELING, reset_bed_level());
  2585. //
  2586. // X Axis Twist Compensation
  2587. //
  2588. TERN_(X_AXIS_TWIST_COMPENSATION, xatc.reset());
  2589. //
  2590. // Nozzle-to-probe Offset
  2591. //
  2592. #if HAS_BED_PROBE
  2593. constexpr float dpo[] = NOZZLE_TO_PROBE_OFFSET;
  2594. static_assert(COUNT(dpo) == NUM_AXES, "NOZZLE_TO_PROBE_OFFSET must contain offsets for each linear axis X, Y, Z....");
  2595. #if HAS_PROBE_XY_OFFSET
  2596. LOOP_NUM_AXES(a) probe.offset[a] = dpo[a];
  2597. #else
  2598. probe.offset.set(NUM_AXIS_LIST(0, 0, dpo[Z_AXIS], 0, 0, 0, 0, 0, 0));
  2599. #endif
  2600. #endif
  2601. //
  2602. // Z Stepper Auto-alignment points
  2603. //
  2604. TERN_(Z_STEPPER_AUTO_ALIGN, z_stepper_align.reset_to_default());
  2605. //
  2606. // Servo Angles
  2607. //
  2608. TERN_(EDITABLE_SERVO_ANGLES, COPY(servo_angles, base_servo_angles)); // When not editable only one copy of servo angles exists
  2609. //
  2610. // Probe Temperature Compensation
  2611. //
  2612. TERN_(HAS_PTC, ptc.reset());
  2613. //
  2614. // BLTouch
  2615. //
  2616. #ifdef BLTOUCH_HS_MODE
  2617. bltouch.high_speed_mode = ENABLED(BLTOUCH_HS_MODE);
  2618. #endif
  2619. //
  2620. // Kinematic settings
  2621. //
  2622. #if IS_KINEMATIC
  2623. segments_per_second = (
  2624. TERN_(DELTA, DELTA_SEGMENTS_PER_SECOND)
  2625. TERN_(IS_SCARA, SCARA_SEGMENTS_PER_SECOND)
  2626. TERN_(POLARGRAPH, POLAR_SEGMENTS_PER_SECOND)
  2627. );
  2628. #if ENABLED(DELTA)
  2629. const abc_float_t adj = DELTA_ENDSTOP_ADJ, dta = DELTA_TOWER_ANGLE_TRIM, ddr = DELTA_DIAGONAL_ROD_TRIM_TOWER;
  2630. delta_height = DELTA_HEIGHT;
  2631. delta_endstop_adj = adj;
  2632. delta_radius = DELTA_RADIUS;
  2633. delta_diagonal_rod = DELTA_DIAGONAL_ROD;
  2634. delta_tower_angle_trim = dta;
  2635. delta_diagonal_rod_trim = ddr;
  2636. #endif
  2637. #endif
  2638. //
  2639. // Endstop Adjustments
  2640. //
  2641. #if ENABLED(X_DUAL_ENDSTOPS)
  2642. #ifndef X2_ENDSTOP_ADJUSTMENT
  2643. #define X2_ENDSTOP_ADJUSTMENT 0
  2644. #endif
  2645. endstops.x2_endstop_adj = X2_ENDSTOP_ADJUSTMENT;
  2646. #endif
  2647. #if ENABLED(Y_DUAL_ENDSTOPS)
  2648. #ifndef Y2_ENDSTOP_ADJUSTMENT
  2649. #define Y2_ENDSTOP_ADJUSTMENT 0
  2650. #endif
  2651. endstops.y2_endstop_adj = Y2_ENDSTOP_ADJUSTMENT;
  2652. #endif
  2653. #if ENABLED(Z_MULTI_ENDSTOPS)
  2654. #ifndef Z2_ENDSTOP_ADJUSTMENT
  2655. #define Z2_ENDSTOP_ADJUSTMENT 0
  2656. #endif
  2657. endstops.z2_endstop_adj = Z2_ENDSTOP_ADJUSTMENT;
  2658. #if NUM_Z_STEPPERS >= 3
  2659. #ifndef Z3_ENDSTOP_ADJUSTMENT
  2660. #define Z3_ENDSTOP_ADJUSTMENT 0
  2661. #endif
  2662. endstops.z3_endstop_adj = Z3_ENDSTOP_ADJUSTMENT;
  2663. #endif
  2664. #if NUM_Z_STEPPERS >= 4
  2665. #ifndef Z4_ENDSTOP_ADJUSTMENT
  2666. #define Z4_ENDSTOP_ADJUSTMENT 0
  2667. #endif
  2668. endstops.z4_endstop_adj = Z4_ENDSTOP_ADJUSTMENT;
  2669. #endif
  2670. #endif
  2671. //
  2672. // Preheat parameters
  2673. //
  2674. #if HAS_PREHEAT
  2675. #define _PITEM(N,T) PREHEAT_##N##_##T,
  2676. #if HAS_HOTEND
  2677. constexpr uint16_t hpre[] = { REPEAT2_S(1, INCREMENT(PREHEAT_COUNT), _PITEM, TEMP_HOTEND) };
  2678. #endif
  2679. #if HAS_HEATED_BED
  2680. constexpr uint16_t bpre[] = { REPEAT2_S(1, INCREMENT(PREHEAT_COUNT), _PITEM, TEMP_BED) };
  2681. #endif
  2682. #if HAS_FAN
  2683. constexpr uint8_t fpre[] = { REPEAT2_S(1, INCREMENT(PREHEAT_COUNT), _PITEM, FAN_SPEED) };
  2684. #endif
  2685. LOOP_L_N(i, PREHEAT_COUNT) {
  2686. TERN_(HAS_HOTEND, ui.material_preset[i].hotend_temp = hpre[i]);
  2687. TERN_(HAS_HEATED_BED, ui.material_preset[i].bed_temp = bpre[i]);
  2688. TERN_(HAS_FAN, ui.material_preset[i].fan_speed = fpre[i]);
  2689. }
  2690. #endif
  2691. //
  2692. // Hotend PID
  2693. //
  2694. #if ENABLED(PIDTEMP)
  2695. #if ENABLED(PID_PARAMS_PER_HOTEND)
  2696. constexpr float defKp[] =
  2697. #ifdef DEFAULT_Kp_LIST
  2698. DEFAULT_Kp_LIST
  2699. #else
  2700. ARRAY_BY_HOTENDS1(DEFAULT_Kp)
  2701. #endif
  2702. , defKi[] =
  2703. #ifdef DEFAULT_Ki_LIST
  2704. DEFAULT_Ki_LIST
  2705. #else
  2706. ARRAY_BY_HOTENDS1(DEFAULT_Ki)
  2707. #endif
  2708. , defKd[] =
  2709. #ifdef DEFAULT_Kd_LIST
  2710. DEFAULT_Kd_LIST
  2711. #else
  2712. ARRAY_BY_HOTENDS1(DEFAULT_Kd)
  2713. #endif
  2714. ;
  2715. static_assert(WITHIN(COUNT(defKp), 1, HOTENDS), "DEFAULT_Kp_LIST must have between 1 and HOTENDS items.");
  2716. static_assert(WITHIN(COUNT(defKi), 1, HOTENDS), "DEFAULT_Ki_LIST must have between 1 and HOTENDS items.");
  2717. static_assert(WITHIN(COUNT(defKd), 1, HOTENDS), "DEFAULT_Kd_LIST must have between 1 and HOTENDS items.");
  2718. #if ENABLED(PID_EXTRUSION_SCALING)
  2719. constexpr float defKc[] =
  2720. #ifdef DEFAULT_Kc_LIST
  2721. DEFAULT_Kc_LIST
  2722. #else
  2723. ARRAY_BY_HOTENDS1(DEFAULT_Kc)
  2724. #endif
  2725. ;
  2726. static_assert(WITHIN(COUNT(defKc), 1, HOTENDS), "DEFAULT_Kc_LIST must have between 1 and HOTENDS items.");
  2727. #endif
  2728. #if ENABLED(PID_FAN_SCALING)
  2729. constexpr float defKf[] =
  2730. #ifdef DEFAULT_Kf_LIST
  2731. DEFAULT_Kf_LIST
  2732. #else
  2733. ARRAY_BY_HOTENDS1(DEFAULT_Kf)
  2734. #endif
  2735. ;
  2736. static_assert(WITHIN(COUNT(defKf), 1, HOTENDS), "DEFAULT_Kf_LIST must have between 1 and HOTENDS items.");
  2737. #endif
  2738. #define PID_DEFAULT(N,E) def##N[E]
  2739. #else
  2740. #define PID_DEFAULT(N,E) DEFAULT_##N
  2741. #endif
  2742. HOTEND_LOOP() {
  2743. PID_PARAM(Kp, e) = float(PID_DEFAULT(Kp, ALIM(e, defKp)));
  2744. PID_PARAM(Ki, e) = scalePID_i(PID_DEFAULT(Ki, ALIM(e, defKi)));
  2745. PID_PARAM(Kd, e) = scalePID_d(PID_DEFAULT(Kd, ALIM(e, defKd)));
  2746. TERN_(PID_EXTRUSION_SCALING, PID_PARAM(Kc, e) = float(PID_DEFAULT(Kc, ALIM(e, defKc))));
  2747. TERN_(PID_FAN_SCALING, PID_PARAM(Kf, e) = float(PID_DEFAULT(Kf, ALIM(e, defKf))));
  2748. }
  2749. #endif
  2750. //
  2751. // PID Extrusion Scaling
  2752. //
  2753. TERN_(PID_EXTRUSION_SCALING, thermalManager.lpq_len = 20); // Default last-position-queue size
  2754. //
  2755. // Heated Bed PID
  2756. //
  2757. #if ENABLED(PIDTEMPBED)
  2758. thermalManager.temp_bed.pid.Kp = DEFAULT_bedKp;
  2759. thermalManager.temp_bed.pid.Ki = scalePID_i(DEFAULT_bedKi);
  2760. thermalManager.temp_bed.pid.Kd = scalePID_d(DEFAULT_bedKd);
  2761. #endif
  2762. //
  2763. // Heated Chamber PID
  2764. //
  2765. #if ENABLED(PIDTEMPCHAMBER)
  2766. thermalManager.temp_chamber.pid.Kp = DEFAULT_chamberKp;
  2767. thermalManager.temp_chamber.pid.Ki = scalePID_i(DEFAULT_chamberKi);
  2768. thermalManager.temp_chamber.pid.Kd = scalePID_d(DEFAULT_chamberKd);
  2769. #endif
  2770. //
  2771. // User-Defined Thermistors
  2772. //
  2773. TERN_(HAS_USER_THERMISTORS, thermalManager.reset_user_thermistors());
  2774. //
  2775. // Power Monitor
  2776. //
  2777. TERN_(POWER_MONITOR, power_monitor.reset());
  2778. //
  2779. // LCD Contrast
  2780. //
  2781. TERN_(HAS_LCD_CONTRAST, ui.contrast = LCD_CONTRAST_DEFAULT);
  2782. //
  2783. // LCD Brightness
  2784. //
  2785. TERN_(HAS_LCD_BRIGHTNESS, ui.brightness = LCD_BRIGHTNESS_DEFAULT);
  2786. //
  2787. // LCD Backlight / Sleep Timeout
  2788. //
  2789. #if LCD_BACKLIGHT_TIMEOUT
  2790. ui.lcd_backlight_timeout = LCD_BACKLIGHT_TIMEOUT;
  2791. #elif HAS_DISPLAY_SLEEP
  2792. ui.sleep_timeout_minutes = DISPLAY_SLEEP_MINUTES;
  2793. #endif
  2794. //
  2795. // Controller Fan
  2796. //
  2797. TERN_(USE_CONTROLLER_FAN, controllerFan.reset());
  2798. //
  2799. // Power-Loss Recovery
  2800. //
  2801. TERN_(POWER_LOSS_RECOVERY, recovery.enable(ENABLED(PLR_ENABLED_DEFAULT)));
  2802. //
  2803. // Firmware Retraction
  2804. //
  2805. TERN_(FWRETRACT, fwretract.reset());
  2806. //
  2807. // Volumetric & Filament Size
  2808. //
  2809. #if DISABLED(NO_VOLUMETRICS)
  2810. parser.volumetric_enabled = ENABLED(VOLUMETRIC_DEFAULT_ON);
  2811. LOOP_L_N(q, COUNT(planner.filament_size))
  2812. planner.filament_size[q] = DEFAULT_NOMINAL_FILAMENT_DIA;
  2813. #if ENABLED(VOLUMETRIC_EXTRUDER_LIMIT)
  2814. LOOP_L_N(q, COUNT(planner.volumetric_extruder_limit))
  2815. planner.volumetric_extruder_limit[q] = DEFAULT_VOLUMETRIC_EXTRUDER_LIMIT;
  2816. #endif
  2817. #endif
  2818. endstops.enable_globally(ENABLED(ENDSTOPS_ALWAYS_ON_DEFAULT));
  2819. reset_stepper_drivers();
  2820. //
  2821. // Linear Advance
  2822. //
  2823. #if ENABLED(LIN_ADVANCE)
  2824. EXTRUDER_LOOP() {
  2825. planner.extruder_advance_K[e] = LIN_ADVANCE_K;
  2826. TERN_(EXTRA_LIN_ADVANCE_K, other_extruder_advance_K[e] = LIN_ADVANCE_K);
  2827. }
  2828. #endif
  2829. //
  2830. // Motor Current PWM
  2831. //
  2832. #if HAS_MOTOR_CURRENT_PWM
  2833. constexpr uint32_t tmp_motor_current_setting[MOTOR_CURRENT_COUNT] = PWM_MOTOR_CURRENT;
  2834. LOOP_L_N(q, MOTOR_CURRENT_COUNT)
  2835. stepper.set_digipot_current(q, (stepper.motor_current_setting[q] = tmp_motor_current_setting[q]));
  2836. #endif
  2837. //
  2838. // DIGIPOTS
  2839. //
  2840. #if HAS_MOTOR_CURRENT_SPI
  2841. static constexpr uint32_t tmp_motor_current_setting[] = DIGIPOT_MOTOR_CURRENT;
  2842. DEBUG_ECHOLNPGM("Writing Digipot");
  2843. LOOP_L_N(q, COUNT(tmp_motor_current_setting))
  2844. stepper.set_digipot_current(q, tmp_motor_current_setting[q]);
  2845. DEBUG_ECHOLNPGM("Digipot Written");
  2846. #endif
  2847. //
  2848. // CNC Coordinate System
  2849. //
  2850. TERN_(CNC_COORDINATE_SYSTEMS, (void)gcode.select_coordinate_system(-1)); // Go back to machine space
  2851. //
  2852. // Skew Correction
  2853. //
  2854. #if ENABLED(SKEW_CORRECTION_GCODE)
  2855. planner.skew_factor.xy = XY_SKEW_FACTOR;
  2856. #if ENABLED(SKEW_CORRECTION_FOR_Z)
  2857. planner.skew_factor.xz = XZ_SKEW_FACTOR;
  2858. planner.skew_factor.yz = YZ_SKEW_FACTOR;
  2859. #endif
  2860. #endif
  2861. //
  2862. // Advanced Pause filament load & unload lengths
  2863. //
  2864. #if ENABLED(ADVANCED_PAUSE_FEATURE)
  2865. EXTRUDER_LOOP() {
  2866. fc_settings[e].unload_length = FILAMENT_CHANGE_UNLOAD_LENGTH;
  2867. fc_settings[e].load_length = FILAMENT_CHANGE_FAST_LOAD_LENGTH;
  2868. }
  2869. #endif
  2870. #if ENABLED(PASSWORD_FEATURE)
  2871. #ifdef PASSWORD_DEFAULT_VALUE
  2872. password.is_set = true;
  2873. password.value = PASSWORD_DEFAULT_VALUE;
  2874. #else
  2875. password.is_set = false;
  2876. #endif
  2877. #endif
  2878. //
  2879. // Fan tachometer check
  2880. //
  2881. TERN_(HAS_FANCHECK, fan_check.enabled = true);
  2882. //
  2883. // MKS UI controller
  2884. //
  2885. TERN_(DGUS_LCD_UI_MKS, MKS_reset_settings());
  2886. //
  2887. // Ender-3 V2 with ProUI
  2888. //
  2889. TERN_(DWIN_LCD_PROUI, DWIN_SetDataDefaults());
  2890. //
  2891. // Model predictive control
  2892. //
  2893. #if ENABLED(MPCTEMP)
  2894. constexpr float _mpc_heater_power[] = MPC_HEATER_POWER;
  2895. constexpr float _mpc_block_heat_capacity[] = MPC_BLOCK_HEAT_CAPACITY;
  2896. constexpr float _mpc_sensor_responsiveness[] = MPC_SENSOR_RESPONSIVENESS;
  2897. constexpr float _mpc_ambient_xfer_coeff[] = MPC_AMBIENT_XFER_COEFF;
  2898. #if ENABLED(MPC_INCLUDE_FAN)
  2899. constexpr float _mpc_ambient_xfer_coeff_fan255[] = MPC_AMBIENT_XFER_COEFF_FAN255;
  2900. #endif
  2901. constexpr float _filament_heat_capacity_permm[] = FILAMENT_HEAT_CAPACITY_PERMM;
  2902. static_assert(COUNT(_mpc_heater_power) == HOTENDS, "MPC_HEATER_POWER must have HOTENDS items.");
  2903. static_assert(COUNT(_mpc_block_heat_capacity) == HOTENDS, "MPC_BLOCK_HEAT_CAPACITY must have HOTENDS items.");
  2904. static_assert(COUNT(_mpc_sensor_responsiveness) == HOTENDS, "MPC_SENSOR_RESPONSIVENESS must have HOTENDS items.");
  2905. static_assert(COUNT(_mpc_ambient_xfer_coeff) == HOTENDS, "MPC_AMBIENT_XFER_COEFF must have HOTENDS items.");
  2906. #if ENABLED(MPC_INCLUDE_FAN)
  2907. static_assert(COUNT(_mpc_ambient_xfer_coeff_fan255) == HOTENDS, "MPC_AMBIENT_XFER_COEFF_FAN255 must have HOTENDS items.");
  2908. #endif
  2909. static_assert(COUNT(_filament_heat_capacity_permm) == HOTENDS, "FILAMENT_HEAT_CAPACITY_PERMM must have HOTENDS items.");
  2910. HOTEND_LOOP() {
  2911. thermalManager.temp_hotend[e].constants.heater_power = _mpc_heater_power[e];
  2912. thermalManager.temp_hotend[e].constants.block_heat_capacity = _mpc_block_heat_capacity[e];
  2913. thermalManager.temp_hotend[e].constants.sensor_responsiveness = _mpc_sensor_responsiveness[e];
  2914. thermalManager.temp_hotend[e].constants.ambient_xfer_coeff_fan0 = _mpc_ambient_xfer_coeff[e];
  2915. #if ENABLED(MPC_INCLUDE_FAN)
  2916. thermalManager.temp_hotend[e].constants.fan255_adjustment = _mpc_ambient_xfer_coeff_fan255[e] - _mpc_ambient_xfer_coeff[e];
  2917. #endif
  2918. thermalManager.temp_hotend[e].constants.filament_heat_capacity_permm = _filament_heat_capacity_permm[e];
  2919. }
  2920. #endif
  2921. postprocess();
  2922. #if EITHER(EEPROM_CHITCHAT, DEBUG_LEVELING_FEATURE)
  2923. FSTR_P const hdsl = F("Hardcoded Default Settings Loaded");
  2924. TERN_(HOST_EEPROM_CHITCHAT, hostui.notify(hdsl));
  2925. DEBUG_ECHO_START(); DEBUG_ECHOLNF(hdsl);
  2926. #endif
  2927. TERN_(EXTENSIBLE_UI, ExtUI::onFactoryReset());
  2928. }
  2929. #if DISABLED(DISABLE_M503)
  2930. #define CONFIG_ECHO_START() gcode.report_echo_start(forReplay)
  2931. #define CONFIG_ECHO_MSG(V...) do{ CONFIG_ECHO_START(); SERIAL_ECHOLNPGM(V); }while(0)
  2932. #define CONFIG_ECHO_MSG_P(V...) do{ CONFIG_ECHO_START(); SERIAL_ECHOLNPGM_P(V); }while(0)
  2933. #define CONFIG_ECHO_HEADING(STR) gcode.report_heading(forReplay, F(STR))
  2934. void M92_report(const bool echo=true, const int8_t e=-1);
  2935. /**
  2936. * M503 - Report current settings in RAM
  2937. *
  2938. * Unless specifically disabled, M503 is available even without EEPROM
  2939. */
  2940. void MarlinSettings::report(const bool forReplay) {
  2941. //
  2942. // Announce current units, in case inches are being displayed
  2943. //
  2944. CONFIG_ECHO_HEADING("Linear Units");
  2945. CONFIG_ECHO_START();
  2946. #if ENABLED(INCH_MODE_SUPPORT)
  2947. SERIAL_ECHOPGM(" G2", AS_DIGIT(parser.linear_unit_factor == 1.0), " ;");
  2948. #else
  2949. SERIAL_ECHOPGM(" G21 ;");
  2950. #endif
  2951. gcode.say_units(); // " (in/mm)"
  2952. //
  2953. // M149 Temperature units
  2954. //
  2955. #if ENABLED(TEMPERATURE_UNITS_SUPPORT)
  2956. gcode.M149_report(forReplay);
  2957. #else
  2958. CONFIG_ECHO_HEADING(STR_TEMPERATURE_UNITS);
  2959. CONFIG_ECHO_MSG(" M149 C ; Units in Celsius");
  2960. #endif
  2961. //
  2962. // M200 Volumetric Extrusion
  2963. //
  2964. IF_DISABLED(NO_VOLUMETRICS, gcode.M200_report(forReplay));
  2965. //
  2966. // M92 Steps per Unit
  2967. //
  2968. gcode.M92_report(forReplay);
  2969. //
  2970. // M203 Maximum feedrates (units/s)
  2971. //
  2972. gcode.M203_report(forReplay);
  2973. //
  2974. // M201 Maximum Acceleration (units/s2)
  2975. //
  2976. gcode.M201_report(forReplay);
  2977. //
  2978. // M204 Acceleration (units/s2)
  2979. //
  2980. gcode.M204_report(forReplay);
  2981. //
  2982. // M205 "Advanced" Settings
  2983. //
  2984. gcode.M205_report(forReplay);
  2985. //
  2986. // M206 Home Offset
  2987. //
  2988. TERN_(HAS_M206_COMMAND, gcode.M206_report(forReplay));
  2989. //
  2990. // M218 Hotend offsets
  2991. //
  2992. TERN_(HAS_HOTEND_OFFSET, gcode.M218_report(forReplay));
  2993. //
  2994. // Bed Leveling
  2995. //
  2996. #if HAS_LEVELING
  2997. gcode.M420_report(forReplay);
  2998. #if ENABLED(MESH_BED_LEVELING)
  2999. if (leveling_is_valid()) {
  3000. LOOP_L_N(py, GRID_MAX_POINTS_Y) {
  3001. LOOP_L_N(px, GRID_MAX_POINTS_X) {
  3002. CONFIG_ECHO_START();
  3003. SERIAL_ECHOPGM(" G29 S3 I", px, " J", py);
  3004. SERIAL_ECHOLNPAIR_F_P(SP_Z_STR, LINEAR_UNIT(bedlevel.z_values[px][py]), 5);
  3005. }
  3006. }
  3007. CONFIG_ECHO_START();
  3008. SERIAL_ECHOLNPAIR_F(" G29 S4 Z", LINEAR_UNIT(bedlevel.z_offset), 5);
  3009. }
  3010. #elif ENABLED(AUTO_BED_LEVELING_UBL)
  3011. if (!forReplay) {
  3012. SERIAL_EOL();
  3013. bedlevel.report_state();
  3014. SERIAL_ECHO_MSG("Active Mesh Slot ", bedlevel.storage_slot);
  3015. SERIAL_ECHO_MSG("EEPROM can hold ", calc_num_meshes(), " meshes.\n");
  3016. }
  3017. //bedlevel.report_current_mesh(); // This is too verbose for large meshes. A better (more terse)
  3018. // solution needs to be found.
  3019. #elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
  3020. if (leveling_is_valid()) {
  3021. LOOP_L_N(py, GRID_MAX_POINTS_Y) {
  3022. LOOP_L_N(px, GRID_MAX_POINTS_X) {
  3023. CONFIG_ECHO_START();
  3024. SERIAL_ECHOPGM(" G29 W I", px, " J", py);
  3025. SERIAL_ECHOLNPAIR_F_P(SP_Z_STR, LINEAR_UNIT(bedlevel.z_values[px][py]), 5);
  3026. }
  3027. }
  3028. }
  3029. #endif
  3030. #endif // HAS_LEVELING
  3031. //
  3032. // X Axis Twist Compensation
  3033. //
  3034. TERN_(X_AXIS_TWIST_COMPENSATION, gcode.M423_report(forReplay));
  3035. //
  3036. // Editable Servo Angles
  3037. //
  3038. TERN_(EDITABLE_SERVO_ANGLES, gcode.M281_report(forReplay));
  3039. //
  3040. // Kinematic Settings
  3041. //
  3042. TERN_(IS_KINEMATIC, gcode.M665_report(forReplay));
  3043. //
  3044. // M666 Endstops Adjustment
  3045. //
  3046. #if EITHER(DELTA, HAS_EXTRA_ENDSTOPS)
  3047. gcode.M666_report(forReplay);
  3048. #endif
  3049. //
  3050. // Z Auto-Align
  3051. //
  3052. TERN_(Z_STEPPER_AUTO_ALIGN, gcode.M422_report(forReplay));
  3053. //
  3054. // LCD Preheat Settings
  3055. //
  3056. #if HAS_PREHEAT
  3057. gcode.M145_report(forReplay);
  3058. #endif
  3059. //
  3060. // PID
  3061. //
  3062. TERN_(PIDTEMP, gcode.M301_report(forReplay));
  3063. TERN_(PIDTEMPBED, gcode.M304_report(forReplay));
  3064. TERN_(PIDTEMPCHAMBER, gcode.M309_report(forReplay));
  3065. #if HAS_USER_THERMISTORS
  3066. LOOP_L_N(i, USER_THERMISTORS)
  3067. thermalManager.M305_report(i, forReplay);
  3068. #endif
  3069. //
  3070. // LCD Contrast
  3071. //
  3072. TERN_(HAS_LCD_CONTRAST, gcode.M250_report(forReplay));
  3073. //
  3074. // Display Sleep
  3075. //
  3076. TERN_(HAS_GCODE_M255, gcode.M255_report(forReplay));
  3077. //
  3078. // LCD Brightness
  3079. //
  3080. TERN_(HAS_LCD_BRIGHTNESS, gcode.M256_report(forReplay));
  3081. //
  3082. // Controller Fan
  3083. //
  3084. TERN_(CONTROLLER_FAN_EDITABLE, gcode.M710_report(forReplay));
  3085. //
  3086. // Power-Loss Recovery
  3087. //
  3088. TERN_(POWER_LOSS_RECOVERY, gcode.M413_report(forReplay));
  3089. //
  3090. // Firmware Retraction
  3091. //
  3092. #if ENABLED(FWRETRACT)
  3093. gcode.M207_report(forReplay);
  3094. gcode.M208_report(forReplay);
  3095. TERN_(FWRETRACT_AUTORETRACT, gcode.M209_report(forReplay));
  3096. #endif
  3097. //
  3098. // Probe Offset
  3099. //
  3100. TERN_(HAS_BED_PROBE, gcode.M851_report(forReplay));
  3101. //
  3102. // Bed Skew Correction
  3103. //
  3104. TERN_(SKEW_CORRECTION_GCODE, gcode.M852_report(forReplay));
  3105. #if HAS_TRINAMIC_CONFIG
  3106. //
  3107. // TMC Stepper driver current
  3108. //
  3109. gcode.M906_report(forReplay);
  3110. //
  3111. // TMC Hybrid Threshold
  3112. //
  3113. TERN_(HYBRID_THRESHOLD, gcode.M913_report(forReplay));
  3114. //
  3115. // TMC Sensorless homing thresholds
  3116. //
  3117. TERN_(USE_SENSORLESS, gcode.M914_report(forReplay));
  3118. #endif
  3119. //
  3120. // TMC stepping mode
  3121. //
  3122. TERN_(HAS_STEALTHCHOP, gcode.M569_report(forReplay));
  3123. //
  3124. // Linear Advance
  3125. //
  3126. TERN_(LIN_ADVANCE, gcode.M900_report(forReplay));
  3127. //
  3128. // Motor Current (SPI or PWM)
  3129. //
  3130. #if HAS_MOTOR_CURRENT_SPI || HAS_MOTOR_CURRENT_PWM
  3131. gcode.M907_report(forReplay);
  3132. #endif
  3133. //
  3134. // Advanced Pause filament load & unload lengths
  3135. //
  3136. TERN_(ADVANCED_PAUSE_FEATURE, gcode.M603_report(forReplay));
  3137. //
  3138. // Tool-changing Parameters
  3139. //
  3140. E_TERN_(gcode.M217_report(forReplay));
  3141. //
  3142. // Backlash Compensation
  3143. //
  3144. TERN_(BACKLASH_GCODE, gcode.M425_report(forReplay));
  3145. //
  3146. // Filament Runout Sensor
  3147. //
  3148. TERN_(HAS_FILAMENT_SENSOR, gcode.M412_report(forReplay));
  3149. #if HAS_ETHERNET
  3150. CONFIG_ECHO_HEADING("Ethernet");
  3151. if (!forReplay) ETH0_report();
  3152. CONFIG_ECHO_START(); SERIAL_ECHO_SP(2); MAC_report();
  3153. CONFIG_ECHO_START(); SERIAL_ECHO_SP(2); gcode.M552_report();
  3154. CONFIG_ECHO_START(); SERIAL_ECHO_SP(2); gcode.M553_report();
  3155. CONFIG_ECHO_START(); SERIAL_ECHO_SP(2); gcode.M554_report();
  3156. #endif
  3157. TERN_(HAS_MULTI_LANGUAGE, gcode.M414_report(forReplay));
  3158. //
  3159. // Model predictive control
  3160. //
  3161. TERN_(MPCTEMP, gcode.M306_report(forReplay));
  3162. }
  3163. #endif // !DISABLE_M503
  3164. #pragma pack(pop)